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ABSTRACT

Automatically evaluating the quality of dialogue responses for unstructured do-
mains is a challenging problem. Unfortunately, existing automatic evaluation
metrics are biased and correlate very poorly with human judgements of response
quality (Liu et al., 2016). Yet having an accurate automatic evaluation procedure
is crucial for dialogue research, as it allows rapid prototyping and testing of new
models with fewer expensive human evaluations. In response to this challenge, we
formulate automatic dialogue evaluation as a learning problem. We present an eval-
uation model (ADEM) that learns to predict human-like scores to input responses,
using a new dataset of human response scores. We show that the ADEM model’s
predictions correlate significantly, and at level much higher than word-overlap met-
rics such as BLEU, with human judgements at both the utterance and system-level.
We also show that ADEM can generalize to evaluating dialogue models unseen
during training, an important step for automatic dialogue evaluation.

1 INTRODUCTION

Learning to communicate with humans is a crucial ability for intelligent agents. Among the primary
forms of communication between humans is natural language dialogue. As such, building systems
that can naturally and meaningfully converse with humans has been a central goal of artificial
intelligence since the formulation of the Turing test (Turing, 1950). Research on one type of such
systems, sometimes referred to as non-task-oriented dialogue systems, goes back to the mid-60s with
Weizenbaum’s famous program ELIZA: a rule-based system mimicking a Rogerian psychotherapist
by persistently either rephrasing statements or asking questions (Weizenbaum, 1966). Recently, there
has been a surge of interest in the research community towards building large-scale non-task-oriented
dialogue systems using neural networks (Sordoni et al., 2015b; Shang et al., 2015; Vinyals & Le,
2015; Serban et al., 2016a; Li et al., 2015). These models are trained in an end-to-end manner to
optimize a single objective, usually the likelihood of generating the responses from a fixed corpus.
Such models have already had a substantial impact in industry, including Google’s Smart Reply
system (Kannan et al., 2016), and Microsoft’s Xiaoice chatbot (Markoff & Mozur, 2015), which has
over 20 million users. More recently, Amazon has announced the Alexa Prize Challenge: a research
competition with the goal of developing a natural and engaging chatbot system (Farber, 2016).

One of the challenges when developing such systems is to have a good way of measuring progress,
in this case the performance of the chatbot. The Turing test provides one solution to the evaluation
of dialogue systems, but there are limitations with its original formulation. The test requires live
human interactions, which is expensive and difficult to scale up. Furthermore, the test requires
carefully designing the instructions to the human interlocutors, in order to balance their behaviour
and expectations so that different systems may be ranked accurately by performance. Although
unavoidable, these instructions introduce bias into the evaluation measure. The more common
approach of having humans evaluate the quality of dialogue system responses, rather than distinguish
them from human responses, induces similar drawbacks in terms of time, expense, and lack of
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scalability. In the case of chatbots designed for specific conversation domains, it may also be difficult
to find sufficient human evaluators with appropriate background in the topic (e.g. Lowe et al. (2015)).

Context of Conversation
Speaker A: Hey, what do you want to do tonight?
Speaker B: Why don’t we go see a movie?
Model Response
Nah, let’s do something active.
Reference Response
Yeah, the film about Turing looks great!

Figure 1: Example where word-overlap scores
(e.g. BLEU) fail for dialogue evaluation; al-
though the model response is completely rea-
sonable, it has no words in common with the
reference response, and thus would be given
low scores by metrics such as BLEU.

Despite advances in neural network-based models,
evaluating the quality of dialogue responses auto-
matically remains a challenging and under-studied
problem in the non-task-oriented setting. The most
widely used metric for evaluating such dialogue sys-
tems is BLEU (Papineni et al., 2002), a metric mea-
suring word overlaps originally developed for ma-
chine translation. However, it has been shown that
BLEU and other word-overlap metrics are biased
and correlate poorly with human judgements of re-
sponse quality (Liu et al., 2016). There are many
obvious cases where these metrics fail, as they are
often incapable of considering the semantic similar-
ity between responses (see Figure 1). Despite this,
many researchers still use BLEU to evaluate their
dialogue models (Ritter et al., 2011; Sordoni et al.,
2015b; Li et al., 2015; Galley et al., 2015; Li et al., 2016a), as there are few alternatives available
that correlate with human judgements. While human evaluation should always be used to evaluate
dialogue models, it is often too expensive and time-consuming to do this for every model specification
(for example, for every combination of model hyperparameters). Therefore, having an accurate model
that can evaluate dialogue response quality automatically — what could be considered an automatic
Turing test — is critical in the quest for building human-like dialogue agents.

To make progress towards this goal, we first collect a dataset of human scores to various dialogue
responses, and we use this dataset to train an automatic dialogue evaluation model, which we call
ADEM. The model is trained in a semi-supervised manner using a hierarchical recurrent neural
network (RNN) to predict human scores. We show that ADEM scores correlate significantly, and at a
level much higher than BLEU, with human judgement at both the utterance-level and system-level.
Crucially, we also show that ADEM can generalize to evaluating new models, whose responses were
unseen during training, without a drop in performance, making ADEM a strong first step towards
effective automatic dialogue response evaluation.1

2 A DATASET FOR DIALOGUE RESPONSE EVALUATION

# Examples 4104
# Contexts 1026
# Training examples 2,872
# Validation examples 616
# Test examples 616
κ score (inter-annotator 0.63
correlation)

Table 1: Statistics of the
dialogue response evaluation
dataset. Each example is in
the form (context, model re-
sponse, reference response, hu-
man score).

To train a model to predict human scores to dialogue responses,
we first collect a dataset of human judgements (scores) of Twitter
responses using the crowdsourcing platform Amazon Mechanical
Turk (AMT).2 The aim is to have accurate human scores for a
variety of conversational responses — conditioned on dialogue
contexts – which span the full range of response qualities. For
example, the responses should include both relevant and irrelevant
responses, both coherent and non-coherent responses and so on.
To achieve this variety, we use candidate responses from several
different models. Following Liu et al. (2016), we use the following
4 sources of candidate responses: (1) a response selected by a
TF-IDF retrieval-based model, (2) a response selected by the Dual
Encoder (DE) (Lowe et al., 2015), (3) a response generated using
the hierarchical recurrent encoder-decoder (HRED) model (Serban
et al., 2016a), and (4) human-generated responses. It should be
noted that the human-generated candidate responses are not the
reference responses from a fixed corpus, but novel human responses that are different from the
reference. In addition to increasing response variety, this is necessary because we want our evaluation
model to learn to compare the reference responses to the candidate responses.

