
Under review as a conference paper at ICLR 2018

META-LEARNING TRANSFERABLE ACTIVE LEARNING
POLICIES BY DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Active learning (AL) aims to enable training high performance classifiers with
low annotation cost by predicting which subset of unlabelled instances would be
most beneficial to label. The importance of AL has motivated extensive research,
proposing a wide variety of manually designed AL algorithms with diverse theo-
retical and intuitive motivations. In contrast to this body of research, we propose
to treat active learning algorithm design as a meta-learning problem and learn the
best criterion from data. We model an active learning algorithm as a deep neural
network that inputs the base learner state and the unlabelled point set and predicts
the best point to annotate next. Training this active query policy network with
reinforcement learning, produces the best non-myopic policy for a given dataset.
The key challenge in achieving a general solution to AL then becomes that of
learner generalisation, particularly across heterogeneous datasets. We propose a
multi-task dataset-embedding approach that allows dataset-agnostic active learn-
ers to be trained. Our evaluation shows that AL algorithms trained in this way can
directly generalise across diverse problems.

1 INTRODUCTION

In many applications, supervision is costly relative to the volume of data. In these settings active
query selection methods can be invaluable to predict which instances a base classifier would find it
informative to label. By carefully choosing the training data, the classifier can perform well even
with relatively sparse supervision. This vision has motivated a large body of work in active learning
that has collectively proposed dozens of query criteria based on different theoretical or intuitive
motivations, such as margin (Tong & Koller, 2002) and uncertainty-based (Kapoor et al., 2007)
sampling, expected error reduction (Roy & McCallum, 2001), representative and diversity-based
(Chattopadhyay et al., 2012) sampling, or combinations thereof (Hsu & Lin, 2015). It is hard to
pick a clear winner all these methods, because each is based on a reasonable and appealing – but
completely different – motivation; and there is no consistent winner in terms of performance across
all datasets.

Rather than hand-designing a criterion and hoping that it performs well, we take a data-driven
learning-based approach. We treat active learning algorithm development as a meta-learning prob-
lem and train an active learning policy represented by a neural network using deep reinforcement
learning (DRL). It is natural to represent AL as a sequential decision making problem since each
action (queried point) affects the context (available query points, state of the base learner) succes-
sively for the next decision. In this way the active query policy trained by RL can potentially learn
a powerful and non-myopic policy. By treating the increasing accuracy of the base learner as the
reward, we optimise for the actual goal: the accuracy of a classifier with a small number of labels.
As the class of deep neural network (DNN) models we use includes many classic criteria as special
cases, we can expect this approach should be at least as good as existing methods and likely better
due to exploiting more information and non-myopic optimisation of the actual evaluation metric.

This idea of learning the best criterion within a very general function class is appealing, and other
very recent research has had similar inspiration (Bachman et al., 2017). However it does not provide
a general solution to AL unless the learned criterion generalises across diverse datasets/learning
problems. With DRL we can likely learn an excellent query policy for any given dataset. But this is
not necessarily useful alone: if we had the labels required to train the policy on a specific problem,
we would not need to do AL on that problem in the first place. Thus the research question for AL

1

Under review as a conference paper at ICLR 2018

moves from “what is a good criterion?” to “how to learn a criterion that generalises?”. In this paper
we investigate how to train AL query criteria that generalise across tasks/datasets. Our approach is
to define a DNN query criterion policy that is paramaterised by a dataset embedding. By multi-task
training of our DNN policy on a diverse batch of source tasks/datasets, the network learns how to
calibrate its strategy according to the statistics of a given dataset. Specifically we are inspired by
the recently proposed auxiliary network idea (Romero et al., 2017) to define a meta-network that
provides paramaterised domain adaptation. The meta network generates a dataset embedding and
produces the weight matricies that parameterise the main policy. Besides enabling the policy to
adapt to datasets with different statistics, this also means that our policy benefits from end-to-end
processing of raw features while being transferable to datasets of any feature space dimensionality.
Finally, unlike Woodward & Finn (2017); Bachman et al. (2017) our framework is agnostic to the
base classifier. Treating the underlying learner as part of the environment to be optimised means
our framework can be applied to improve the label efficiency of any existing learning architecture
or algorithm.

2 PRELIMINARIES

Reinforcement Learning (RL) In a general model-free reinforcement learning setting, an agent
interacts with an environment E over a number of discrete time steps t. At each time step, the
agent receives the state st ∈ S from environment and selects an action at ∈ A based on its policy
π(at|st) which is a mapping from state to action. The agent then receives a receive a new state
st+1 and immediate reward rt from E . The aim of RL is to maximise the return R =

∑∞
t=1 γ

t−1rt
where the return is the accumulated immediate rewards with discount factor γ ∈ (0, 1]. There
are multiple approaches to learning the policy π (Kober & Peters, 2009; Mnih et al., 2015). We
use direct policy search based RL, which learns π by gradient ascent on the objective function
Jπ(θ) =

∑
s∈S d(s)

∑
a∈A πθ(a|s)R, where d(s) is stationary distribution of Markov chain for πθ.

Active Learning (AL) A dataset D = {(xi, yi)}Ni=1 contains N instances xi ∈ RD and labels
yi ∈ {1, 2}, most or all of which are unknown in advance. In active learning, at any moment the
data is split between a labelled set L and unlabelled set U = D \L where |L| � |U| and a classifier
f has been trained on L so far. In each iteration, a pool-based active learner τ selects an instance
from unlabelled pool U to query its label τ : {(L,U , f) → i}, where i ∈ {1, . . . , |U|}. Then the
selected instance i is removed from the unlabelled set U and added to the labelled set L along with
its label, and the classifier f is retrained based on the updated L.

