
Under review as a conference paper at ICLR 2018

EVALUATION OF GENERATIVE NETWORKS THROUGH
THEIR DATA AUGMENTATION CAPACITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative networks are known to be difficult to assess. Recent works on genera-
tive models, especially on generative adversarial networks, produce nice samples
of varied categories of images. But the validation of their quality is highly depen-
dent on the method used. A good generator should generate data which contain
meaningful and varied information and that fit the distribution of a dataset. This
paper presents a new method to assess a generator. Our approach is based on
training a classifier with a mixture of real and generated samples. We train a
generative model over a labeled training set, then we use this generative model to
sample new data points that we mix with the original training data. This mixture of
real and generated data is thus used to train a classifier which is afterwards tested
on a given labeled test dataset. We compare this result with the score of the same
classifier trained on the real training data mixed with noise. By computing the
classifier’s accuracy with different ratios of samples from both distributions (real
and generated) we are able to estimate if the generator successfully fits and is able
to generalize the distribution of the dataset. Our experiments compare different
generators from the VAE and GAN framework on MNIST and fashion MNIST
dataset.

1 INTRODUCTION AND MOTIVATION

Generative network approaches have been widely used to generate samples in recent years. Methods
such as GAN (Goodfellow et al., 2014), WGAN (Arjovsky et al., 2017), CGAN (Mirza & Osindero,
2014), CVAE (Sohn et al., 2015) and VAE (Kingma & Welling, 2014) have produced nice samples
on various image datasets such as MNIST, bedrooms (Radford et al., 2015) or imageNet (Nguyen
et al., 2017).

One commonly accepted tool to evaluate a generative model trained on images is visual assessment
to validate the realistic character of samples. One case of this method is called ’visual Turing tests’,
in which samples are visualized by humans who try to guess if the images are generated or not. It
has been used to assess generative models of images from ImageNet (Denton et al., 2015) and also
on digit images (Lake et al., 2015). Salimans et al. (2016) proposes to automate this method with the
inception score, which replaces the human judgment by the use of a pretrained classifier to assess
the variability of the samples with an entropy measure of the predicted classes and the confidence
in the prediction. Unfortunately, those two methods do not indicate if the generator collapses to a
particular mode of the data distribution. Log-likelihood based evaluation metrics were widely used
to evaluate generative models but as shown in Lucas Theis & Bethge (2016), those evaluations can
be misleading in high dimensional cases.

The solution we propose to estimate both sample quality and global fit of the data distribution is to
incorporate generated data into the training phase of a classifier before evaluating it. Using gener-
ated samples for training has several advantages over using only the original dataset. First, it can
make training more efficient when the amount of data is low. As shown in Ng & Jordan (2002),
where the conditional distribution P (Y |X)(X represents the samples and Y the classes) learned
by a generative model is compared to the same conditional distribution learned by a discriminative
model, the generative model performs better in learning this conditional distribution by regularizing
the model when the amount of data is low. Secondly, once the generative model is trained, it can

1

Under review as a conference paper at ICLR 2018

sample as much images as needed and can produce interpolations between two images which will
induce less risk of overfitting on the data. Other works use generative models for data augmentation
(Ratner et al., 2017) or to produce labeled data (Sixt et al., 2016) in order to improve the training
of discriminative models, but their intention is not to use it to evaluate or compare generative neural
networks.

Our method evaluates the quality of a generative model by assessing its capacity to fit the real
distribution of the data. For this purpose, we use the samples generated by a given trained generative
model. Our work aims to show how this data augmentation can benefit the training of a classifier
and how we can use this benefit as an evaluation tool in order to assess a generative model. This
method evaluates whether the information of the original distribution is still present in the generated
data and whether the generator is able to produce new samples that are eventually close to unseen
data. We compare classifiers trained over mixtures of generated and real data with varying ratios
and with varying total amounts of data. This allows us to compare generative models in various data
settings (i.e., when there is few or many data points).

The next section will present the related work on generative models, the exploitation of the generated
samples and their evaluation. We then present our generative model evaluation framework before
presenting experimental results on several generative models with different datasets.