1We will provide open-source implementations of the model upon publication.
2All data collection was conducted in accordance with the policies of the host institutions’ ethics board.
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We conducted two rounds of AMT experiments. We first asked AMT workers to provide a reasonable
continuation of a Twitter dialogue (i.e. generate the next response given the context of a conversation).
Each survey contained 20 questions, including an attention check question. Workers were instructed
to generate longer responses, in order to avoid simple one-word responses. In total, we obtained
approximately 2,000 human responses.

Second, we filtered these human-generated responses for potentially offensive language, and com-
bined them with approximately 1,000 responses from each of the above models into a single set of
responses. We then asked AMT workers to rate the overall quality of each response on a scale of
1 (low quality) to 5 (high quality). Each user was asked to evaluate 4 responses from 50 different
contexts. We included four additional attention-check questions and a set of five contexts was given to
each participant for assessment of inter-annotator agreement. We removed all users who either failed
an attention check question or achieved a κ inter-annotator agreement score lower than 0.2 (Cohen,
1968). The remaining evaluators had a median κ score of 0.63, indicating moderate agreement. This
is consistent with results from Liu et al. (2016). Dataset statistics are provided in Table 1.

Measurement κ score
Overall 0.63
Topicality 0.57
Informativeness 0.31
Background 0.05

Table 2: Median κ inter-
annotator agreement scores
for various questions asked
in the survey.

In initial experiments, we also asked humans to provide scores for
topicality, informativeness, and whether the context required back-
ground information to be understandable. Note that we did not ask
for fluency scores, as 3/4 of the responses were produced by humans
(including the retrieval models). We found that scores for informa-
tiveness and background had low inter-annotator agreement (Table 2),
and scores for topicality were highly correlated with the overall score
(Pearson correlation of 0.72). Results on these auxiliary questions
varied depending on the wording of the question. Thus, we continued
our experiments by only asking for the overall score. We provide
more details concerning the data collection in the Appendix, as it may
aid others in developing effective crowdsourcing experiments.

To train evaluation models on human judgements, it is crucial that we obtain scores of responses
that lie near the distribution produced by state-of-the-art models. This is why we use the Twitter
Corpus (Ritter et al., 2011), as such models are pre-trained and readily available. Further, the set of
topics discussed is quite broad — as opposed to the very specific Ubuntu Dialogue Corpus — and
therefore the model should generalize better to other domains involving chit-chat. Finally, since it
does not require domain specific knowledge (e.g. technical knowledge), it should be easy for AMT
workers to annotate.

3 TECHNICAL BACKGROUND

3.1 RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs) are a type of neural network with time-delayed connections
between the internal units. This leads to the formation of a hidden state ht, which is updated for
every input: ht = f(Whhht−1 +Wihxt), where Whh and Wih are parameter matrices, f is a smooth
non-linear activation function such as tanh, and xt is the input at time t. The hidden state allows for
RNNs to better model sequential data, such as natural language.

In this paper, we consider RNNs augmented with long-short term memory (LSTM) units (Hochreiter
& Schmidhuber, 1997). LSTMs add a set of gates to the RNN that allow it to learn how much to
update the hidden state. LSTMs are one of the most well-established methods for dealing with the
vanishing gradient problem in recurrent networks (Hochreiter, 1991; Bengio et al., 1994).

3.2 WORD-OVERLAP METRICS

One of the most popular approaches for automatically evaluating the quality of dialogue responses
is by computing their word overlap with the reference response. In particular, the most popular
metrics are the BLEU and METEOR scores used for machine translation, and the ROUGE score
used for automatic summarization. While these metrics tend to correlate with human judgements in
their target domains, they have recently been shown to highly biaqsed and correlate very poorly with
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Figure 2: The ADEM model, which uses a hierarchical encoder to produce the context embedding c.

human judgements for dialogue response evaluation (Liu et al., 2016). We briefly describe BLEU
here, and provide a more detailed summary of word-overlap metrics in the Appendix.

BLEU BLEU (Papineni et al., 2002) analyzes the co-occurrences of n-grams in the ground truth
and the proposed responses. It computes the n-gram precision for the whole dataset, which is then
multiplied by a brevity penalty to penalize short translations. For BLEU-N , N denotes the largest
value of n-grams considered (usually N = 4).

Drawbacks One of the major drawbacks of word-overlap metrics is their failure in capturing the
semantic similarity between the model and reference responses when there are few or no common
words. This problem is less critical for machine translation; since the set of reasonable translations
of a given sentence or document is rather small, one can reasonably infer the quality of a translated
sentence by only measuring the word-overlap between it and one (or a few) reference translations.
However, in dialogue, the set of appropriate responses given a context is much larger (Artstein et al.,
2009); in other words, there is a very high response diversity that is unlikely to be captured by
word-overlap comparison to a single response.

Further, word-overlap scores are computed directly between the model and reference responses. As
such, they do not consider the context of the conversation. While this may be a reasonable assumption
in machine translation, it is not the case for dialogue; whether a model response is an adequate
substitute for the reference response is clearly context-dependent. For example, the two responses
in Figure 1 are equally appropriate given the context. However, if we simply change the context to:

“Have you heard of any good movies recently?”, the model response is no longer relevant while the
reference response remains valid.

4 AN AUTOMATIC DIALOGUE EVALUATION MODEL (ADEM)

To overcome the problems of evaluation with word-overlap metrics, we aim to construct a dialogue
evaluation model that: (1) captures semantic similarity beyond word overlap statistics, and (2) exploits
both the context of the conversation and the reference response to calculate its score for the model
response. We call this evaluation model ADEM.

ADEM learns distributed representations of the context, model response, and reference response using
a hierarchical RNN encoder. Given the dialogue context c, reference response r, and model response
r̂, ADEM first encodes each of them into vectors (c, r̂, and r, respectively) using the RNN encoder.
Then, ADEM computes the score using a dot-product between the vector representations of c, r, and r̂
in a linearly transformed space: :

score(c, r, r̂) = (cTM r̂ + rTN r̂− α)/β (1)

where M,N ∈ Rn are learned matrices initialized to the identity, and α, β are scalar constants used
to initialize the model’s predictions in the range [0, 5]. The model is shown in Figure 2.

The matrices M and N can be interpreted as linear projections that map the model response r̂ into
the space of contexts and reference responses, respectively. The model gives high scores to responses
that have similar vector representations to the context and reference response after this projection.
The model is end-to-end differentiable; all the parameters can be learned by backpropagation. In our
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implementation, the parameters θ = {M,N} of the model are trained to minimize the squared error
between the model predictions and the human score, with L1-regularization:

L =
∑
i=1:K

[score(ci, ri, r̂i)− human scorei]2 + γ||θ||1 (2)

where γ is a scalar constant. The simplicity of our model leads to both accurate predictions and fast
evaluation time (see Appendix), which is important to allow rapid prototyping of dialogue systems.