Connection between RL and AL In order to go beyond the many existing heuristic criteria, we
propose to model an active learning algorithm as a neural network, and formalise discovery of the
ideal criterion as a deep reinforcement learning problem. Let the state of the world st consist of a
featurisation of the dataset and the state of the base classifier st = {Lt,Ut, f}. Let an active learning
criterion be a policy π(ai|s) where the action index i ∈ {1, . . . , |U|} selects a point in the unlabelled
set to query. Upon querying a point the world state is updated to st+1 as that point is moved from
U to L and f is updated as the base classifier is retrained. Assume the policy is a neural network
paramaterised by weights θ, that selects actions as π(ai|st) ∝ expΦθ(ai,st), where i ∈ {1, . . . , |U|}
is the index of the unlabelled instances. Finally, we define the reward of an episode to be the quantity
we wish to maximise. E.g., If the budget is N queries and we only care about the accuracy after the
N th query, then we let R = AccN where AccN is the accuracy after the N th query. Alternatively,
if we care about the performance during all the N queries, we can use R =

∑N
t=1 γ

t−1Acct. (This
illustrates an important advantage of the learning active learning approach: we can tune the learned
criterion to suit the requirements of the AL application.) By training θ to maximise the objective
J(θ) we obtain the optimal active learning policy. In interpreting AL criterion learning as a DRL
problem, there is the special consideration that unlike general RL problems, each action can only be
chosen once in an episode. We will achieve this by defining a fully convolutional policy network
architecture where the dimensionality of the output softmax π(ai|st) can vary with t.

3 METHODS

Recall that our aim is to obtain the parameters θ of an effective dataset-agnostic active query policy
πθ(a|s). The two key challenges are how to learn such a policy given that: (i) the testing dataset

2

Under review as a conference paper at ICLR 2018

zi

×

×

FC

Standardization

FC+ReLU

ẑi

FC+ReLU

π(ai|s)

Z⊤
l ,Z⊤

u , f

E
m
b
ed

F
C
+
R
eL

U

F
C
+
R
eL

U

We

E
m
b
ed

F
C
+
R
eL

U

F
C
+
R
eL

U

Wd

Policy Network Meta Network

Figure 1: Policy and Meta Network architecture for deep reinforcement learning of a task-agnostic
active query policy. Policy net inputs data-points zi and outputs a probability of querying them
π(ai|s). The policy network is paramaterised by weights We that dynamically determined by the
meta network based on an embedding of the dataset and classifier st = {Lt,Ut, f}.

statistics may be different from training dataset statistics, and moreover (ii) different datasets have
different feature dimensionality d. This challenge is addressed by defining the overall policy πθ(a|s)
in terms of two sub-networks – a policy network and meta network – described as follows.

Policy Network Overall the policy network π inputs all N unlabelled instance Zu ∈ RN×d and
its output is an N -way softmax distribution for selecting choice of instance to query. We assume
the policy models actions via the softmax π(ai|s) ∝ expΦθp (WT

e zi), where zi ∈ Rd is the ith
unlabelled instance in Zu andWe ∈ Rd×k encodes the pool of instances. Although dimensionality
d varies by dataset, the encoding ui = W T

e zi ∈ Rk does not, so the rest of the policy network
π(ai|s) ∝ expΦθp (ui) is independent of dataset dimension. The key is then how to obtain encoder
We which will be provided by the meta network. Following previous work (Bachman et al., 2017;
Konyushkova et al., 2017) we also allow the instances to be augmented by instance-level expert
features soZ = [X, ξ(X)] whereX are the raw instances and ξ(X) are the expert features of each
raw instance.

Meta Network The encoding parameters We of the policy network are obtained from the meta
network: Ψθem

: {(L,U , f) → We; θ
e
m}. The meta network inputs a featurisation of L,U and f

and produces We ∈ Rd×k to allow the policy network to process d-dimensional inputs into a fixed
k-dimnesional hidden representation. Following Romero et al. (2017) we also use the Wd ∈ Rk×d
dimensional decoder Ψθdm

: {(L,U , f) → Wd; θ
d
m}to regularise this process by reconstructing the

input features. The meta network synthesises these weight matricies based on dataset-embeddings
of ZT described in the following section.

3.1 ACHIEVING CROSS DATASET GENERALISATION

The idea of auxiliary networks to predict weights for a target network was recently used in Romero
et al. (2017). There the auxiliary network inputs an embedding of XT and predicts the weights for
a main network that inputs X , with the purpose of reducing the total number of parameters if X
is high dimensional. In Romero et al. (2017) all the training and testing is performed on the same
dataset. Here we are inspired by this idea in proposing a meta-network strategy for achieving end-

3

Under review as a conference paper at ICLR 2018

to-end learning of multiple-domains. By multi-task training on multiple datasets, the meta-network
learns to generate dataset-specific weights for the policy network such that it performs effectively
on all training problems and generalises well to new testing problems based on their embedding.