2 RELATED WORK

2.1 GENERATIVE MODELS

The variational auto-encoder (VAE) framework (Kingma & Welling, 2014), (Rezende et al., 2014)
is a particular kind of auto-encoder which has control over its latent space, in which each variable is
a sample from a prior distribution, often chosen as an univariate normal distribution N(0, I) (where
I is the identity matrix). The VAE learns to map this low dimensional latent space to the observation
space. This characteristic makes the VAE an interesting option for generating new data after training.
The particularity of the latent space comes from the minimization of the KL divergence between the
distribution of the latent space and the prior N(0, I). For the sake of simplicity, in this paper we will
speak about the decoder of the VAE as a generator.

Generative adversarial networks (Goodfellow et al., 2014) are a framework of models that learn by a
game between two networks: a generator that learns to produce images from a distribution P and a
discriminator which learns to discriminate between generated and true images. The generator wants
to fool the discriminator and the discriminator wants to beat the generator. This class of generative
models can produce visually realistic samples from diverse datasets but they suffer from instabilities
in their training. Some recent approaches such as Wasserstein GAN (WGAN) (Arjovsky et al., 2017)
try to address those issues by enforcing a Lipschitz constraint on the discriminator.

Conditional neural networks (Sohn et al., 2015) and in particular Conditional Variational Autoen-
coders (CVAE) or Conditional Generative adversarial networks (CGAN) (Mirza & Osindero, 2014)
are a class of generative models that have control over the sample’s class. By imposing a label
during training, a conditional generative network can generate from any class and thus produces
labeled data. The conditional approach has been used to improve the quality of generative networks
and make them more discriminative (Odena et al., 2017). They are particularly adapted for our setup
because we need to generate labeled data to train our classifiers.

2.2 EXPLOITATION AND EVALUATION OF GENERATED SAMPLES

In Ratner et al. (2017), a generator is used to perform data augmentation. Instead of designing a
composition of fine tuned transformations for this objective, the authors use adversarial training to
learn a sequence of incremental operations (for example rotating or swapping words in a sentence).
Their approach uses a GAN to be able to generalize in terms of better data-augmentation and to
increase their performance on different datasets such as Cifar10 and the ACE relation extraction task.
Sixt et al. (2016) also learns a sequence of transformations with generative networks from the GAN
family, but they use a 3D model as input and create an augmented view of it. Our approach is similar
by using generative networks for data-augmentation but we do not attempt to learn transformations.

2

Under review as a conference paper at ICLR 2018

Instead, we use the generated data to assess if the generative model has been able to generalize over
the distribution of the data.

The evaluation of generative networks is discussed in Lucas Theis & Bethge (2016). The authors
show that different metrics (as Parzen windows, Nearest Neighbor or Log likelihood) applied to
generative models can lead to different results. Good results in one application of a generative model
can not be used as evidence of good performance in another application. Their conclusion is that
evaluation based on sample visual quality is a bad indicator for the entropy of samples. Conversely,
the log-likelihood can be used to produce samples with high entropy but does not assure good visual
quality. The method we propose can both estimate the quality and the entropy of samples as we will
show in Section 3.

The quality of the internal representation of a generator can also be estimated with a discriminator.
In Radford et al. (2015) they use the discriminator of a ACGAN as feature extractor for evaluating
the quality of unsupervised representation learning algorithms. They apply the feature extractor on
supervised datasets and evaluate the performance of linear models fitted on top of these features.
They experiment a good accuracy on Cifar10 thanks to this method. This approach gives insight on
how the discriminator estimates if an image is true or false. If the discriminator has good enough
feature extractors for classification, it means that the generator samples are hard to be discriminated
from samples from the true distribution. It assess indirectly the quality of the generator. This method
is however applicable only if a deep convolutional neural networks is used as discriminator and can
not be applied, e.g., on variational auto-encoders. The principal difference between a discriminator
and our classifier is that it is not involved in the training process. In our approach, the generator is
completely independent from the classifier and therefore there is no bias from the classifier in the
generator.