The hierarchical RNN encoder in our model consists of two layers of RNNs (El Hihi & Bengio,
1995; Sordoni et al., 2015a). The lower-level RNN, the utterance-level encoder, takes as input words
from the dialogue, and produces a vector output at the end of each utterance. The context-level
encoder takes the representation of each utterance as input and outputs a vector representation of
the context. This hierarchical structure is useful for incorporating information from early utterances
in the context (Serban et al., 2016a). Following previous work, we take the last hidden state of the
context-level encoder as the vector representation of the input utterance or context.

An important point is that the ADEM procedure above is not a dialogue retrieval model. The
fundamental difference between ADEM and a dialogue model is that ADEM has access to the reference
response. Thus, ADEM can compare a model’s response to a known good response, which is
significantly easier than inferring response quality from solely the context.

Pre-training with VHRED We would like an evaluation model that can make accurate predictions
from few labeled examples, since these examples are expensive to obtain. We therefore employ
semi-supervised learning, and use a pre-training procedure to learn the parameters of the encoder. In
particular, we train the encoder as part of a neural dialogue model; we attach a third decoder RNN
that takes the output of the encoder as input, and train it to predict the next utterance of a dialogue
conditioned on the context.

The dialogue model we employ for pre-training is the latent variable hierarchical recurrent encoder-
decoder (VHRED) model (Serban et al., 2016b). The VHRED model is an extension of the original
hierarchical recurrent encoder-decoder (HRED) model (Serban et al., 2016a) with a turn-level
stochastic latent variable. The dialogue context is encoded into a vector using our hierarchical
encoder, and the VHRED then samples a Gaussian variable that is used to condition the decoder (see
Appendix for further details). After training VHRED, we use the last hidden state of the context-level
encoder, when c, r, and r̂ are fed as input, as the vector representations for c, r, and r̂, respectively.
We use representations from the VHRED model as it produces more diverse and coherent responses
compared to its HRED counterpart.

Maximizing the likelihood of generating the next utterance in a dialogue is not only a convenient
way of training the encoder parameters; it is also an objective that is consistent with learning useful
representations of the dialogue utterances. Two context vectors produced by the VHRED encoder are
similar if the contexts induce a similar distribution over subsequent responses; this is consistent with
the formulation of the evaluation model, which assigns high scores to responses that have similar
vector representations to the context. VHRED is also closely related to the skip-thought-vector
model (Kiros et al., 2015), which has been shown to learn useful representations of sentences for
many tasks, including semantic relatedness and paraphrase detection. The skip-thought-vector model
takes as input a single sentence and predicts the previous sentence and next sentence. On the other
hand, VHRED takes as input several consecutive sentences and predicts the next sentence. This
makes it particularly suitable for learning long-term context representations.

5 EXPERIMENTS

5.1 EXPERIMENTAL PROCEDURE

In order to reduce the effective vocabulary size, we use byte pair encoding (BPE) (Gage, 1994;
Sennrich et al., 2015), which splits each word into sub-words or characters. We also use layer
normalization (Ba et al., 2016) for the hierarchical encoder, which we found worked better at the
task of dialogue generation than the related recurrent batch normalization (Ioffe & Szegedy, 2015;
Cooijmans et al., 2016). To train the VHRED model, we employed several of the same techniques
found in Serban et al. (2016b) and Bowman et al. (2016): we drop words in the decoder with a fixed
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Full dataset Test set
Metric Spearman Pearson Spearman Pearson
BLEU-1 0.026 (0.102) 0.055 (<0.001) 0.036 (0.413) 0.074 (0.097)
BLEU-2 0.039 (0.013) 0.081 (<0.001) 0.051 (0.254) 0.120 (<0.001)
BLEU-3 0.045 (0.004) 0.043 (0.005) 0.051 (0.248) 0.073 (0.104)
BLEU-4 0.051 (0.001) 0.025 (0.113) 0.063 (0.156) 0.073 (0.103)
ROUGE 0.062 (<0.001) 0.114 (<0.001) 0.096 (0.031) 0.147 (<0.001)
METEOR 0.021 (0.189) 0.022 (0.165) 0.013 (0.745) 0.021 (0.601)
T2V 0.140 (<0.001) 0.141 (<0.001) 0.140 (<0.001) 0.141 (<0.001)
VHRED -0.035 (0.062) -0.030 (0.106) -0.091 (0.023) -0.010 (0.805)

Validation set Test set
C-ADEM 0.272 (<0.001) 0.238 (<0.001) 0.293 (<0.001) 0.303 (<0.001)
R-ADEM 0.428 (<0.001) 0.383 (<0.001) 0.409 (<0.001) 0.392 (<0.001)
ADEM (T2V) 0.395 (<0.001) 0.392 (<0.001) 0.408 (<0.001) 0.411 (<0.001)
ADEM 0.436 (<0.001) 0.389 (<0.001) 0.414 (<0.001) 0.395 (<0.001)

Table 3: Correlation between metrics and human judgements, with p-values shown in brackets.
‘ADEM (T2V)’ indicates ADEM with tweet2vec embeddings (Dhingra et al., 2016), and ‘VHRED’
indicates the dot product of VHRED embeddings (i.e. ADEM at initialization). C- and R-ADEM
represent the ADEM model trained to only compare the model response to the context or reference
response, respectively.

(a) BLEU-2 (b) ROUGE (c) ADEM

Figure 3: Scatter plot showing model against human scores, for BLEU-2 and ROUGE on the full
dataset, and ADEM on the test set. We add Gaussian noise drawn fromN (0, 0.3) to the integer human
scores to better visualize the density of points, at the expense of appearing less correlated.

rate of 25%, and we anneal the KL-divergence term linearly from 0 to 1 over the first 60,000 batches.
We use Adam as our optimizer (Kingma & Ba, 2014).

For training VHRED, we use a context embedding size of 2000. However, we found the ADEM
model learned more effectively when this embedding size was reduced. Thus, after training VHRED,
we use principal component analysis (PCA) (Pearson, 1901) to reduce the dimensionality of the
context, model response, and reference response embeddings to n. While our results are robust to
n, we found experimentally that n = 7 provided slightly improved performance. We provide other
hyperparameter values in the Appendix.

When evaluating our models, we conduct early stopping on a separate validation set to obtain the best
parameter setting. For the evaluation dataset, we split the train/ validation/ test sets such that there is
no context overlap (i.e. the contexts in the test set are unseen during training).