Dimension Embedding Strategy The auxiliary meta-network requires a feature embedding that
produces a fixed size description of each dimension across all datasets. The meta network takes
(L,U , f) as input, treating each feature as an example. It extracts an embedding from each input
(feature) and then predicts the policy network’s weights for the corresponding feature. All together,
the auxiliary network predicts the weight matrix We ∈ Rd×k, which the policy network can use to
map each feature dimension to a k dimensional embedding, as

(We)j = Ψ
(

[e1
j (Z

T
u), e1

j (Z
T
l), e2

j ([Z
T
u ,Z

T
l], f)]

)
. (1)

Here e is a non-linear feature embedding, j indexes features, selecting the jth embedded feature
and the jth row of We, and Ψ is the non-linear mapping of the meta-network, which outputs a
vector of dimension k. Similarly, the meta-network also predicts the weight matrix Wd used for
auto-encoding reconstruction (Fig 1). Although d is dataset dependent, the meta network generates
weights for a policy network of appropriate dimensionality (d×k) to the target problem. The specific
embeddings used are explained next.

Choice of Embeddings We use two ‘representative’ and ‘discriminative’ histogram style em-
beddings. The dimension-level embedding is to embed each feature dimension into a h histogram.
Representative For the representative embedding (e1

j (Z
T
u) and e1

j (Z
T
l)), we encode each feature

dimension as a histogram over the instances in that dimension. Specifically, we rescale the ith di-
mension features into [0, 1] and divide the dimension into 10 bins. Then we count the proportion
of labelled and unlabelled data for each bin. This gives a 1 × 20 histogram embedding for each
dimension that encodes its moments. Discriminative (e2

j ([Z
T
u ,Z

T
l], f)) In this case we create a

2-D histogram of 10 bins per dimension. In this histogram we count the frequency of instances
with feature values within each bin (as per the previous embedding) jointly with the frequency of
instances with posterior values within each bin (ie, binning on the [0,1] posterior of the binary base
classifier.) Finally procedure counts in a 10× 10 grid, which we vectorise to 1× 100. Concatenat-
ing these two embeddings we have that [e1

j (Z
T
u), e1

j (Z
T
l), e2

j ([Z
T
u ,Z

T
l], f)] provides a E = 120

dimensional representation of each feature dimension for processing by the meta network.

Training for Cross Dataset Generalisation We train policy networks and meta networks using
the policy gradient method REINFORCE (Williams, 1992) to ensure that the generated policies
maximise the return (active learning accuracy) with the desired reward discounting. To ensure that
our pair of networks achieve the desired dataset (active learning problem) invariance, we perform
multi-task training on multiple source datasets: (i) In every mini batch we sample a random subset of
source datasets, and set the return to the average return over all the sampled datasets. Thus achieving
a high return means the meta network has learned to synthesise suitable per-dataset weights for the
policy network based on the dataset embedding, and that together they generalise across multiple
tasks/datasets. (ii) To further promote cross-dataset generalisation, we apply the baseline method to
standardise the return from each episode which compensates the diverse return scale across different
datasets. This relative return alleviates the risk of domination by a single dataset with large return
due to differing scale of accuracy increments among datasets of varying difficulty. The overall
training algorithm is summarised in Alg. 1.

3.2 REINFORCEMENT LEARNING TRAINING AND OBJECTIVE FUNCTIONS

The ideal active learner should query the instance that maximally improves the base learner per-
formance. The reward that reflects the quantity we care about is therefore the increase of test split
accuracy rt = Acct −Acct−1. To optimise this quantity non-myopically, we define the return of an
active learning session as J(θ) = E[

∑∞
t=1 γ

t−1rt(s, πθ(·, s))]. We then use policy gradient to train
the policy and meta-networks to optimise the objective J(θ).

Auxiliary Regularisation Losses Besides optimising the obtained reward, we also optimise for
two auxiliary regularisation losses. Reconstruction: The policy network should reconstruct the
unlabelled input data using Wd predicted by the meta-network (Romero et al., 2017). We optimise
A(Zu) = |Zu − Ẑu|F , the mean square reconstruction error of the autoencoder. Entropy Reg-
ularisation: Following Mnih et al. (2016), we also prefer a policy that maintains a high-entropy

4

Under review as a conference paper at ICLR 2018

Algorithm 1 Reinforcement Learning of a Transferable Query Policy

Input:
1: for < each iteration > do . 1 . . . 50, 000
2: for < each episode > do . Collect batch
3: Pick source dataset randomly
4: Initialise label and unlabelled pool
5: for < each time step to time T > do
6: Sample action π(ai|s) ∝ expΦθp (WT

e zi)

7: Update the Zu,Zl and base learner f
8: Record the triplet < Zu, a, r > . state, action, reward
9: end for

10: Standardise episode-collected return
11: end for
12: Update Policy with standardised return
13: end for
14: return Trained Active Query Policy

posterior over actions so as to continue to explore and avoid pre-emptive convergence to an over-
confident solution.

Integrating the main RL and two auxiliary supervised tasks together, we train both networks end-to-
end. We maximise the whole objective function F by reversing the sign of reconstruction loss:

F = Jθ(Φ)− λ1Aθdm(Zu) + λ2H(πθ(a|Zu)) (2)

where θ = {θp, θem}. The network (Fig. 1) trained by Eq. 2 using Alg. 1 learns to synthesise
policies that are effective active query criteria (high return J) on any domain/dataset (synthesising
domain specific network parameters via auxiliary network), adapting to the statistics of the dataset
and independent of the dimensionality of the dataset.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets We experiment with a diverse set of 14 datasets from UCI machine learning repository.
These include austra, heart, german, ILPD, ionospheres, pima, wdbc, breast, diabetes, fertility,
fourclass, habermann, livers, planning. For our main experiment, we use leave-one-out: multi-task
training the policy and auxiliary network on 13 datasets, and evaluating on the held out dataset.

