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ABSTRACT

Reliable and accurate time-series forecasting is critical in many fields including
energy, finance, and manufacturing. Many time-series tasks, however, suffer from
a limited amount of training data (i.e., the cold start problem) resulting in poor
forecasting performance. Recently, convolutional neural networks (CNNs) have
shown outstanding image classification performance even on tasks with small-
scale training sets. The performance can be attributed to transfer learning through
CNNs’ ability to learn rich mid-level image representations. However, no prior
work exists on general transfer learning for time-series forecasting. In this paper,
motivated by recent success of transfer learning in CNN model and image-related
tasks, we for the first time show how time-series representations learned with Long
Short Term Memory (LSTM) on large-scale datasets can be efficiently transferred
to other time-series forecasting tasks with limited amount of training data. We also
validate that despite differences in time-series statistics and tasks in the datasets,
the transferred representation leads to significantly improved forecasting results
outperforming majority of the best time-series methods on the public M3 and other
datasets. Our online universal forecasting tool, DeepCast, will leverage transfer
learning to provide accurate forecasts for a diverse set of time series where classi-
cal methods were computationally infeasible or inapplicable due to short training
history.

1 INTRODUCTION

Accurate time-series forecasting is critical for load forecasting, financial market analysis, anomaly
detection, optimal resource allocation, budget planning, and other related tasks. While time-series
forecasting has been investigated for a long time, the problem is still challenging, especially in ap-
plications with limited history (e.g., holidays, sporting events) where practitioners are forced to use
adhoc machine learning approaches achieving poor forecasting performance Wu & Olson|(2015)).

Recently, time-series modeling based on a particular recurrent neural network, the Long Short Term
Memory (LSTM) model (Hochreiter & Schmidhuber, |1997), has gained popularity due to its end-to-
end modeling, ease of incorporating exogenous variables, and automatic feature extraction abilities
(Assaad et al., 2008). Inspired by the success of deep convolutional neural network (CNN), Hermans
& Schrauwen| (2013) use stacked LSTM cells with different weight matrices in different layers
for text prediction; (Graves et al.| (2013)) use deep LSTM cells for speech recognition; [Donahue
et al.| (2015)) use deep LSTM and CNN for video recognition; Laptev et al. (2017) show that an
LSTM forecasting model is able to outperform classical time series methods in cases with long,
interdependent time series. The superior performance of deep LSTM structure on different tasks
empirically prove its capability of modeling complex nonlinear feature interactions.

However, similar to training a deep CNN model, training a deep LSTM network needs updating
the weight matrices for each LSTM cell, which requires a large amount of data across numerous
dimensions. The data requirement hinders the application of deep LSTM model in time series
forecasting. For example, recent results on time-series forecasting using LSTM only apply a single
layer of LSTM (Bianchi et al., [2017).

Transfer learning (Pan & Yang, 2010) can address this problem. In transfer learning, we first train
a base network on a base dataset and task, and then we repurpose the learned features, or transfer
them, to a second target network to be trained on a target dataset and task. This process will tend to
work if the features are general, meaning suitable to both base and target tasks, instead of specific to
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the base task. When the target dataset is significantly smaller than the base dataset, transfer learning
can be a powerful tool to enable training a large target network without overfitting.

Bengio| (2012) shows preliminary results of using transfer learning on images. While the deep
CNN models also suffer from requiring massive training data, |Yosinski et al.| (2014); [Huang et al.
(2013)); |[Karpathy et al.| (2014); |Oquab et al.| (2014) explore transfer learning on images, language
and video. In image-based transfer learning (Bengio, 2012)), deep neural networks exhibit a curi-
ous phenomenon: when trained on images, they all tend to learn first-layer features that resemble
either Gabor filters or color blobs (Bengiol 2012). The appearance of these filters is so common
that obtaining anything else on a natural image dataset causes suspicion of poorly chosen hyper-
parameters or a software bug. This phenomenon occurs not only for different datasets, but even
with very different training objectives, including supervised image classification (Krizhevsky et al.,
2012), and unsupervised learning of sparse representations (Le et al.,[2011). |Yosinski et al.|(2014)
quantitatively explore transferability of different layers for the image classification task. The au-
thors discover that because finding the Gabor filters on the first layer seems to occur regardless of
the exact cost function and natural image dataset, these first-layer features are called general. On
the other hand, the features computed by the last layer of a trained network must depend greatly on
the chosen dataset and task. For example, in a network with an N-dimensional softmax output layer
that has been successfully trained toward a supervised classification objective, each output unit will
be specific to a particular class. [Yosinski et al.[(2014) thus calls the last-layer features specific.