Parzen windows estimate is a method to estimate the unknown probability density function f of
a probability distribution P . This method uses a mixture of simpler probability density functions,
called kernels, as approximates for f . In general, a popular kernel used is an isotropic Gaussian
centered on a given data point with a small variance (the variance is an hyper parameter here). The
idea, like other methods based on Kernel Density Estimation, is to have a small window on each
data point such that we apply some smoothing over the function we try to approximate. However,
even if the number of samples is high, Parzen windows estimator can be still very far from the true
likelihood as shown in Lucas Theis & Bethge (2016), and thus cannot be a good approach to evaluate
if the data distribution learned by a model is close to the original one.

Multi-scale structural similarity (MS-SIM, Wang et al. (2003)) is a measurement that gives a way to
incorporate image details at different resolutions in order to compare two images. This similarity is
generally used in the context of image compression to compare image before and after compression.
In Odena et al. (2017) the authors use this similarity to estimate the variability inside a class. They
randomly sample two images of a certain class and measure the MS-SIM. If the result is high, then
images are considered different. By operating this process several times, the similarity should give
an insight on the entropy of P (X|Y) (X a data point and Y its class): if the MS-SIM gives high
result, the entropy is high; otherwise, the entropy is low. However, it can not estimate if the sample
comes from one or several modes of the distribution P (X|Y). For example, if we want to generate
images of cats, the MS-SIM similarity can not differentiate a generator that produces different kinds
of black cats from a network that produces different cats of different colors. In our method, if the
generator is able to generate in only one mode of P (X|Y), the score will be low in the testing phase.

Another approach that aims to evaluate a generative model by using a conditional distribution
learned by a classifier is the inception score (Salimans et al., 2016; Odena et al., 2017). The au-
thors use a pretrained inception classifier model to get the conditional label distribution P (Y |X)
over the generated samples. They proposed the following score in order to evaluate a generative
model:

exp(EXKL(Pdata(Y |X) ‖ P (Y)) , (1)

When the score is high, the generator produces samples on varied classes (Cross entropy of
P (Y |X), P (Y) is high) and the samples look like real images from the original dataset (entropy
of P (Y |X) is low). Inception score can be seen as a measurement of the variability of the gen-
erated data while penalizing the uncertainty of P (Y |X). Unfortunately, it does not estimate if the
samples are varied inside a certain class (the entropy of p(X|Y)). Our approach imposes a high
entropy of P (Y) and gives an unbiased indicator about the entropy of both P (Y |X) and P (X|Y).

3

Under review as a conference paper at ICLR 2018

3 METHODS

We evaluate generators in a supervised training setup. We have a dataset D composed of pair of
examples (x, y) where x is a data point and y the label associated to this data point. The dataset
is split in three parts Dtrain, Dvalid and Dtest. Our method needs a generative model that can
sample conditionally from any given label y. This conditional generative model is thus trained on
Dtrain. Once the training of this model is done, we sample random labels and use the generative
model to get a new dataset Dgen. Then, we mix the true training set Dtrain with the new generated
data Dgen. The ratio of generated data into the whole mixture Dmix is called τ . τ is used as the
probability to sample a generated batch rather than a batch of true data during training. Dmix is
used to train a classifier on the classes of the dataset. This classifier is evaluated at each epoch over
the portion Dvalid of the dataset. Once, we get the best model over Dvalid, we compute the score of
this classifier over the test set Dtest. We compare the results from training on Dmix with a baseline.
The baseline is the score of the same classifier model trained only on training data Dtrain. Our
conditional generative model evaluation can be seen as a ratio between those two scores. We can
summarize our method as follows:

1. Train a conditional generative model over n sample of Dtrain

2. Mix the samples Dgen generated by this model with Dtrain under a probability τ into
Dmix

3. Train a discriminative model over Dmix

4. Train a discriminative model over Dtrain using the n same sample as for the generator
training

5. Select a classifiers over a valid set Dvalid.
6. Compare the score of those classifiers over a test set Dtest.

By iterating this method on diverse values of τ and n we can evaluate the quality of a generator
given a dataset.