Architecture The auxiliary network for encoder has fully connected layers with of size
120, 100, 100 (E = 120, k = 100) and decoder auxiliary network has analogous structure. The
policy network has layers of size N × d (N × d input matrix Zu), N × 100 N × 50, N × 10,
N × 1 (N -way output). All penultimate layers use ReLU activation. The transition of the input to
first hidden layer of policy network is provided by the auxiliary network. Thereafter for efficient
implementation with few parameters and to deal with the variable sized input and output, the pol-
icy network is implemented convolutionally. We convolve a h1 × h2 sized matrix across the N
dimension of each N × h1 matrix shaped layer to obtain the next N × h2 layer.

Experiment Settings We train using Adam optimiser with initial learning rate 0.001 and hyper-
parameters set to λ1 = 1, α = λ2 = 0.005 and discount factor γ = 0.99. During RL training, we
use two tricks to stabilise the policy gradient. 1) We use a relatively large batch size of 32 episodes.
2) We smooth the gradient by accumulated time-step Gt = (1 − α)Gt−1 + αgt where gt is the
gradient of the at in time step t and the Gt is the accumulated gradient. Intuitively, the accumulated
gradient Gt puts more emphasis on early time step actions. We train the policy and meta network
simultaneously for a fixed 50,000 iterations and perform active learning over a time horizon (bud-
get) of 20. As base learner we explore linear SVM and RBF SVM (kernel bandwidth 0.5) with class
balancing. All results shown are averages over 100 trials of training and testing datasets. Expert
Features: To enhance the low-level feature of each instance in X we define expert features ξ(X)
to include distance furthest first and uncertainty as the augmented feature.

5

Under review as a conference paper at ICLR 2018

Alternatives We compare our learning approach to AL with three classic approaches
uncertainty/margin-based sampling (US) (Tong & Koller, 2002; Kapoor et al., 2007), furthest-first
sampling (DFF) (Baram et al., 2004) and query-by-bagging (QBB) (Abe & Mamitsuka, 1998), as
well as to random sampling (RAND) as a lower bound. Uncertainty sampling is a simple determin-
istic approach that queries the instance with minimum certainty (maximum entropy). While simple,
and not the most state of the art criteria, it is consistently very competitive with more sophisticated
criteria and more robust in the sense of hardly ever being a very poor criteria. As a representative
more sophisticated approach, we compare with QUIRE (Huang et al., 2010) and as a recent (within-
dataset) learning based approach, we compare ALBL (Hsu & Lin, 2015). We denote our method
meta-learned policy for general active learning (MLP-GAL). As a related alternative we propose
SingleRL. This is our RL approach, but without the meta-network, so a single model is learned over
all datasets. Without the meta-network it can only use expert features ξ(X) so that dimensionality is
fixed over datasets. To give SingleRL an advantage we concatenate some extra global features to the
input space1. This method can also be seen as a version of one of the few state of the art learning-
based alternatives (Konyushkova et al., 2017). But upgraded in that we learn it with reinforcement
learning instead of the more myopic supervised learning used in (Konyushkova et al., 2017).

4.2 RESULTS

Multi-Task Training Evaluation We first verify that it is indeed possible to learn a single policy
that generalises across multiple training datasets with Linear SVM. In our leave-one-out setting, this
means generalising across 13 datasets simultaneously. Each result in the MLP-GAL (Tr) column
of Table 1 is an average across the 13 combinations in which the corresponding dataset occurs in
multi-task training. We can see that MLP-GAL learns an effective criterion that outperforms the
competitors. There is potential for overfitting as the policy has seen each dataset during training
(datasets randomly selected in minibatches). However it is interesting that it works because it shows
that it is possible to learn a single query policy that performs well on such a diverse set of datasets.

Cross-Task Generalisation In the next experiment we apply our multi-task trained method to
held out datasets. In the leave-one-out setting, this means that each row in Table 1 represents a test-
ing set, and the MLP-GAL (Te) result is the performance on this test set after training on all 13 other
datasets. Our MLP-GAL outperforms alternatives in both average performance and number of wins.
SingleRL is generally also effective compared to prior methods, showing the efficacy of training a
policy with RL. However it does not benefit from a meta network, so is not as effective as our MLP-
GAL. From the table it is also interesting to see that while sophisticated methods such as QUIRE
sometimes perform very well, they also often perform very badly – even worse than random. Mean-
while the simple and classic uncertainty-sampling and QBB methods perform consistently well.
Their robustness is the reason for their continued use in practice despite their age and simplicity.
This dichotomy illustrates the challenge in building sophisticated AL algorithms that generalise to
datasets that they were not engineered on. In contrast, although our approach MLP-GAL (Te) has
not seen these datasets during training, it performs consistently well due to adapting to each dataset
via the meta-network. Fig 2(a) shows the resulting active learning curve for an example dataset.

Application to RBF SVM learner An advantage of our approach compared to related methods
such as Bachman et al. (2017); Woodward & Finn (2017) is that it treats the base learner as part of
the environment to be optimised against rather than tying the user to a particular learner. Applying
our method to RBF SVM base learner, we can see that the results in Table 2 are similar to linear SVM
(expected given the difficulty of learning a non-linear model in a budget of 20 points). However our
learning-based approach is again consistently high performing and effective overall – it is able to
learn a policy customised for this new type of base learner.