Motivated by these findings, we investigate if transfer learning applies to time series. Until now, the
success of model generalization in deep CNN models for image-related tasks still does not happen in
deep LSTM models for time series-related tasks. Though|Yang et al.| (2017) proposed to use transfer
learning for sequence tagging problems, the sequence tagging problem can be explicitly decomposed
into different sub-problems and the transfer learning is also explicitly divided. Transfer learning has
also been recently used in language translation where an auto-encoder architecture is typically used
Mou et al.|(2016). Previous work has shown that an auto-encoder is useful in time-series for feature
extraction Laptev et al.|(2017), but not in time-series forecasting.

In this paper, we explore if there are equivalent general and specific features for time-series fore-
casting using deep LSTM model. We are interested in this, to the extent that features within a deep
LSTM network are general, we will be able to use them for transfer learning to do more accurate
forecasting on short time-series.

To the best of our knowledge, our work makes the first attempt to present the evidence of transfer
learning for time-series in neural nets and to quantify its applicability to real-world applications.
Our contributions are four-fold:

1. We firstly demonstrate transfer learning for time-series forecasting.
2. We demonstrate use-cases and impacts of time-series transfer learning, including:

(a) forecasting with limited history,
(b) computational resource saving,
(c) cross-domain learning capability.

3. We show the geometric interpretation of learned features in a deep LSTM model, inferring
the theoretical support of the usage of transfer learning.

4. We publish an online tool that democratizes time-series forecasting through a public trans-
fer learning model motivated by ImageNet (Krizhevsky et al., 2012).

2 TRANSFER LEARNING IN TIME-SERIES

Transfer learning involves the concepts of a task and of a domain. A domain D consists of a marginal
probability distribution P(X) over the feature space X = {x1,...,x,}. Thus, given a domain
D ={X,P(X)}, atask T is composed of a label space ) and a conditional probability distribution
P(Y|X) that is usually learned from training examples consisting of pairs z; € X and y; € ).
Given a source domain Dg and a source task Tg as well as a target domain D7 and a target task 7,
transfer learning aims to learn the target conditional probability distribution P(Y7|Xr) in Dy from
the information learned from Dg and Tr. In this paper we apply transfer learning to a time-series
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domain and apply it to cases where Xg # X7 and P(Ys|Xs) # P(Yr|Xr) (e.g., target domains
with limited training data and different time-series classes).

Time-series data can be decomposed into the summation of a (usually monotonic) trend component,
a (periodic) seasonal component, a holiday component, a stationary (stochastic) component, and a
(usually i.i.d.) error component. Most of the time-series forecasting models assume explicit models
with hyper-parameters of the trend, seasonality, and the stochastic process:

y(t) = g(t; o) + s(t;of) + h(t; aff) + c(t; of) + €(t; of),

where g(-), s(-), h(-), c(-), €(-) represent the trend, seasonal, holiday, stationary, and error com-
ponent, respectively. Then, these models usually use maximum likelihood estimation to determine
the hyper-parameters c. However, the explicit model formulation of each component is still far
from empirical understanding. For example, [SJ & B|(2017) propose to use only a piecewise-linear
function and a logistic growth model for trending modeling, and a Fourier series with trigonometric
function as basis for seasonality modeling. Moreover, all hyper-parameters need to be optimized for
specific data sets.

Instead of defining the explicit model components, the LSTM model only consists of 5 different
nonlinear components. Initially, the LSTM cell is designed to repeat infinitely, with a single set of
hyperparameters, including four rectangular weight matrices Wy, W, W,,, W, acting on input vec-
tor x, serving for computing forget gate, candidate state, update gate, and output gate, respectively.
Four square weight matrices Ry, Ry, I2y, R,, acting on lagged output vector y;_1, serving for the
same computation procedures. By stacking LSTM cells to construct a deep LSTM model, we gain
additional freedom by enabling different weight matrices in different LSTM layers. We hypothe-
size that the feature layers of LSTM model is a generalization of the trend, seasonality, and holiday
representation, in analogy to the explicit models in traditional time-series modeling tasks. While
the model representation itself rather a general feature for all time-series data, we anticipate that the
representation learned from one dataset can be used for another dataset. Then, the lower levels of
the LSTM model serves the role in analogy to the hyper-parameter optimization which varies for
different datasets. The illustration of the generalization is shown in Fig.[T]

After model training, a set of feature layers is typically frozen in order to avoid changing the learned
weights. In this paper, we explicitly decompose the model into two types of layers: feature layers
and predictive layers. After training, we typically freeze the feature layer weights to reuse them.
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Figure 1: Transfer learning visualization