4 EXPERIMENTS

4.1 EXPERIMENTAL PROTOCOL

Often, generative models are presented on popular datasets like MNIST. Fashion-MNIST (Xiao
et al., 2017) can also serve as a direct drop-in replacement for the original MNIST dataset. This
dataset is however more complex than MNIST as images have a higher variability. Thus, we use
these datasets in order to evaluate different generative models.

We used two different methods in order to get conditional generative models. The first uses tra-
ditional generative neural network which can not produce labeled data. In order to associate each
generated sample to a label, we train one generator for each specific class y on Dtrain. This makes
us able to label any generated sample. Once the training of those generators is done, we mix the
samples obtained by each generator in order to produce Dgen. For the experiments, we compare
two generative models is this setting: a standard VAE and a WGAN. The second method uses con-
ditional generative models which can generate samples in all classes while controlling the class of
a particular sample. Conditional models can thus generate various labeled samples and produce a
whole dataset Dgen directly. In this last case, we ran our experiments on CVAE and CGAN. Once
the dataset Dgen is generated, we mixed it with the real dataset Dtrain. As we can generate as much
data as we want, we experimented different ratios between real datasets and generated datasets.
We call τ the probability of sampling from Dgen. We made experiments with different values for
τ = [0.000, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, 1.000]. τ = 0 implies that we use only
data from Dtrain. In this specific setting, we compare the effectiveness of the data augmentation
with generated samples versus classic data augmentation as isotropic Gaussian noise with an opti-
mized variance or a random pixel dropout with a probability α of putting a pixel to 0. We also train
a classifier without any data augmentation as baseline.

We use a standard CNN with a softmax output as classifier to predict the labels on this mixture of
samples. On each epoch we evaluate this classifier over a validation set Dvalid. Then, we choose

4

Under review as a conference paper at ICLR 2018

(a) fashion-MNIST CVAE (b) fashion-MNIST VAE

(c) fashion-MNIST WGAN (d) fashion-MNIST - CGAN

Figure 1: Representation of test accuracy when τ increases on fashion-MNIST (MNIST in appendix)
with different amounts of training data.

the classifier that performs best on this validation set. We use early stopping to stop the training if
the accuracy does not improve anymore on the validation set after 50 epochs. The classifier is then
tested on Dtest. We train a classifier for each value of τ . We assess the quality of the generative
model by comparing the test score of this classifier when τ = 0 versus the best test score of the
classifier with τ > 0. The result gives an indication on how the learned distribution from Dtrain fits
and generalizes the distribution from Dtrain. In order to be able to compare results from different
generators on a given dataset, we always use the same classifier architecture.

To be able to estimate the impact of learning from generative settings versus discriminative
ones, we have made variable the amount of data in Dtrain used to train both generator and
classifier. Thus, we repeat all our experiments for the following amount of data samples:
[100, 500, 1000, 5000, 10000, 50000]. This allows us to measure the regularization capacity of the
generated samples over the classifier’s training. We interpret this regularization capacity of those
samples as a capacity of generalization.

4.2 RESULTS

In Figure 1, we present the test accuracy when τ increase. When τ = 0 there is no generated data,
this is the result of the baseline without data augmentation. Our interpretation of the figure is that
if the accuracy is better than baseline with a low τ (< 0.5) it means that the generator is able to
generalize by learning meaningful informations about the dataset. When τ > 0.5 if the accuracy is
maintained it means the generated data can replace the dataset in most parts of the distribution. When
τ = 1 there is no more original data, the classifier is thus trained only on generated samples. If the
accuracy is still better than the baseline, it means that the generator has fit the training distribution
(and eventually has learned to generalize if this score is high over the test set).

5

Under review as a conference paper at ICLR 2018

(a) Relative accuracy wrt. baseline on mnist for
different models

(b) Relative accuracy wrt. baseline on fashion-
mnist for different models

Figure 2: Representation of the data augmentation capacity of each generative models. For each
number of training example we show the maximum accuracy a generative model can achieve by
tuning τ . We also show results when tuning hyper-parameter for data augmentation method.