Dependence on Number of Training Domains We next investigate how performance depends on
the number of training domains. We train MLP-GAL with an increasing number of source datasets
– 1, 4, 7 (multiple splits each); or 13 (13 split LOO setting). Then we compute the average per-
formance over all training and all testing domains, in all of their multiple occurrences across the
splits. From the results in Fig 2(b) we see that the training performance becomes worse when doing
a higher-way multi-task training. This is intuitive: it becomes harder to overfit to more datasets

1Variance of classifier weight, proportion of labelled pos/neg instances, proportion of predicted unlabelled
pos/neg instances’, proportion of budget used (Konyushkova et al., 2017)

6

Under review as a conference paper at ICLR 2018

of Added Instances

5 10 15 20

A
U

C

0.5

0.55

0.6

0.65

0.7

MLP-GAL

SingleRL

ALBL

DFF

US

QBB

QUIRE

RAND

(a) Illustrative active learning curves from evaluating
our learned policy on held out UCI dataset diabetes.

of Training Datasets

1 4 7 13

A
U

C

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Linear(Tr)

Linear(Te)

RBF(Tr)

RBF(Te)

(b) Cross-dataset generalisation. Average performance
(AUC) of MLP-GAL over all training and testing sets
as a function of the number of training domains.

Figure 2: Further Analysis

simultaneously. Meanwhile testing performance improves, demonstrating that the model learns to
generalise better to held out problems when forced to learn on a greater diversity of source datasets.

5 RELATED WORK

Active Learning by Learning A few papers have very recently appeared that also approach find-
ing an AL criterion as a learning problem. Konyushkova et al. (2017) proposes to learn a criterion
based on a vector of expert features (e.g., classifier confidence, label imbalance). However by us-
ing expert features, this misses the chance to learn the representation from raw features as in our
approach; and by using supervised rather than reinforcement learning to train the policy, it is not
optimally non-myopic. Bachman et al. (2017) and Woodward & Finn (2017) use RL to train a sin-
gle model that provides both the base classifier and the active learner. This tight integration has the
drawback that the frameworks are constrained to a specific base learner, so cannot be used to im-
prove the training of an arbitrary base learner as per our framework. More importantly, while these
methods learn effective non-myopic policies, they are trained and tested on different classes within
the same dataset, so the generalisation challenge and evaluation is minimal. There is no mechanism
to ensure effective transfer across datasets of different statics or to allow any transfer at all across
datasets of different dimensionality.

Active Learning Ensembles Different AL algorithms perform well on different datasets, or at
different learning stages. For this reason studies have proposed heuristics to switch criteria from
early to late stage learning (Donmez et al., 2007; Baram et al., 2004), or use multi-armed bandit
(MAB) approaches to estimate the best criterion for a given dataset within an ensemble (Hsu & Lin,
2015). But aside from being myopic, MAB learners do not learn transferrable knowledge: They
perform all their learning within a single rollout, and their need to explore/learn online is fundamen-
tally at odds with active learning. Chu & Lin (2016) ameliorate this somewhat with regularisation,
but still need dataset-specific learning. Our approach can address these issues: Besides non-myopic
policy learning with RL, a DNN has capacity to encode multiple criteria and apply different ones at
different stages of learning. By learning a meta-policy that paramaterises a dataset-specific policy, it
customises the overall active learning strategy to the target dataset; thus transferring knowledge for
immediate efficacy on a new dataset without dataset specific learning.

Domain Generalisation and Adaptation Our task-agnostic AL goal is related to Domain Gen-
eralisaton (DG) (Muandet et al., 2013) and Domain Adpatation (DA) (Ganin & Lempitsky, 2015) in
supervised learning in that we would like to train on one dataset and perform well when testing on
another dataset. Our framework has aspects of DG (multi-task training to increase generality) and
DA (adapting to target data, via dataset embedding meta network) methods. But we are not aware
of any dataset embedding approaches to achieving DA within supervised learning.

7

Under review as a conference paper at ICLR 2018

Table 1: Comparison of active learning algorithms, leave one dataset out setting. Linear SVM base
learner. AUC averages (%) over 100 trials (and 13 training occurrences for MLP-GAL (Tr)).

MLP-GAL (Tr) MLP-GAL (Te) SingleRL (Te) Entropy DFF RAND ALBL QUIRE QBB
austra 80.14 77.49 75.72 78.24 75.63 75.87 75.31 64.46 78.58
breast 96.67 95.38 94.78 95.41 95.76 94.71 95.67 95.60 95.73

diabetes 67.53 66.65 64.78 64.18 57.31 64.05 61.35 53.75 64.46
fertility 78.26 73.59 77.86 75.79 70.44 71.28 66.92 54.93 73.87

fourclass 74.79 72.02 71.83 69.55 71.26 69.08 68.69 64.48 70.81
haberman 67.31 64.47 64.91 60.16 60.26 57.40 52.49 45.89 60.58

heart 76.68 72.46 72.84 73.38 73.99 73.06 71.78 67.07 73.36
german 68.01 65.89 63.35 63.34 61.78 62.77 61.74 51.82 64.16
ILPD 62.48 58.41 61.08 57.60 50.97 57.62 52.91 48.57 56.77

ionospheres 74.96 67.31 69.78 70.47 59.64 69.81 68.44 57.84 70.40
liver 55.66 55.41 55.62 53.45 52.87 52.87 51.25 48.11 52.13
pima 67.64 66.89 64.67 64.18 57.31 63.69 61.27 53.75 64.24

planning 60.74 58.12 56.75 55.09 52.77 54.17 49.46 39.90 55.43
wdbc 90.90 90.57 88.72 90.93 87.55 88.52 88.41 82.17 90.68
Avg 72.98 70.33 70.19 69.41 66.25 68.21 66.12 59.17 69.37

Num Wins - 5 4 2 2 0 0 0 1

Table 2: Comparison of active learning algorithms, leave one dataset out setting. RBF SVM base
learner. AUC averages (%) over 100 trials (and 13 training occurrences for MLP-GAL (Tr)).