Visualizing the learned knowledge of a neural network is critical for interpretability and tuning of the
network |Zeiler & Fergus| (2013). While in the past deep neural nets were often considered a black
box, recent convolutional layers were successfully visualized Zeiler & Fergus| (2013). Visualizing
time-series data is different because we have numerical values instead of images. In section[d.3] we
provide an attempt to interpret some of the learned features.
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3 EXPERIMENTAL SETUP

Dataset: The dataset used for demonstrating transfer learning contains 116,000 anonymous resi-
dential scale electricity loads at hourly granularity from Pacific Gas and Electric Company (PG&E
dataset). The data is from 08/01/2011 to 7/31/2012. The 116,000 time series are from 13 differ-
ent climate zones and are with large diversity (Kwac et al., [2014)). Besides the anonymous PG&E
dataset, we also use a public available M3 dataset for validation. All time series are logarithm
transformed and min-max scaled to [0, 1] interval.

Deep LSTM Model: The deep LSTM model consists of 6 LSTM cells. Each LSTM cell has a
128-dimensional state vector. For a given timestamp ¢ (hour), the input vector @ consists of 60-hour
historical electricity load: @ = [l, - - -, l;_59], and the output vector y consists of 60-hour electricity
load from time ¢: y = [l¢41, -, lt+60]. We train the network using 60 hours for the forecast horizon
and 60 hours for the lookback.

Data Separation: The PG&E dataset is separated into four parts for experiments. In particular,
we randomly split the dataset to two subgroups, A and B, with same size. Then, we divide each
subgroup into first six-month data and second six-month data. The four sub-groups of data is labelled
with A1, A2, B1, and B2, shown in Table[T}

Group A (58,000 customers)  Group B (58,000 customers)
08/01/2011 - 01/31/2012 Al B1
02/01/2012 - 07/31/2012 A2 B2

Table 1: Data separation

In the following experiments, the whole subset Al is used to train the base deep LSTM model,
called Base. Then, for any time series b* in subset B, we use bi € B1 for training, and bé € B2 for
testing. The transfer learning is implemented as: given n as the transferred layer from Base, we
freeze the first n layers of the Base model, and use b} to train the other 6 — n layers. If n = 6, then
we only use the specific data b’ to train the last fully connected layer. We call the transfer learning
model as AnB for a given n. We can also initialize the deep LSTM model with randomly chosen
hyperparameters, and only use b} to train the deep LSTM model. We call the model Single. All
the three models are tested using b5 € B2. The training data and test data setup is shown in Table
The symmetric mean absolute percentage error (SMAPE) is used for performance evaluation.

Base AnB Single
Training data Al Al + b} b3
# frozen layers - n -
Test data b5, b5 b

Table 2: Training and test data for ¢-th customer for different deep LSTM models

4 RESULTS AND DISCUSSION

In this section, we systematically analyze the feature transferability and their stability among diverse
time series. We also provide a geometric understanding to explain the observed transfer learning for
deep LSTM model. Then, we show that by using transfer learning, we can use deep LSTM model
for accurate time-series forecasting with limited history at a very small computational cost.

4.1 TIME-SERIES FEATURE TRANSFERABILITY

First, we compare the performance of the AnB model and the Single model on all customers from
subgroup B, to show the improvements using transfer learning. We also use the classical forecasting
method HoltWinters as a baseline. In this experiment, we fix the number of freeze layer at 3. The
result is shown in[2a] When the training size is very small, transfer learning provides substantial
performance improvement of the A3B model over the Single model. In particular, the SMAPE
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Figure 2: (a) Performance comparison of deep LSTM models between training with single time
series and training with transfer learning. The z-axis is the training size; the y-axis is SMAPE.
The red curve represents single time series-trained model; the blue curve represents model using
transfer learning. The performance gap is huge for short training sizes. When training size increases,
the performance difference shrinks. Each round dot represents the mean SMAPE of all customers
from B2, and the error bar illustrates the standard deviation of SMAPE over 58,000 customers.
A decreasing-saturating-increasing trend is observed. (b) Transfer learning performance for models
with different transferred layers. The z-axis is the number of transferred layers from the base model,
the y-axis is SMAPE. The meaning of round dots and error bars is the same as the meaning in (a).
(c) Transfer learning performance for different types of time series. The y-axis is SMAPE. Transfer
learning brings substantial improvements for sparse and noisy time series. The meaning of the bars
and error bars is the same as the meaning of round dots and error bars in (a).

drops from around 200% to less than 75%. While increasing the training size helps both two model
get smaller SMAPE, the performance difference between the two models also shrinks. When the
training size is large enough, the performance of the two model converges, with a small learning
gap. We refer to the final gap between the two networks when full data is available as the “transfer
learning gap” or TLG. In our future work we will look at TLG in terms of data complexity.