Following this interpretation, Figure 1 allows us to compare different generative neural networks on
fashion-MNIST. For example we can see that VAE (Figure 1b) and CVAE (Figure 1a) are able to
maintain the baseline accuracy when we do data augmentation with generated samples for different
amount of data n. But the accuracy goes down when there are only generated data, which means that
these generative models in those settings did not fit the whole distribution. CGAN has the same kind
of behavior but the degradation is worse when τ = 1. However WGAN is able improve the accuracy
for τ < 0.5 and to maintain it even when τ = 1. Figure 1 also allows to estimate the entropy of
P (X). As a deep neural network can not be trained efficiently without various data samples, if the
the accuracy on test set is good with only generated data (τ = 0), necessary the entropy of P (X) is
high as the entropy of P (X|Y). This condition is sufficient but not necessary to assess the quality
of a generator on a given task.

Our result shows that training one WGAN per class is the best solution to fit the complete distribu-
tion, whatever the number of training data used. The bad results on CGAN can be explained by the
difficulties to train this model and it’s instability.

Figure 2 represents the best accuracy that each model can achieve when τ is tuned. It shows that,
aside from CGAN on MNIST, all generator can be used to increase accuracy, whatever the number
of training data. In this context τ can be seen as a tunable hyper parameter for data augmentation.
Figure 2 also shows that the capacity of generalization is particularly effective when the number of
example is low. This can be explained by the fact that when the data number increases the need of
data augmentation decrease.

ΨG =
1

n

∑
n

maxτ [(accn(G, τ))]− accn(τ = 0) , (2)

The results shown in Table 1 summarize Figure 2 for each generatorG by a numerical value ΨG (Eq.
2). We call ΨG the data augmentation capacity of a generator. It is computed, for a given generator
G, by the mean of the differences between the accuracy on mixture with τ tuned and the baseline
accuracy for each number n of training data. The different number of data is arbitrary chosen. In
our experiment we compute it with [0.2%, 1%, 2%, 10%, 20%, 100%,] of the train set of the dataset.
The important thing is to operate at different scales to estimate how the generative model is able to
generalize.

The results of Table 1 indicates if a generative model is globally able to perform data augmentation
for a given data set. A positive result indicates that the generative model is able to generalize well
on the dataset at different sizes. In case of low amount of data, it is better to refer to Figure 2 to
choose the best model for that specific case.

6

Under review as a conference paper at ICLR 2018

Table 1: Results Table : ΨG values

Datasets Gaussian Random Dropout VAE CVAE WGAN CGAN
MNIST 0.0024 0.0027 0.0123 0.0116 0.0474 0.0027
Fashion MNIST 0.0014 0.0018 0.0047 0.0041 0.0357 -0.0021

5 DISCUSSION

We presented a method to estimate how well a generative model has learned to generalize in a con-
ditional setting. Using generated samples as data augmentation in order to improve a discriminative
model is a well known technique. However, assessing the quality of a generative model with a
discriminative model seems to have been less explored. As we have shown, this evaluation is mean-
ingful to measure how well the generative model can sample data points that are probable under the
true distribution we want to approximate. In this paper we applied this method on images samples.
It means that we can correlate our measure with a visually assess of the samples quality as the gen-
erator outputs are in pixel space. Our assessment method can also be used in other spaces as long as
labeled data are available.

The relative benefits of discriminative and generative models have been studied in Ng & Jordan
(2002). They found that for a small number of training examples n, a generative model will be less
prone to overfitting. A discriminative model on a small number of examples risks to learn some
spurious nodes that will penalize the generalization capacity. Our results are coherent with their
conclusion as the data augmentation induced by generated data is particularly effective when n is
low.

Our evaluation was performed on several datasets, generative models, different ratios and amounts of
training data. With the current results, WGAN seems to be the most efficient solution. However, this
result should be confirmed by experiments on other datasets, generative models and with different
types of discriminative models to get a more general comparison. This will be explored in further
experiments.

As presented in White (2016), the sampling method of a generator can be adapted, which can have
an impact on the data produced. A way to boost the performance of a generator can be to focus on
improving the sampling phase instead of the model design or the training. An extension of this work
could be to look into the impact of several sampling techniques on the performance of a generative
model.