MLP-GAL (Tr) MLP-GAL (Te) SingleRL (Te) Ent DFF RAND ALBL QUIRE QBB
austra 80.84 79.14 76.35 79.36 77.15 78.47 76.57 68.98 78.83
breast 96.25 95.36 95.46 95.40 95.78 95.14 95.92 95.21 95.43

diabetes 66.55 64.28 62.52 62.59 59.81 62.7 59.09 58.48 61.98
fertility 80.83 77.8 2 75.75 79.49 75.81 75.21 73.55 64.67 76.83

fourclass 71.66 69.78 66.41 66.88 68.62 66.29 66.43 64.85 63.35
haberman 58.01 56.42 53.88 56.60 58.67 53.58 64.44 61.83 64.97

heart 77.47 73.93 71.87 73.63 74.05 72.27 72.57 68.98 72.95
german 67.94 65.78 64.18 65.01 65.6 63.26 57.70 55.57 53.96
ILPD 54.5 53.54 51.04 50.99 47.29 52.30 47.62 46.54 51.15

ionospheres 80.94 76.14 72.87 77.76 61.49 75.17 75.00 61.72 77.18
liver 51.91 49.95 50.76 50.31 51.04 50.21 47.60 46.75 50.27
pima 66.60 63.58 63.15 62.59 59.81 63.01 58.13 58.48 61.74

planning 53.05 53.55 52.61 49.95 50.07 50.99 47.10 41.68 50.49
wdbc 91.97 90.93 90.04 91.54 89.37 90.24 89.52 88.14 90.34
Avg 71.32 69.30 67.64 68.72 66.75 67.77 66.52 62.99 67.82

Num Wins - 6 0 4 2 0 1 0 1

Related Methods Models that predict the parameters of other models are increasingly widely
used (Ha et al., 2017). In robot control, such ‘contextual’ or ‘paramaterised’ policies are used to
solve related tasks such as reaching to different targets (Kupcsik et al., 2013). Romero et al. (2017)
used auxiliary networks for parameter reduction when training and testing on one dataset.

6 DISCUSSION

We have proposed a learning-based perspective on the problem of active query criteria design. Such
learning-based algorithm design elegantly obtains AL models by optimising the ultimate goal of
classification performance with few labels. However aside from the widely-shared questions of good
network architecture and RL training algorithms, the key challenge is then whether general enough
policies can be learned to be widely useful in different applications, rather than requiring dataset-
specific training which contradicts the motivation of AL. Our key contribution is to provide the first
solution to this issues through multi-task training of a meta-network that synthesises dataset-specific
active query policies.

Our study thus far has the main limitation that we have only evaluated our method on a binary base
classifier (binary assumption shared by Konyushkova et al. (2017)). In future work we would like to
evaluate our method on deep multi-class classifiers by designing embeddings which can represent
the state of such learners, as well as explore application to the stream-based AL setting.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and bagging. In ICML,
1998.

Philip Bachman, Alessandro Sordoni, and Adam Trischler. Learning algorithms for active learning.
ICML, 2017.

Yoram Baram, Ran El-Yaniv, and Kobi Luz. Online choice of active learning algorithms. J. Mach.
Learn. Res., 5, December 2004.

Rita Chattopadhyay, Zheng Wang, Wei Fan, Ian Davidson, Sethuraman Panchanathan, and Jieping
Ye. Batch mode active sampling based on marginal probability distribution matching. KDD.
ACM, 2012.

H. M. Chu and H. T. Lin. Can active learning experience be transferred? In ICDM, 2016.

Pinar Donmez, Jaime G. Carbonell, and Paul N. Bennett. Dual strategy active learning. In ECML,
2007.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML, 2015.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017.

Wei-Ning Hsu and Hsuan-Tien Lin. Active learning by learning. In AAAI, 2015.

Sheng-jun Huang, Rong Jin, and Zhi-hua Zhou. Active learning by querying informative and repre-
sentative examples. In NIPS. 2010.

Ashish Kapoor, Kristen Grauman, Raquel Urtasun, and Trevor Darrell. Active learning with gaus-
sian processes for object categorization. In ICCV, 2007.

Jens Kober and Jan R. Peters. Policy search for motor primitives in robotics. In NIPS. 2009.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from real and
synthetic data. NIPS, 2017.

Andras Gabor Kupcsik, Marc Peter Deisenroth, Jan Peters, and Gerhard Neumann. Data-efficient
generalization of robot skills with contextual policy search. In AAAI, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, 2016.

Krikamol Muandet, David Balduzzi, and Bernhard Scholkopf. Domain generalization via invariant
feature representation. In ICML, 2013.

Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne De-
joie, Marc-André Legault, Marie-Pierre Dube, Julie G. Hussin, and Yoshua Bengio. Diet net-
works: Thin parameters for fat genomics. ICLR, 2017.