Furthermore, by fixing the training size, we can also control the number of frozen layers, n, in the
transfer learning model AnB, and investigate the performance improvement of different n’s. The
result is shown in Figure 2b] As we increase the depth of transfered layers, the performance gain
diminishes. We also reveal that there is a diminishing rate of return on forecasting performance as a
function of the number of trainable layers.

In our experiments we used simple NULL count and VAR computation approaches to do threshold
classification of time-series into sparse and noisy classes. In Figure [2c| different time-series class
performance is shown. Three classes of time-series are used as input: (i) seasonal, (ii) noisy and
(iii) sparse. A model that uses transfer learning always outperforms an equivalent model with lim-
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Figure 3: The comparison of forecasting performance on M3 public dataset between the base deep
LSTM model trained with only Al (6-month time-series data of 58,000 PG&E customers) and
other main-stream forecasters trained with time series of the same id with test time series in M3
dataset. The transfer learned model has competitive performance (15.8% SMAPE) relative to other
specialized models.

ited history, however, its performance is highest for noisy data. This shows that the nonlinearity
presented in the noisy data are modeled better by the transfer learned model.

Figure [3] demonstrates the performance of the presented transfer learned model (DeepCast in the
Figure) against the best forecasting models on the publicly available M3 dataset. Note that we
trained a single model using the PG&E dataset instead of M3 leveraging transfer learning while
other approaches trained a single specialized model per time-series in M3 (3K total). Transfer
learning shows competitive results while using only a fraction of the training and inference cost (see

Section [4.3)).

4.2 GEOMETRIC INTERPRETATION

Figure [fa] shows the model performance with and without daily interactions. Without daily interac-
tions we found different architectures behave similarly. When daily interactions exist, however, we
found that a deeper network works best.

This result is consistent with our geometric interpretation of the layer embeddings shown in Figure
[b] where one can observe clusters caused by projecting the layer activations onto a 2-D plane.
One interpretation of these specific results is that the first layer learns individual weekday features
while the second layer learns the interaction between the days. Visualizing the learned features as a
geometric shape, similar to the ConvNet visualization for images Zeiler & Fergus| (2013), is part of
our future work.

4.3 COMPUTATION RESOURCES

A major motivation for this work was to cut the training and inference cost of time-series models
in production. The current state of the art is to train a single model per time-series. This is com-
putationally unsustainable as the number of time-series increases. The transfer learning approach
presented in this paper is able to alleviate the computational burden while providing competitive
results.

With transfer learning, it is possible to train a single model that does inference on N time-series
where IV can be in the thousands (or hundreds of thousands). This results in many orders of magni-
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Figure 4: (a) Model performance with and without weekday interactions. (b) Training set of time
series, visualized in the embedding space. Each point represents a 28-day segment, colored by the
day of the week of the last day. We evaluate the cell states of the two LSTM layers, where the first
layer with dimension 128 is plotted on the left, and second layer with dimension 32 is plotted on the
right. PCA is used to project into 2D space for visualization.

tude reduction if resources needed for training, inference and storage with a small performance hit
(see Figure[3).

5 DEMOCRATIZING FORECASTING

Time-series forecasting has been primarily accessible to experts [Dannecker et al.| (2013). With a
growing importance of the time-series forecasting field, however, ability for non-experts to generate
reasonable forecasts becomes increasingly important. Previous work [Hyndman et al.| (2007) aims to
provide automated time-series model selection, however, these techniques do not scale for millions
of time-series due to per-timeseries model retraining.

Our goal is to use transfer learning to democratize the time-series forecasting field making non-
experts get decent results competitive with the experts in the field. Figure[6] provides an overview
of our online forecasting tool that accepts a time-series data and using the novel time-series transfer
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Figure 5: The presented Transfer Learned Model excels in compute power savings relative to the
performance hit.
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Figure 6: Our online forecasting tool will use the transfer learning technique for time-series to

democrotize the time-series forecasting process provide high quality forecasts for everyone with
dramatically low computational cost.

learning strategy presented, provides a forecast. This tool will allow ImageNet-like data collection
Krizhevsky et al.| (2012) for an important and niche market that time-series forecasting is becoming.

6 CONCLUSION

It is well known that transfer learning exists for images. In this paper, we demonstrated transfer
learning for time series. We have shown a dramatic forecasting accuracy improvement with transfer
learning under small to medium training data size conditions. Furthermore, we have identified com-
pute cost improvements when using the transfer learning approach. An online universal forecasting
tool, DeepCast, is proposed to provide a benchmark of transfer learning of LSTM for time-series
forecasting.

For our future work, we will compare transfer learning across different architectures in terms of sta-
bility and applicability for unseen target classes focusing more on theoretical guarantees of transfer
learning.
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