6 CONCLUSION

This paper introduces a new method to assess and compare the performances of generative models
on various labeled datasets. By training a classifier on several mixture of generated and real data we
can estimate the ability of a generative model to generalize. When addition of generated data into the
training set achieved better data augmentation than traditional data augmentation as Gaussian noise
or random dropout, it demonstrates the ability of generative models to create meaningful samples.
By varying the number of training data, we compute a data augmentation capacity ΨG for each
model on MNIST and fashion-MNIST datasets. ΨG is a global estimation of the generalization
capacity of a generative model on a given dataset. The results presented here are produced on image
datasets but this method can be used on all kinds of datasets or generative models as long as labeled
data is available.

7

Under review as a conference paper at ICLR 2018

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on Machine Learning, 2017.

Emily L Denton, Soumith Chintala, arthur szlam, and Rob Fergus. Deep generative image models
using a laplacian pyramid of adversarial networks. In Advances in Neural Information Processing
Systems 28. 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems 27. 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations (ICLR), 2014.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 2015.

Aäron van den Oord Lucas Theis and Matthias Bethge. A note on the evaluation of generative
models. In Proceedings of the 4th International Conference on Learning Representations (ICLR),
2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784,
2014.

Andrew Y Ng and Michael I Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In Advances in neural information processing systems, 2002.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug & play
generative networks: Conditional iterative generation of images in latent space. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier GANs. In Proceedings of the 34th International Conference on Machine Learning,
2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.

Alexander J Ratner, Henry R Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher Ré.
Learning to compose domain-specific transformations for data augmentation. stat, 2017.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31th International Con-
ference on Machine Learning,, 2014.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. CoRR, abs/1606.03498, 2016.

Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan: Generating realistic labeled data. CoRR,
abs/1611.01331, 2016.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. In Advances in Neural Information Processing Systems 28, 2015.

Z Wang, E P Simoncelli, and A C Bovik. Multiscale structural similarity for image quality assess-
ment. In Proc 37th Asilomar Conf on Signals, Systems and Computers, 2003.

T. White. Sampling Generative Networks. ArXiv e-prints, September 2016.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

8

Under review as a conference paper at ICLR 2018

A ADDITIONAL RESULTS

(a) VAE samples when trained with 50
images

(b) VAE samples when trained with
100 images

(c) VAE samples when trained with
500 images

(d) VAE samples when trained with
1000 images

Figure 3: This figure presents samples from VAEs when trained with different amounts of data.
It represents the overfitting capacity of a VAE. All four samples set look good, but for example,
the top left trained with only 50 different data often produce similar images (as the samples on top
right trained with 100 images). When the number of training images increases the variability seems
good afterwards but as we can see in Figure 4c when τ = 1 the generator generalizes better the
distribution when n is < 1000 than when > 1000 is high.

9

Under review as a conference paper at ICLR 2018

(a) fashion-MNIST CVAE (b) MNIST CVAE

(c) fashion-MNIST VAE (d) MNIST VAE

(e) fashion-MNIST WGAN (f) MNIST WGAN

(g) fashion-MNIST CGAN (h) MNIST CGAN

Figure 4: Relative accuracy improvement between the baseline trained on original data and the
accuracy with generated or noise data augmentation in training. τ is the ratio between the number
of generated data and the total number of data used for training.

10

Under review as a conference paper at ICLR 2018

(a) fashion-MNIST CVAE (b) MNIST CVAE

(c) fashion-MNIST VAE (d) MNIST VAE

(e) fashion-MNIST WGAN (f) MNIST WGAN

(g) fashion-MNIST CGAN (h) MNIST CGAN

Figure 5: Test accuracy on each model for different values of τ and different amounts of training
data.

11

Under review as a conference paper at ICLR 2018

(a) MNIST CVAE (b) MNIST CVAE

(c) MNIST WGAN (d) MNIST CGAN

Figure 6: Test accuracy when τ increases with different amounts of training data on MNIST.

12

	Introduction and motivation
	Related work
	Generative models
	Exploitation and evaluation of generated samples

	Methods
	Experiments
	Experimental protocol
	Results

	Discussion
	Conclusion
	Additional results