5.2 RESULTS

Utterance-level correlations We first present new utterance-level correlation results3 for existing
word-overlap metrics, in addition to results with embedding baselines and ADEM, in Table 3. The

3We present both the Spearman correlation (computed on ranks, depicts monotonic relationships) and Pearson
correlation (computed on true values, depicts linear relationships) scores.
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Figure 4: Scatterplots depicting the system-level correlation results for BLEU-2, BLEU-4, ROUGE,
and ADEM on the test set. Each point represents the average scores for the responses from a dialogue
model (TFIDF, DE, HRED, human). Human scores are shown on the horizontal axis, with normalized
metric scores on the vertical axis. The ideal metric has a perfectly linear relationship.

baseline metrics are evaluated on the entire dataset of 4,104 responses.4 We measure the correlation
for ADEM on the validation and test sets (616 responses each).

We also conduct an additional analysis of the response data from Liu et al. (2016), where the pre-
processing is standardized by removing ‘<first speaker>’ tokens at the beginning of each utterance.
The results are detailed in Table 10 of Appendix D. We can observe from both this data, and the new
data in Table 3, that the correlations for the word-overlap metrics are even lower than estimated in
previous studies (Liu et al., 2016; Galley et al., 2015). In particular, this is the case for BLEU-4,
which has frequently been used for dialogue response evaluation (Ritter et al., 2011; Sordoni et al.,
2015b; Li et al., 2015; Galley et al., 2015; Li et al., 2016a).

We can see from Table 3 that ADEM correlates far better with human judgement than the word-overlap
baselines. This is further illustrated by the scatterplots in Figure 3. We also compare with ADEM using
tweet2vec embeddings for c, r, and r̂, which are computed at the character-level with a bidirectional
GRU (Dhingra et al., 2016), and obtain comparable but slightly inferior performance compared to
using VHRED embeddings.

Metric Pearson
BLEU-1 -0.079 (0.921)
BLEU-2 0.308 (0.692)
BLEU-3 -0.537 (0.463)
BLEU-4 -0.536 (0.464)
ROUGE 0.268 (0.732)
ADEM 0.981 (0.019)

Table 4: System-level cor-
relation, with the p-value in
brackets.

System-level correlations We show the system-level correlations
for various metrics in Table 4, and present it visually in Figure 4. Each
point in the scatterplots represents a dialogue model; humans give
low scores to TFIDF and DE responses, higher scores to HRED and
the highest scores to other human responses. It is clear that existing
word-overlap metrics are incapable of capturing this relationship for
even 4 models. This renders them completely deficient for dialogue
evaluation. However, ADEM produces the exact same model ranking
as humans, achieving a significant Pearson correlation of 0.98.5 Thus,
ADEM correlates well with humans both at the response and system
level.

Generalization to previously unseen models When ADEM is used in practice, it will take as
input responses from a new model that it has not seen during training. Thus, it is crucial that
ADEM correlates with human judgements for new models. We test ADEM’s generalization ability by
performing a leave-one-out evaluation. For each dialogue model that was the source of response data
for training ADEM (TF-IDF, Dual Encoder, HRED, humans), we conduct an experiment where we
train on all model responses except those from the chosen model, and test only on the model that was
unseen during training.

The results are given in Table 5. Overall, we observe that the ADEM model is very robust, and
is capable of generalizing to new models in all cases. When testing the correlation on the entire
test set, the model achieves comparable correlations to the ADEM model that was trained on 25%

4Note that our word-overlap correlation results in Table 3 are also lower than those presented in Galley et al.
(2015). This is because Galley et al. measure corpus-level correlation, i.e. correlation averaged across different
subsets (of size 100) of the data, and pre-filter for high-quality reference responses.

5For comparison, BLEU achieves a system-level correlation of 0.99 on 5 models in the translation do-
main (Papineni et al., 2002).

7



Under review as a conference paper at ICLR 2017

Test on full dataset Test on removed model responses
Data Removed Spearman Pearson Spearman Pearson
TF-IDF 0.4097 (<0.001) 0.3975 (<0.001) 0.3931 (<0.001) 0.3645 (<0.001)
Dual Encoder 0.4000 (<0.001) 0.3907 (<0.001) 0.4256 (<0.001) 0.4098 (<0.001)
HRED 0.4128 (<0.001) 0.3961 (<0.001) 0.3998 (<0.001) 0.3956 (<0.001)
Human 0.4052 (<0.001) 0.3910 (<0.001) 0.4472 (<0.001) 0.4230 (<0.001)
Average 0.4069 (<0.001) 0.3938 (<0.001) 0.4164 (<0.001) 0.3982 (<0.001)
25% at random 0.4077 (<0.001) 0.3932 (<0.001) — —

Table 5: Correlation for ADEM when various model responses are removed from the training set.
The left two columns show performance on the entire test set, and the right two columns show
performance on responses only from the dialogue model not seen during training. The last row (25%
at random) corresponds to the ADEM model trained on all model responses, but with the same amount
of training data as the model above (i.e. 25% less data than the full training set).

Context Reference re-
sponse

Model responses Human
score

ADEM
score

photo to see my television de-
but go to - some. some on
<url> - hehe <url> → it
really was you? i thought
ppl were recognizing someone
who looked like you! were the
oysters worth the wait?

yeah it was me .
haha i ’d kinda for-
gotten about it it
was filmed a while
ago

1) i’m not sure. i just don’t know what to do with it.
2) you heard the horsepower productions remix of lee

scratch perry’s ‘exercising’ off his ‘mighty upsetter’
album?

3) you wont chug a fuzzy peach navel
4) they were!

3
1

1
5

1.602
1.513

1.744
3.274

just beat call of duty!!→want
a cookie? → yes!! → come
get it

im in kenmore at
the moment

1) i’m gonna get a new phone some moro
2) no way man.
3) wow i just got a free pizza coupon! get yours

before theres no more! <url>
4) i’m going to go to the mall.

1
5
1

1

1.848
4.265
0.921

2.634
am i out of twitter jail yet? test-
ing→ yeah. i posted bail→
thanks. i am a right chatter
tweetbox on sundays. same
happened last sunday lol

any news on meet-
ing our user ? i
go to the us on fri-
day and i don ’t
want to miss any-
thing arranged

1) i’m not sure if i’m going to be able to get it.
2) good to see another mac user in the leadership

ranks
3) awww poor baby hope u get to feeling better soon.

maybe some many work days at piedmont
4) did you tweet too much?

3
4

2

5

1.912
1.417

1.123

2.539

Table 7: Examples of scores given by the ADEM model.

less data selected at random. This is particularly surprising for the HRED model; in this case,
ADEM was trained only on responses that were written by humans (from retrieval models or human-
generated), but is able to generalize to responses produced by a generative neural network model.
This demonstrates ADEM’s ability to accurately score new neural network-based dialogue models.

