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ABSTRACT

We consider the problem of learning to walk over a graph towards a target node
for a given input query and a source node (e.g., knowledge graph reasoning). We
propose a new method called ReinforceWalk, which consists of a deep recurrent
neural network (RNN) and a Monte Carlo Tree Search (MCTS). The RNN encodes
the history of observations and map it into the Q-value, the policy and the state
value. The MCTS is combined with the RNN policy to generate trajectories with
more positive rewards, overcoming the sparse reward problem. Then, the RNN
policy is updated in an off-policy manner from these trajectories. ReinforceWalk
repeats these steps to learn the policy. At testing stage, the MCTS is also combined
with the RNN to predict the target node with higher accuracy. Experiment results
show that we are able to learn better policies from less number of rollouts compared
to other methods, which are mainly based on policy gradient method.

1 INTRODUCTION

We consider the problem of learning to walk over a graph G = (N , E), where N is a set of node and
E is a set of edges, in order to find a target node nT ∈ N for a given pair of source node nS ∈ N
and query q. Such problem appears in, for example, knowledge graph completion (KBC), where G is
a given knowledge graph, the nodes in N are different entities and the edges in E are the relations
between two connected nodes (see Figure 1). The objective of the KBC task is to predict a tail
entity (represented as a target node nT ) given a head entity (represented as a source node nS) and
a target relation (denoted as the query q). For example, in Figure 1, for the given head entity nS =
Obama and the query q = CITIZENSHIP, we start from the source node Obama and walk through
the graph to find the target node nT = USA. The problem could be understood as using the graph
G, the source node nS and the query q as the inputs to predict the target node nT ; that is, we want
to construct a function f(G, nS , q) to predict nT . However, the functional form of f(·) is generally
unknown and has to be learned from a training dataset, which consists of a collection of samples in
the form of (nS , q, nT ). For this reason, the problem could not be solved by conventional search
algorithms such as A∗-search, which seeks to find paths between the given source and target nodes.
Instead, the search agent needs to learn its search policy from the given training dataset so that for an
unseen pair of query and source node, it could walk over the graph to find the correct target node.
However, since each training sample is in the form of “(source node, query, target node)”, there is
no intermediate supervision for the correct search path. Instead, it only receives delayed evaluative
feedbacks: when the agent correctly (incorrectly) predicts the target node, the agent will receive a
positive (zero) reward. Therefore, the agent should be trained by reinforcement learning (RL) (Sutton
& Barto, 1998) instead of supervised learning. There are two major challenges of the problem: (i)
the problem is partially observable as it usually requires the entire history of observations to make a
correct decision1, and (ii) the reward is sparse as it appears at the end of a search path. Interestingly,
the RL formulation of this problem has another useful property: the environment transition model

∗Equal contribution.
1For example, in the KBC example in Figure 1, having access to the current node nt = Hawaii alone is

not sufficient to know the best action is to move to nt+1 = USA. Instead, it requires the agent to track the entire
history, including the input query q = Citizenship, to reach this decision. In next section, we will describe
how to train the agent to walk through the graph.
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is known and deterministic.2 This important knowledge will be exploited to develop an effective
learning and prediction algorithm for our problem, named as ReinforceWalk, which develop below.

Query: Citizenship

Obama

BornIn

Birthday

Gender

Hawaii USA

PartOf

Figure 1: The graph walk in Knowledge Base Completion task

2 THE REINFORCEWALK ALGORITHM

Motivated by these observations, we develop a deep neural network architecture for the graph-walking
agent, named ReinforceWalk. The ReinforceWalk agent consists of a deep structured recurrent neural
network (RNN) and a Monte Carlo Tree Search (MCTS). The RNN addresses the partial observability
by encoding the history of observations and maps it into the Q-function, the policy and the value
function, i.e., it jointly models the Q-network, the policy network and the value network (see Figure
2).We integrate the RNN with MCTS in both training and testing stages, in order to exploit the
available model-free and the model-based information. One important contribution of this work is
that we combine MCTS with RNN to develop a new reinforcement learning algorithm that effectively
learns policy from sparse rewards. By exploiting the knowledge in the environment transition model
and the RNN, the MCTS is able to generate trajectories that have significantly more positive rewards
than using the policy network alone. From these trajectories, we update and improve the RNN
policy in an off-policy manner using Q-learning. This is in sharp contrast to many existing methods
for solving the graph walk problem, which use policy gradient method. Policy gradient method
requires a large amount of rollouts to obtain a trajectory with positive reward, especially in the early
stage of learning. In consequence, our approach is able to learn better policies with less rollouts, as
demonstrated by our experiments on several benchmarks, including a synthetic task (in Appendix A)
and a real knowledge base completion task. In addition, the ReinforceWalk agent also combines the
learned networks with MCTS in testing stage to predict the target node more accurately.