Nicholas Roy and Andrew McCallum. Toward optimal active learning through sampling estimation
of error reduction. In ICML, 2001.

Simon Tong and Daphne Koller. Support vector machine active learning with applications to text
classification. J. Mach. Learn. Res., 2, March 2002.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 1992.

Mark Woodward and Chelsea Finn. Active one-shot learning. CoRR, abs/1702.06559, 2017.

9

Under review as a conference paper at ICLR 2018

Iteration

0 10000 20000 30000 40000 50000 60000

A
U

C

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

(a) AUC curve vs RL iterations

Iteration

0 10000 20000 30000 40000 50000 60000

R
e

tu
rn

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

(b) Return curve vs RL iterations

Figure 3: Convergence of active learning policy during training. Austra dataset.

7 APPENDIX

7.1 CONVERGENCE PROCESS DURING LEARNING

To illustrate the stability of our reinforcement learning approach to active query policy learning, we
show the convergence process during training in Fig. 3 for an example dataset austra. Fig. 3(a) plots
the classifier AUC after after all 20 active queries made by the MLP-GAL policy, measured after
different numbers of minibatch iterations of training MLP-GAL with RL. Correspondingly Fig. 3(b)
plots the return (sum of discounted reward over the entire active learning rollout). We can see that
both quantities increase rapidly and have stabilised after about 50,000 iterations.

7.2 DEPENDENCE ON CHOICE OF TRAINING DOMAINS

In our learning-based approach to AL policy generation, it is intuitive that testing performance would
be dependent on the relatedness of the training datasets used. At one extreme if we train and test
on the same dataset, we obtain great performance (MLP-GAL (Tr) in Tables 1 and 2). At the other
extreme if we train on a single source dataset very unrelated to our test set, then performance may
be poor. Our aim is to achieve robustness to choice of source dataset via the domain generalisation
provided by dataset embeddings and our multi-task trained meta-network. To study this we perform
1-way, 4-way, 7-way and 13-way multi-task training with testing on the remaining datasets – and
repeat this for multiple splits (cf. Fig 2(b)). Note that each split is designed with an inclusive
structure as number of datasets increases: So for a given split, the single task (1-way) training
dataset is a subset of the training datasets in the 4-way setting, which is a subset of 7-way, which
is in turn a subset of the 13-way (leave-one-out) setting. We then compute the mean and standard
deviation (SD) in performance over the occurrences of each dataset across all the multiple splits.
The number of wins among the MLP-GAL variants evaluated here is also reported. Note that there
is no training SD for single-task training (column Train-1) since there is only one way to perform
single task training; and there is no testing SD after 13-task leave-one-out training (column Test-13)
since there is only one possible split that leaves a single dataset out.

From the results in Tables 3 (Linear SVM) and 4 (RBF SVM) we can observe the following: (i)
As the number of source datasets increases, testing performance increases – on average and for
the majority of testing sets. (ii) The testing SD for both Linear and RBF SVM decreases with
number of training domains used. (iii) For RBF SVM the training SD also decreases slightly with
number of training domains. This suggests that being exposed to more training datasets facilitates
finding a more consistent optimal policy during learning. (iv) The high testing SD of single source
training (column Test-1) indicates unsurprisingly that it is sensitive to the specific choice of source
dataset. A relevant source dataset can result in high performance and an irrelevant source dataset can
produce low performance. So the model would work well only if a relevant source set was carefully
picked. However the average performance of multi-source training (column Test-13, Average) is
often similar to the upper bound achieved by single source training given its SD (column Test-1,

10

Under review as a conference paper at ICLR 2018

Table 3: MLP-GAL training and testing performance as a function of number of training datasets.
AUC average and standard deviation. Linear SVM base classifier. Each dataset is evaluated both as
train and test during cross validation.

Train Performance Test Performance
Num Train Sets: 1 4 7 13 1 4 7 13

austra 81.49 80.81 ± 0.57 80.56 ± 0.6 80.15 ± 0.65 72.78 ± 2.99 72.9 ± 1.97 74.07 ± 3.11 77.49
breast 96.94 96.85 ± 0.12 96.76 ± 0.16 96.67 ± 0.13 94.55 ± 1 95.36 ± 0.66 95.31 ± 0.36 95.38

diabetes 69.23 67.25 ± 0.29 67.22 ± 0.48 67.53 ± 0.45 63.05 ± 2.63 65.03 ± 1.91 65.56 ± 1.16 66.65
fertility 79.9 79.2 ± 0.3 78.38 ± 0.36 78.26 ± 0.61 72.9 ± 1.91 73.86 ± 1.44 74.91 ± 2.37 73.59

fourclass 76.03 75.36 ± 0.48 75.08 ± 0.37 74.79 ± 0.47 69.15 ± 2.15 71.24 ± 2.69 73.02 ± 0.78 72.02
haberman 71.33 68.06 ± 0.74 66.91 ± 0.84 67.31 ± 0.62 59.28 ± 3.57 62 ± 2.52 64.97 ± 0.54 64.47

heart 80.3 78.46 ± 1.19 77.48 ± 0.56 76.68 ± 0.74 70.38 ± 2.84 72.5 ± 1.79 72.35 ± 0.92 72.46
german 68.55 68.6 ± 0.36 68.1 ± 0.16 68.01 ± 0.33 64.05 ± 2.04 64.44 ± 0.99 65 ± 1.67 65.89
ILPD 65.26 64.01 ± 1.04 62.97 ± 0.82 62.48 ± 1.07 56.17 ± 2.73 58.37 ± 1.5 58.11 ± 1.56 58.41