Metric scores # Examples
Human ≥ 4 237 out of 616
and (|BLEU-2| <2, 146 out of 237|ROUGE| <2)
and |ADEM| > 4 60 out of 146
and |ADEM| < 2 42 out of 237
and (|BLEU-2| >4, 14 out of 42or |ROUGE| >4)

Table 6: In 60/146 cases, ADEM scores
good responses (human score > 4)
highly when word-overlap metrics fail.
The bars around |metric| indicate that
the metric scores have been normalized.

Qualitative Analysis To illustrate some strengths and
weaknesses of ADEM, we show human and ADEM scores for
each of the responses to various contexts in Table 7. There
are several instances where ADEM predicts accurately: in
particular, ADEM is often very good at assigning low scores
to poor responses. This seen in the first two contexts, where
most of the responses given a score of 1 from humans are
given scores less than 2 by ADEM. The single exception
in response (4) for the second context seems somewhat
appropriate and should perhaps have been scored higher
by the human evaluator. There are also several instances
where the model assigns high scores to suitable responses,
as in the first two contexts.

One drawback we observed is that ADEM tends to be too
conservative when predicting response scores. This is the
case in the third context, where the model assigns low scores to most of the responses that a human
rated highly (although response (2) is arguably not relevant to the context). This behaviour is likely
due to the squared error loss used to train ADEM; since the model receives a large penalty for
incorrectly predicting an extreme value, it learns to predict scores closer to the average human score.

8
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Context Reference response Model re-
sponse

Human
score

|BLEU-2|
score

|ROUGE|
score

|ADEM|
score

i’d recommend <url> - or build buy an
htpc and put<url> on it.→ you’re the
some nd person this week that’s recom-
mended roku to me.

an htpc with xmbc is what i
run . but i ’ve decked out my
setup . i ’ve got<number> tb
of data on my home server

because
it’s bril-
liant

5 1.0 1.0 4.726

imma be an auntie this weekend. i guess
i have to go albany. herewego→ u sup-
posed to been here→ i come off nd on.
→ never tell me smh

lol you sometiming haha,
anyway,
how’re
you?

5 1.0 1.0 4.201

my son thinks she is plain. and the girl
that plays her sister. seekhelp4him? →
send him this. he’ll thank you. <url>

you are too kind for words . i will do 5 1.0 1.0 5.0

Table 9: Examples where both human and ADEM score the model response highly, while BLEU-2
and ROUGE do not. These examples are drawn randomly (i.e. no cherry-picking) from the examples
where ADEM outperforms BLEU-2 and ROUGE (as defined in the text). ADEM is able to correctly
assign high scores to short responses that have no word-overlap with the reference response. The
bars around |metric| indicate that the metric scores have been normalized.

Correlation with response length One implicit assumption in the ADEM model is that the human
evaluations of model responses is absolutely correct, including the biases that humans exhibit when
evaluating dialogues. For example, it has been shown that humans have a tendency to give a higher
rating to shorter responses than to longer responses (Serban et al., 2016b), as shorter responses are
often more generic and thus are more likely to be suitable to the context. This affects dialogue
response evaluation: we calculated the test set correlation between response length and the human
score, and obtained a significant Pearson correlation of 0.27, and a Spearman correlation of 0.32.
If the assumption that human evaluators are absolutely correct is not accurate, it may be desirable
to remove human biases in an automatic evaluation model to improve the model’s generalization
capabilities. This is an important direction for future work.

Improvement over word-overlap metrics Next, we analyze more precisely how ADEM outper-
forms traditional word-overlap metrics such as BLEU-2 and ROUGE. We first normalize the metric
scores to have the same mean and variance as human scores, clipping the resulting scores to the
range [1, 5] (we assign raw scores of 0 a normalized score of 1). We indicate normalization with
vertical bars around the metric. We then select all of the good responses that were given low scores
by word-overlap metrics (i.e. responses which humans scored as 4 or higher, and which |BLEU-2|
and |ROUGE| scored as 2 or lower). The results are summarized in Table 6: of the 237 responses that
humans scored 4 or higher, most of them (147/237) were ranked very poorly by both BLEU-2 and
ROUGE. This quantitatively demonstrates what we argued qualitatively in Figure 1; a major failure
of word-overlap metrics is the inability to consider reasonable responses that have no word-overlap
with the reference response. We can also see that, in almost half (60/147) of the cases where both
BLEU-2 and ROUGE fail, |ADEM| is able to correctly assign a score greater than 4. For comparison,
there are only 42 responses where humans give a score of 4 and |ADEM| gives a score less than 2, and
only 14 of these are assigned a score greater than 4 by either |BLEU-2| or |ROUGE|.

Mean score
∆w ≤ 6 ∆w > 6 p-value
(n=312) (n=304)

ROUGE 0.042 0.031 < 0.01
BLEU-2 0.0022 0.0007 0.23
ADEM 2.072 2.015 0.23
Human 2.671 2.698 0.83

Table 8: Effect of differences in response
length on the score, ∆w = absolute differ-
ence in #words between the reference re-
sponse and proposed response. BLEU-1,
BLEU-2, and METEOR have previously
been shown to exhibit bias towards similar-
length responses (Liu et al., 2016).

To provide further insight, we give specific examples of
responses that are scored highly (> 4) by both humans
and |ADEM|, and poorly (< 2) by both |BLEU-2| and
|ROUGE| in Table 9. We draw 3 responses randomly
(i.e. no cherry-picking) from the 60 test set responses
that meet this criteria. We can observe that ADEM is
able to recognize short responses that are appropriate
to the context, without word-overlap with the reference
response. This is even the case when the model and
reference responses have very little semantic similarity,
as in the first and third examples in Table 9.

Finally, we show the behaviour of ADEM when there is
a discrepancy between the lengths of the reference and
model responses. In (Liu et al., 2016), the authors show
that word-overlap metrics such as BLEU-1, BLEU-2,
and METEOR exhibit a bias in this scenario: they tend to assign higher scores to responses that are
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closer in length to the reference response.6 However, humans do not exhibit this bias; in other words,
the quality of a response as judged by a human is roughly independent of its length. In Table 8, we
show that ADEM also does not exhibit this bias towards similar-length responses.

6 RELATED WORK

Related to our approach is the literature on novel methods for the evaluation of machine translation
systems, especially through the WMT evaluation task (Callison-Burch et al., 2011; Machácek &
Bojar, 2014; Stanojevic et al., 2015). In particular, Gupta et al. (2015) have recently proposed to
evaluate machine translation systems using Tree-LSTMs. Their approach differs from ours as, in the
dialogue domain, we must additionally condition our score on the context of the conversation, which
is not necessary in translation.

