
Flatness-Aware Regularization for Robust Generalization in Deep Neural
Networks

Understanding the geometry of the loss landscape in deep neural networks (DNNs) is central to machine learning
research because of its role in generalization. [2] suggested that solutions in flatter regions generalize better than
those in sharper ones. Empirical evidence supports this: [3] showed that small-batch training often converges to
flatter minima, and methods like Entropy-SGD were designed to encourage exploration of wider valleys. Yet the
link between loss landscape geometry and generalization remains unsettled. [1] argued that sharp minima can also
generalize, though without strong empirical validation. The prevailing view, however, is that flatter minima are
usually linked to better generalization, while sharper minima tend to cause overfitting.

Motivated by this connection between geometry and generalization, we propose a flatness-aware regularization
technique that explicitly penalizes the curvature of the loss surface by incorporating an estimate of the trace of the
squared Hessian into the training loss. We define the total loss function for a mini-batch (x,y) as:

Ltotal = Ltask(fθ(x),y) + λ · Tr(H
2)

B
, (1)

where Ltask(fθ(x),y) denotes the base task-specific loss , λ is a regularization coefficient controlling penalty
strength, B is the batch size, and Tr(H2) is the trace of the squared Hessian with respect to θ, estimated via
Hutchinson’s method. By penalizing this curvature measure, the optimizer is encouraged to find flatter regions of
the loss surface, which we hypothesize leads to more robust generalization on unseen data.

Computing the full Hessian is notoriously expensive for modern deep networks. To make our curvature penalty
feasible, we used Hutchinson’s stochastic trace estimator to approximate Tr(H2) efficiently. This involves multi-
plying the Hessian by randomly sampled probe vectors and using their quadratic forms to estimate the trace. This
leverages the identity E[v⊤H2v] = Tr(H2) for random v with zero mean and unit variance.

We used a 2-layer MLP with ReLU activation on CIFAR-100 to examine how flatness-aware (FA) regularization
reshapes both optimization and generalization. With λ = 0, the model (no FA) reached a final accuracy of ∼26.3%
and applied no curvature penalty. Introducing FA changed the behavior: a moderate penalty (λ = 0.01) gave the
best balance with final accuracy ∼ 27.0% and peak accuracy ∼ 27.8%, while maintaining lower curvature than the
baseline. Larger penalties (λ = 0.1 and λ = 1.0) further reduced curvature estimates but slightly decreased final
accuracy (∼ 26.7% and ∼ 25.8%). The efficiency trade-off was clear: the baseline finished in ∼ 60 s, whereas all
FA settings increased training time substantially (∼ 2200–2400 s due to the second order computation), with little
added benefit at higher λ. Taken together, these results show that FA regularization is most effective when applied
at a moderate strength, striking a balance between fitting capacity, generalization, and computational efficiency.

Figure 1: Performance of FA regularization on
CIFAR-100.
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