ionospheres 75.29 75.8 ± 1.68 75.21 ± 1.06 74.96 ± 0.78 68.04 ± 3.85 70.27 ± 1.95 70.12 ± 1.57 67.31
liver 54.88 56.59 ± 0.41 56.04 ± 0.35 55.66 ± 0.34 54.37 ± 1.07 54.82 ± 0.46 54.86 ± 0.27 55.41
pima 69.77 67.83 ± 0.31 66.78 ± 0.65 67.64 ± 0.6 63 ± 2.59 65.15 ± 1.76 66.2 ± 1.28 66.89

planning 62.61 61.37 ± 0.51 60.71 ± 0.79 60.74 ± 0.98 54.9 ± 3.14 57.28 ± 3.07 57.23 ± 1.31 58.12
wdbc 91.4 91.25 ± 0.19 90.78 ± 0.58 90.9 ± 0.25 86.6 ± 2.49 88.76 ± 0.92 89.16 ± 0.91 90.57

Average 74.5 73.67 ± 0.59 73.07 ± 0.55 72.98 ± 0.57 67.8 ± 2.5 69.43 ± 1.69 70.06 ± 1.27 70.33
Num Wins 11 3 0 0 0 2 3 9

Table 4: MLP-GAL training and testing performance as a function of number of training datasets.
AUC average and standard deviation. RBF SVM base classifier. Each dataset is evaluated both as
train and test during cross validation.

Train Performance Test Performance
Num Train Sets: 1 4 7 13 1 4 7 13

austra 81.84 81.73 ± 0.54 80.99 ± 0.31 80.84 ± 0.34 76.47 ± 2.01 76.01 ± 0.82 76.5 ± 2.71 79.14
breast 95.94 96.08 ± 0.17 96.27 ± 0.19 96.25 ± 0.24 94.74 ± 0.89 95.52 ± 0.32 95.68 ± 0.27 95.36

diabetes 70.37 66.96 ± 1.26 66.86 ± 0.96 66.55 ± 1.05 63.57 ± 2.98 63.8 ± 3.13 64.67 ± 2.2 64.28
fertility 81.7 81.71 ± 0.66 81.44 ± 0.89 80.83 ± 0.58 75.91 ± 2.8 76.74 ± 1.88 77.92 ± 0.61 77.82

fourclass 73.9 71.49 ± 0.65 70.73 ± 0.66 71.66 ± 0.66 66.28 ± 1.61 67.11 ± 1.68 67.81 ± 1.32 69.78
haberman 65.95 61.95 ± 1.79 60.41 ± 1.77 58.01 ± 1.56 54.97 ± 2.24 56.37 ± 2.26 54.87 ± 1.33 56.42

heart 79.7 79.09 ± 0.93 77.9 ± 0.82 77.47 ± 0.68 72.26 ± 2.09 73.76 ± 1.85 73.58 ± 1.56 73.93
german 70.23 68.73 ± 0.66 68.1 ± 1.34 67.94 ± 0.36 64.63 ± 3.91 64.14 ± 2.29 65.27 ± 1.35 65.78
ILPD 62.1 57.89 ± 2.87 55.1 ± 0.89 54.5 ± 0.55 52.45 ± 2.82 50.94 ± 2.2 50.54 ± 1.81 53.54

ionospheres 80.81 81.5 ± 0.36 81.67 ± 0.46 80.94 ± 0.55 73.54 ± 3.49 74.97 ± 2.4 76.87 ± 3.04 76.14
liver 56.01 51.81 ± 1.18 52.26 ± 0.72 51.91 ± 0.85 50.79 ± 0.79 50.96 ± 1.06 50.96 ± 0.57 49.95
pima 71.56 67.73 ± 0.83 66.57 ± 1.7 66.6 ± 1.24 63.36 ± 2.82 63.59 ± 2.32 65.31 ± 1.63 63.58

planning 57.87 54.2 ± 2.15 53.38 ± 0.58 53.05 ± 0.89 51.48 ± 1.26 52.02 ± 1.07 52.13 ± 0.63 53.55
wdbc 92.92 92.2 ± 0.3 92.31 ± 0.7 91.97 ± 0.28 88.87 ± 1.17 88.86 ± 0.97 90.31 ± 0.53 90.93

Average 74.35 72.36 ± 1.03 71.71 ± 0.86 71.32 ± 0.7 67.81 ± 2.21 68.2 ± 1.73 68.74 ± 1.4 69.3
Num Wins 11 2 0 1 0 1 6 8

Average+SD). EG: For Linear SVM performance in an optimistic scenario (assume relevant source
data is specifically selected) is 67.8 + 2.5 = 70.3% (Test-1) which is comparable to the average
scenario of 70.33% (Test-13) for 13-way multi-dataset training. This suggests that careful choice of
a specific relevant training set is not crucial for MLP-GAL. Multi-source training on many source
datasets is adequate, and our model can generalise to the new dataset via its embedding. Improving
performance further by automatically determining relevant source datasets to use is an open question
for potential future improvement of this work, as it is similarly an open question in transfer learning
more generally.

11

	Introduction
	Preliminaries
	Methods
	Achieving Cross Dataset Generalisation
	Reinforcement Learning Training and Objective Functions

	Experiments
	Datasets and Settings
	Results

	Related Work
	Discussion
	Appendix
	Convergence Process during Learning
	Dependence on Choice of Training Domains