Several recent approaches use hand-crafted reward features to train dialogue models using rein-
forcement learning (RL). For example, Li et al. (2016b) use features related to ease of answering
and information flow, and Yu et al. (2016) use metrics related to turn-level appropriateness and
conversational depth. These metrics are based on hand-crafted features, which only capture a small
set of relevant aspects; this inevitably leads to sub-optimal performance, and it is unclear whether such
objectives are preferable over retrieval-based cross-entropy or word-level maximum log-likelihood
objectives. Furthermore, many of these metrics are computed at the conversation-level, and are
not available for evaluating single dialogue responses. The metrics that can be computed at the
response-level could be incorporated into our framework, for example by adding a term to equation 1
consisting of a dot product between these features and a vector of learned parameters.

There has been significant work on evaluation methods for task-oriented dialogue systems, which
attempt to solve a user’s task such as finding a restaurant. These methods include the PARADISE
framework (Walker et al., 1997) and MeMo (Möller et al., 2006), which consider a task completion
signal. Our models do not attempt to model task completion, and thus fall outside this domain.

7 DISCUSSION

We use the Twitter Corpus to train our models as it contains a broad range of non-task-oriented
conversations and has has been used to train many state-of-the-art models. However, our model
could easily be extended to other general-purpose datasets, such as Reddit, once similar pre-trained
models become publicly available. Such models are necessary even for creating a test set in a new
domain, which will help us determine if ADEM generalizes to related dialogue domains. We leave
investigating the domain transfer ability of ADEM for future work.

The evaluation model proposed in this paper favours dialogue models that generate responses that are
rated as highly appropriate by humans. It is likely that this property does not fully capture the desired
end-goal of chatbot systems. For example, one issue with building models to approximate human
judgements of response quality is the problem of generic responses. Since humans often provide high
scores to generic responses due to their appropriateness for many given contexts, a model trained
to predict these scores will exhibit the same behaviour. An important direction for future work is
modifying ADEM such that it is not subject to this bias. This could be done, for example, by censoring
ADEM’s representations (Edwards & Storkey, 2016) such that they do not contain any information
about length. Alternatively, one could build a second evaluation model that assigns a score based
on how easy it is to distinguish the dialogue model responses from human responses. In this case, a
model that generates generic responses will easily be distinguishable and obtain a low score.

An important direction of future research is building models that can evaluate the capability of
a dialogue system to have an engaging and meaningful interaction with a human. Compared to
evaluating a single response, this evaluation is arguably closer to the end-goal of chatbots. However,
such an evaluation is extremely challenging to do in a completely automatic way. We view the
evaluation procedure presented in this paper as an important step towards this goal; current dialogue
systems are incapable of generating responses that are rated as highly appropriate by humans, and we
believe our evaluation model will be useful for measuring and facilitating progress in this direction.

6Note that, for our dataset, BLEU-2 almost exclusively assigns scores near 0 for both ∆w ≤ 6 and ∆w > 6,
resulting in a p-value >0.05.
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APPENDIX A: FURTHER NOTES ON CROWDSOURCING DATA COLLECTION

Before conducting the primary crowdsourcing experiments to collect the dataset in this paper, we
ran a series of preliminary experiments to see how AMT workers responded to different questions.
Unlike the primary study, where we asked a small number of overlapping questions to determine the
κ score and filtered users based on the results, we conducted a study where all responses (40 in total
from 10 contexts) were overlapping. We did this for 18 users in two trials, resulting in 153 pair-wise
correlation scores per trial.

In the first trial, we asked the following questions to the users, for each response:

1. How appropriate is the response overall? (overall, scale of 1-5)
2. How on-topic is the response? (topicality, scale of 1-5)
3. How specific is the response to some context? (specificity, scale of 1-5)
4. How much background information is required to understand the context? (background,

scale of 1-5)

Note that we do not ask for fluency, as the 3/4 responses for each context were written by a human
(including retrieval models). We also provided the AMT workers with examples that have high
topicality and low specificity, and examples with high specificity and low topicality. The background
question was only asked once for each context.

We observed that both the overall scores and topicality had fairly high inter-annotator agreement (as
shown in Table 2), but were strongly correlated with each other (i.e. participants would often put the
same scores for topicality and overall score). Conversely, specificity (κ = 0.12) and background
(κ = 0.05) had very low inter-annotator agreements.

To better visualize the data, we produce scatterplots showing the distribution of scores for different
responses, for each of the four questions in our survey (Figure 5). We can see that the overall and
topicality scores are clustered for each question, indicating high agreement. However, these clusters
are most often in the same positions for each response, which indicates that they are highly correlated
with each other. Specificity and background information, on the other hand, show far fewer clusters,
indicating lower inter-annotator agreement. We conjectured that this was partially because the terms
‘specificity’ and ‘background information’, along with our descriptions of them, had a high cognitive
load, and were difficult to understand in the context of our survey.

To test this hypothesis, we conducted a new survey where we tried to ask the questions for specificity
and background in a more intuitive manner. We also changed the formulation of the background
question to be a binary 0-1 decision of whether users understood the context. We asked the following
questions:

1. How appropriate is the response overall? (overall, scale of 1-5)
2. How on-topic is the response? (topicality, scale of 1-5)
3. How common is the response? (informativeness, scale of 1-5)
4. Does the context make sense? (context, scale of 0-1)

We also clarified our description for the third question, including providing more intuitive examples.
Interestingly, the inter-annotator agreement on informativeness κ = 0.31 was much higher than that
for specificity in the original survey. Thus, the formulation of questions in a crowdsourcing survey
has a large impact on inter-annotator agreement. For the context, we found that users either agreed
highly (κ > 0.9 for 45 participants), or not at all (κ < 0.1 for 113 participants).

We also experimented with asking the overall score on a separate page, before asking questions
2-4, and found that this increased the κ agreement slightly. Similarly, excluding all scores where
participants indicated they did not understand the context improved inter-annotator agreement slightly.

Due to these observations, we decided to only ask users for their overall quality score for each
response, as it is unclear how much additional information is provided by the other questions in the
context of dialogue. We hope this information is useful for future crowdsourcing experiments in the
dialogue domain.
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Figure 5: Scatter plots showing the distribution of scores (vertical axis) for different responses
(horizontal axis), for each of the four questions in our survey. It can be seen that the overall and
topicality scores are clustered for each question, indicating high agreement, while this is not the case
for specificity or background information. Note that all scores are normalized based on a per-user
basis, based on the average score given by each user.
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APPENDIX B: METRIC DESCRIPTION

BLEU BLEU (Papineni et al., 2002) analyzes the co-occurrences of n-grams in the ground truth
and the proposed responses. It first computes an n-gram precision for the whole dataset:

Pn(r, r̂) =

∑
k min(h(k, r), h(k, r̂i))∑

k h(k, ri)

where k indexes all possible n-grams of length n and h(k, r) is the number of n-grams k in r. Note
that the min in this equation is calculating the number of co-occurrences of n-gram k between the
ground truth response r and the proposed response r̂, as it computes the fewest appearances of k in
either response. To avoid the drawbacks of using a precision score, namely that it favours shorter
(candidate) sentences, the authors introduce a brevity penalty. BLEU-N, where N is the maximum
length of n-grams considered, is defined as:

BLEU-N := b(r, r̂) exp(

N∑
n=1

βn logPn(r, r̂))

βn is a weighting that is usually uniform, and b(·) is the brevity penalty. The most commonly used
version of BLEU assigns N = 4. Modern versions of BLEU also use sentence-level smoothing, as
the geometric mean often results in scores of 0 if there is no 4-gram overlap (Chen & Cherry, 2014).
Note that BLEU is usually calculated at the corpus-level, and was originally designed for use with
multiple reference sentences.

