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ABSTRACT

Generative adversarial networks (GANs) transform latent vectors into visually
plausible images. It is generally thought that the original GAN formulation gives
no out-of-the-box method to reverse the mapping, projecting images back into
latent space. We introduce a simple, gradient-based technique called stochastic
clipping. In experiments, for images generated by the GAN, we precisely recover
their latent vector pre-images 100% of the time. Additional experiments demon-
strate that this method is robust to noise. Finally, we show that even for unseen
images, our method appears to recover unique encodings.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) are now standard tools for machine learning practi-
tioners. Currently, they outperform all other computer vision techniques for discriminative learn-
ing problems including image classification and object detection. Generative adversarial networks
(GANS) (Goodfellow, 2014; Radford et al., 2015) adapt deterministic deep neural networks to the
task of generative modeling.

GANSs consist of a generator and a discriminator. The generator maps samples from a low-
dimensional latent space onto the space of images. The discriminator tries to distinguish between
images produced by the generator and real images. During training, the generator tries to fool the
discriminator. After training, researchers typically discard the discriminator. Images can then be
generated by drawing samples from the latent space and passing them through the generator.

While the generative capacity of GANs is well-known, how best to perform the reverse mapping
(from image space to latent space) remains an open research problem. Donahue et al. (2016) sug-
gests an extension to GAN in which a third model explicitly learns the reverse mapping. Creswell &
Bharath (2016) suggest that inverting the generator is difficult, noting that, in principle, a single im-
age ¢(z) may map to multiple latent vectors z. They propose a gradient-based approach to recover
latent vectors and evaluate the process on the reconstruction error in image space.

We reconstruct latent vectors by performing gradient descent over the components of the latent
representations and introduce a new technique called stochastic clipping. To our knowledge, this is
the first empirical demonstration that DCGANS can be inverted to arbitrary precision. Moreover,
we demonstrate that these reconstructions are robust to added noise. After adding small amounts of
Gaussian noise to images, we nonetheless recover the latent vector z with little loss of fidelity.

In this research, we also seek insight regarding the optimizations over neural network loss surfaces.
We seek answers to the questions: (i) Will the optimization achieve the globally minimal loss of 0 or
get stuck in sub-optimal critical points? (ii) Will the optimization recover precisely the same input
every time? Over 1000 experiments, we find that on a pre-trained DCGAN network, gradient descent
with stochastic clipping recovers the true latent vector 100% of the time to arbitrary precision.

Related Work: Several papers attempt gradient-based methods for inverting deep neural networks.
Mahendran & Vedaldi (2015) invert discriminative CNNs to understand hidden representations.
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Creswell & Bharath (2016) and Metz et al. (2016) both optimize over latent vectors to minimize
distance in image space, but neither reported that the inference procedure could faithfully recover
ground truth latent vectors or that the inferred vectors tended to be unique. Additionally, neither
paper considered stochastic clipping. In a different approach, Donahue et al. (2016) (BiGANSs), and
Dumoulin et al. (2017), learn separate neural network encoders for performing the reverse mapping.
We note that the task of finding pre-images for non-convex mappings has a history in computer
vision dating at least as far back as Bakir et al..

2 GRADIENT-BASED INPUT RECONSTRUCTION AND STOCHASTIC CLIPPING

To invert the mappings learned by the generator, we apply the following idea. For a latent vector
z, we produce an image ¢(z). We then initialize a new, random vector 2z’ of the same shape as z.
This new vector z’ maps to a corresponding image ¢(z’). In order to reverse engineer the input
z, we successively update the components of z’ in order to push the representation ¢(z’) closer
to the original image ¢(z). In our experiments we minimize the Lo norm, yielding the following

optimization problem:
min [l6(=) — 6(=") |3

We optimize over 2’ by gradient descent, performing the update 2’ + 2’ — nV/||6(z) — #(2")||3
until some convergence criteria is met. The learning rate 7 is attenuated over time.

Note that this optimization has a global minima of 0. However, we do not know if the solution that
achieves this global minimum is unique. Moreover, this optimization is non-convex, and thus we
know of no theoretical reason that this optimization should precisely recover the original vector.

In many cases, we know that the original input comes from a bounded domain. For DCGANS, all
latent vectors are sampled uniformly from the [—1, 1]*°° hyper-cube. To enforce this constraint, we
apply the modified optimization

2"« clip(z’ — aVaul|o(z) — ¢(2)]]3).
With projected gradient, we replace components that are too large with the maximum allowed value

and components that are too small with the minimum allowed value. Projected gradient precisely
recovers a large fraction of vectors z.

For the failure cases, we noticed that the reconstructions z’ had some components stuck at either
—1 or 1. Because z ~ uniform([—1,1]'°%), we know that the probability that a component should
lie right at the boundary is close to zero. To prevent these reconstructions from getting stuck, we
introduce a heuristic technique called stochastic clipping. When using stochastic clipping, instead
of setting components to —1 or 1, we reassign the clipped components uniformly at random in the
allowed range. While this can’t guard against an interior local minima, it helps if the only local
minima contain components stuck at the boundary.

3  EXPERIMENTS

We now summarize our experimental findings. All experiments are conducted with DCGANSs as
described by Radford et al. (2015) and re-implemented in Tensorflow by Amos (2016). First, we
visualize the reconstruction process showing ¢(z’) after initialization, 100 iterations, and 20k itera-
tions (Figure 1). The reconstruction (2’) produces an image indistinguishable from the original.

Next, we consider the fidelity of reconstruction after 100k updates. In Table 1, we show that even
with conservative thresholds for determining reconstruction success, stochastic thresholding recov-
ers 100% percent of latent vectors. We evaluate these numbers using 1000 examples.

We then consider the robustness of these reconstructions to noise. We apply Gaussian white noise
7, attempting to reconstruct z from ¢(z) 4+ 7. Our experiments show that even for substantial levels
of noise, the reconstruction error in z-space is low and appears to grow proportionally to the added
noise (Figure 2).

Finally, we ask whether for unseen images, the recovered vector is always the same. To determine
the consistency of the recovered vector, we recover 1000 vectors for the same image and plot the
average pair-wise distance between reconstructions.
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(a) Imposter initialization (b) After 100 iterations (c) After 20k iterations (d) Original Images

Figure 1: Reconstruction visualizations.

Accuracy Threshold
Technique 107% 107%® 1072 107!
No Clipping .98 .986 .998 1.0

Projected Gradient .984 .99 1.0 1.0
Stochastic Clipping 1.0 1.0 1.0 1.0

Table 1: Percentage of successful reconstructions ||z — 2’||3/100 < e for various thresholds € out
of 1000 trials.
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Figure 2: z-space reconstruction error grows proportional to added noise. Stochastic clipping ap-
pears more robust to noise than other methods. Because pixel values are scaled [—1, 1], noise vari-
ance of .1 corresponds to a standard deviation of 39.5 pixel values.

Clipping None Projected  Stochastic | Baseline
B(Z50) 20304 1364 49405 | 0815

Table 2: Average pairwise distance of recovered vectors for unseen images. The baseline score is
the average distance between random vectors sampled randomly from the latent space.

4 CONCLUSIONS

We show that GAN generators can, in practice, be inverted to arbitrary precision. These inversions
are robust to noise and the inversions appear unique even for unseen images. Stochastic clipping
is both more accurate and more robust than projected gradient. We suspect that stochastic clip-
ping should also give better and more robust reconstructions of images from discriminative CNN
reconstructions, leaving these experiments to future work.
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