METEOR The METEOR metric (Banerjee & Lavie, 2005) was introduced to address several
weaknesses in BLEU. It creates an explicit alignment between the candidate and target responses.
The alignment is based on exact token matching, followed by WordNet synonyms, stemmed tokens,
and then paraphrases. Given a set of alignments, the METEOR score is the harmonic mean of
precision and recall between the proposed and ground truth sentence.

Given a set of alignments m, the METEOR score is the harmonic mean of precision Pm and recall
Rm between the candidate and target sentence.

Pen = γ(
ch

m
)θ (3)

Fmean =
PmRm

αPm + (1− α)Rm
(4)

Pm =
|m|∑
k hk(ci)

(5)

Rm =
|m|∑

k hk(sij)
(6)

METEOR = (1− Pen)Fmean (7)
The penalty term Pen is based on the ‘chunkiness’ of the resolved matches. We use the default
values for the hyperparameters α, γ, and θ.

ROUGE ROUGE (Lin, 2004) is a set of evaluation metrics used for automatic summarization.
We consider ROUGE-L, which is a F-measure based on the Longest Common Subsequence (LCS)
between a candidate and target sentence. The LCS is a set of words which occur in two sentences in
the same order; however, unlike n-grams the words do not have to be contiguous, i.e. there can be
other words in between the words of the LCS. ROUGE-L is computed using an F-measure between
the reference response and the proposed response.

R = max
j

l(ci, sij)

|sij |
(8)

P = max
j
fracl(ci, sij)|cij | (9)

ROUGEL(ci, Si) =
(1 + β2)RP

R+ β2P
(10)

where l(ci, sij) is the length of the LCS between the sentences. β is usually set to favour recall
(β = 1.2).
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APPENDIX C: LATENT VARIABLE HIERARCHICAL RECURRENT
ENCODER-DECODER (VHRED)

The VHRED model is an extension of the original hierarchical recurrent encoder-decoder (HRED)
model (Serban et al., 2016a) with an additional component: a high-dimensional stochastic latent
variable at every dialogue turn. The dialogue context is encoded into a vector representation using
the utterance-level and context-level RNNs from our encoder. Conditioned on the summary vector at
each dialogue turn, VHRED samples a multivariate Gaussian variable that is provided, along with
the context summary vector, as input to the decoder RNN, which in turn generates the response
word-by-word. We use representations from the VHRED model as it produces more diverse and
coherent responses compared to its HRED counterpart.

The VHRED model is trained to maximize a lower-bound on the log-likelihood of generating the
next response:

L = logPθ̂(w1, . . . ,wN )

≥
N∑
n=1

−KL
[
Qψ(zn | w1, . . . ,wn)||Pθ̂(zn | w<n)

]
+ EQψ(zn|w1,...,wn)

[
logPθ̂(wn | zn,w<n)

]
,

where KL[Q||P ] is the Kullback-Leibler (KL) divergence between distributions Q and P . The
distribution Qψ(zn | w1, . . . ,wN ) = N (µposterior(w1, . . . ,wn),Σposterior(w1, . . . ,wn)) is the ap-
proximate posterior distribution (or recognition model) which approximates the intractable true
posterior distribution Pψ(zn | w1, . . . ,wN ). The posterior mean µposterior and covariance Σposterior
(as well as that of the prior) are computed using a feed-forward neural network, which takes as input
the concatenation of the vector representations of the past utterances and that of the current utterance.

The multivariate Gaussian latent variable in the VHRED model allows modelling ambiguity and
uncertainty in the dialogue through the latent variable distribution parameters (mean and variance).
This provides a useful inductive bias, which helps VHRED encode the dialogue context into a
real-valued embedding space even when the dialogue context is ambiguous or uncertain, and it helps
VHRED generate more diverse responses.

Figure 6: The VHRED model used for pre-training. The hierarchical structure of the RNN encoder is
shown in the red box around the bottom half of the figure. After training using the VHRED procedure,
the last hidden state of the context-level encoder is used as a vector representation of the input text.
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APPENDIX D: EXPERIMENTS & RESULTS

HYPERPARAMETERS

When evaluating our model, we conduct early stopping on an external validation set to obtain the best
parameter setting. We similarly choose our hyperparameters (PCA dimension n, L1 regularization
penalty γ, learning rate a, and batch size b) based on validation set results. Our best ADEM model
used γ = 0.02, a = 0.01, and b = 16. For ADEM with tweet2vec embeddings, we did a similar
hyperparameter searched, and used n = 150, γ = 0.01, a = 0.01, and b = 16.

ADDITIONAL RESULTS

Metric Spearman Pearson
BLEU-1 -0.026 (0.80) 0.016 (0.87)
BLEU-2 0.065 (0.52) 0.080 (0.43)
BLEU-3 0.139 (0.17) 0.088 (0.39)
BLEU-4 0.139 (0.17) 0.092 (0.36)
ROUGE -0.083 (0.41) -0.010 (0.92)

Table 10: Correlations between word-
overlap metrics and human judgements
on the dataset from Liu et al. (2016), af-
ter removing the speaker tokens at the
beginning of each utterance. The corre-
lations are even worse than estimated in
the original paper, and none are signifi-
cant.

New results on Liu et al. (2016) data In order to en-
sure that the correlations between word-overlap metrics
and human judgements were comparable across datasets,
we standardized the processing of the evaluation dataset
from Liu et al. (2016). In particular, the original data from
Liu et al. (2016) has a token (either ‘<first speaker>’,
‘<second speaker>’, or ‘<third speaker>’) at the begin-
ning of each utterance. This is an artifact left-over by
the processing used as input to the hierarchical recurrent
encoder-decoder (HRED) model (Serban et al., 2016a).
Removing these tokens makes sense for establishing the
ability of word-overlap models, as they are unrelated to
the content of the tweets.

We perform this processing, and report the updated results
for word-overlap metrics in Table 10. Surprisingly, almost
all significant correlation disappears, particularly for all
forms of the BLEU score. Thus, we can conclude that the
word-overlap metrics were heavily relying on these tokens to form bigram matches between the
model responses and reference responses.

Metric Wall time
ADEM (CPU) 2861s
ADEM (GPU) 168s

Table 11: Evaluation
time on the test set.

Evaluation speed An important property of evaluation models is speed.
We show the evaluation time on the test set for ADEM on both CPU and
a Titan X GPU (using Theano, without cudNN) in Table 11. When run
on GPU, ADEM is able to evaluate responses in a reasonable amount of
time (approximately 2.5 minutes). This includes the time for encoding
the contexts, model responses, and reference responses into vectors with
the hierarchical RNN, in addition to computing the PCA projection, but
does not include pre-training with VHRED. For comparison, if run on a
test set of 10,000 responses, ADEM would take approximately 45 minutes.
This is significantly less time consuming than setting up human experiments at any scale. Note that
we have not yet made any effort to optimize the speed of the ADEM model.

Learning curves To show that our learning procedure for ADEM really is necessary, and that
the embeddings produced by VHRED are not sufficient to evaluate dialogue systems, we plot the
Spearman and Pearson correlations on the test set as a function of the number of epochs in Figure
7. It is clear that, at the beginning of training, when the matrices M and N have been initialized
to the identity, the model is incapable of accurately predicting human scores, and its correlation is
approximately 0.
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(a) Spearman correlation (b) Pearson correlation

Figure 7: Plots showing the Spearman and Pearson correlations on the test set as ADEM trains. At
the beginning of training, the model does not correlate with human judgements.

Context Reference
response

Model response Human
score

|BLEU-2|
score

|ROUGE|
score

|ADEM|
score

what theme do you guys want next on tumblr?
we’ve had mariskamommymoments what do
you want to see next? → im sorry. hope you
feel better soon! → it will wear off. just hate
feeling like this→ im sure it will! just relax
and take your time → i’m okay. just overly
tired

maybe you need
a bit more sleep

i’m really im-
pressed. first
guy to said that
p what’s time?
sleep late its not
good. i’m worried

4 2.53 5.0 1.0

1 some pm syria - the editor of syrian govern-
ment daily tishrin said she had been sacked
over remarks to al <url> → replaced by
business editor! sounds like the states lol

msm is very simi-
lar the world over
! tied to the gov-
ernment .

i’m not sure if i’m
going to be able
to see the<unk>.
i’m not sure if i
should be able to
see it.

4 2.53 4.75 1.22

wonder how long it will take wayne rooney
to get himself into trouble on twitter. odds?
→ probably. a long time. because i used
the address in the paper to find the page and it
doesn’t exist!→ here you go

thanks . i won-
der why it didn’t
work !

thanks let me see
if this one works
:p

5 2.53 4.24 1.53

Table 12: Examples where a human and either BLEU-2 or ROUGE (after normalization) score the
model response highly (> 4/5), while the ADEM model scored it poorly (< 2/5). These examples
are drawn randomly (i.e. no cherry-picking). The bars around |metric| indicate that the metric scores
have been normalized.

Failure analysis We now conduct a failure analysis of the ADEM model. In particular, we look
at two different cases: responses where both humans and (normalized) ROUGE or BLEU-2 score
highly (a score of 4 out of 5 or greater) while ADEM scores poorly (2 out of 5 or lower), and the
converse, where ADEM scores the response highly while humans and either ROUGE or BLEU-2
score it poorly. We randomly sample (i.e. without cherry picking) three examples of each case, which
are shown in Tables 12-13.

From Table 12, the cases where ADEM misses a good response, we can see that there are a variety
of reasons for this cause of failure. In the first example, ADEM is not able to match the fact that the
model response talks about sleep to the reference response or context. This is possibly because the
utterance contains a significant amount of irrelevant information: indeed, the first two sentences are
not related to either the context or reference response. In the second example, the model response
does not seem particularly relevant to the context — despite this, the human scoring this example
gave it 4/5. This illustrates one drawback of human evaluations; they are quite subjective, and often
have some noise. This makes it difficult to learn an effective ADEM model. Finally, ADEM is unable
to score the third response highly, even though it is very closely related to the reference response.

We can observe from the first two examples in Table 13, where the ADEM model erroneously ranks
the model responses highly, that ADEM is occasionally fooled into giving high scores for responses
that are completely unrelated to the context. This may be because both of the utterances are short,
and short utterances are ranked higher by humans in general since they are often more generic (as
detailed in Section 5). In the third example, the response actually seems to be somewhat reasonable
given the context; this may be an instance where the human evaluator provided a score that was too
low.
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Context Reference re-
sponse

Model re-
sponse

Human
score

|BLEU-2|
score

|ROUGE|
score

|ADEM|
score

rage slightly dissipated. wouldn’t have both-
ered restoring my phone but i need it to moan
at tomorrow.→ speaking of moaning. i’m ac-
tually going to email that chap that letter right
now.→ good plan

i ’m going to do a
little wee blog about
it too . all nice and
measured , of course
.

some. some
unfortunately

2 2.53 1.57 4.38

high school flings college relationships→ it
seems like the other way around from wat i’ve
seen

word . i ’ve seen
a little of both .
more of the college
though

king james 1 2.53 1.57 5.0

is it getting light outside? i swear it looks blue.
→ time to go to sleepppp..

for you , i ’m stay-
ing up

i’m going to
the beach.

1 2.53 1.57 5.0

Table 13: Examples where a human and either BLEU-2 or ROUGE (after normalization) score the
model response low (< 2/5), while the ADEM model scored it highly (> 4/5). These examples are
drawn randomly (i.e. no cherry-picking). The bars around |metric| indicate that the metric scores
have been normalized.

Data efficiency How much data is required to train ADEM? We conduct an experiment where
we train ADEM on different amounts of training data, from 5% to 100%. The results are shown in
Table 14. We can observe that ADEM is very data-efficient, and is capable of reaching a Spearman
correlation of 0.4 using only half of the available training data (1000 labelled examples). ADEM
correlates significantly with humans even when only trained on 5% of the original training data (100
labelled examples).

Training data % Spearman p-value Pearson p-value
100 % of data 0.414 < 0.001 0.395 < 0.001
75 % of data 0.408 < 0.001 0.393 < 0.001
50 % of data 0.400 < 0.001 0.391 < 0.001
25 % of data 0.330 < 0.001 0.331 < 0.001
10 % of data 0.245 < 0.001 0.265 < 0.001
5 % of data 0.098 0.015 0.161 < 0.001

Table 14: ADEM correlations when trained on different amounts of data.
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