Let θ , {θS , θA, θπ, θv, θq} collect all the model parameters to be learned. A popular method
to train the agent is the policy gradient method. However, policy gradient method generally has
low sample efficiency, especially when the reward signal is sparse, such as in our problem, where
the reward ({0,+1}) appears only at the end of a trajectory. Furthermore, policy gradient usually
requires a large amount of Monte Carlo rollouts in order to obtain a trajectory with positive reward,
especially in the early stage of learning. To overcome these challenges and by the fact that the state
transition model p(st+1|st, at) is known, we combine the policy network πθ with MCTS to generate
trajectories with more positive rewards and using these trajectories to further improve the policy πθ.
If we are able to learn πθ from these trajectories, we then further improve πθ. However, since these
trajectories are generated by a policy that is different from πθ, they are off-policy data and we could
not use policy gradient method to update πθ due to its on-policy nature. For this reason, we instead
update the Q-network from these trajectories using Q-learning, which will automatically update the
policy network πθ. Our proposed reinforcement learning algorithm repeatedly applies this policy
improvement step. Finally, the value network Vθ(s) is updated by fitting Vθ(s) into the terminal
rewards r(sT , aT ). The gradients are calculated by back propagation (through time) over the deep
recurrent neural network.

At testing stage, we use the learned policy and value networks with MCTS to generate an MCTS
search tree, in a same way as the training stage. Note that each MCTS leaf state sT is associated
with a candidate node n in the graph. However, different MCTS leaf states may correspond to
a same node in G because there could be different paths in G that lead towards the same node.
For this reason, we use the following formula to calculate the score for each unique candidate n
Score(n) =

∑
sT→n

N(sT ,aT )
N × Vθ(sT ), where N(sT , aT ) is the number of times the MCTS edge

(sT , aT ) is visited (stored at MCTS edges), and N is the total number of MCTS simulations. We pick
predicted target node n̂T to be the one with largest score.

2Briefly speaking, this is because whenever the agent takes an action (by selecting an edge connected to the
next node) we will know beforehand which node the environment will transit to.
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(a) (b)

Figure 2: The deep structured RNN architecture for ReinforceWalk. (a) We use an RNN with gated re-
current units (GRU) to encode st−1, at−1 and nt into a vector qt. (b) We use deep feedforward neural
networks to further encode qt along with other quantities Ent and Nnt into a high-level embedding vectors
{hS,t, hn′

1,t
, . . . , hn′

k
,t, hA,t}, which form a hidden representation of the state st. Finally, they are mapped into

the Q-value, the policy and the state value at different output units. Note that the vectors hA,t and hat,t will be
further fed into the GRU-RNN in (a) to compute the qt+1. Therefore, parts (a) and (b) together become a deep
structured RNN to model Qθ , πθ and Vθ jointly.

Figure 3: The Monte Carlo Tree Search in ReinforceWalk. The red path is a trajectory generated by MCTS
using the PUCT (Rosin, 2011; Silver et al., 2017).

3 EXPERIMENTS

We evaluate our approach in a knowledge graph completion task to examine the effectiveness of our
approach. Following the setup in Xiong et al. (2017), we use the NELL-995 (Carlson et al., 2010)
dataset to evaluate the knowledge graph completion task. The dataset is collected from the 995th
iteration of the NELL system. The detailed hyperparameters are described in Appendix B.2.1. In
evaluation, the model needs to rank the candidate entities. We use the mean average precision (MAP)
scores for each query relation as our evaluation metric. To have more comprehensive comparison, we
report the final test MAP scores of ReinforceWalk (RW) on the knowledge base task (for all the 10
relations) in Table 1, and compare it to RL-based methods such as policy gradient (PG), advantage
actor-critic (A2C), MINERVA (Das et al., 2017), and DeepPath (Xiong et al., 2017) as well as non-RL
baselines such as PRA (Lao et al., 2011), TransE (Bordes et al., 2013) and TransR (Lin et al., 2015).

Table 1: NELL-995 Link Prediction Performance Comparison using MAP scores.

Tasks RW PG A2C MINERVAa DeepPath PRA TransE TransR
athletePlaysForTeam 0.831 0.769 0.700 0.630 0.750 0.547 0.627 0.673
athletePlaysInLeague 0.974 0.955 0.955 0.837 0.960 0.841 0.773 0.912
athleteHomeStadium 0.905 0.865 0.861 0.557 0.890 0.859 0.718 0.722

athletePlaysSport 0.985 0.962 0.971 0.916 0.957 0.474 0.876 0.963
teamPlaySports 0.881 0.631 0.679 0.751 0.738 0.791 0.761 0.814

orgHeadquaterCity 0.943 0.935 0.928 0.947 0.790 0.811 0.620 0.657
worksFor 0.786 0.758 0.758 0.752 0.711 0.681 0.677 0.692

bornLocation 0.786 0.767 0.766 0.782 0.757 0.668 0.712 0.812
personLeadsOrg 0.821 0.802 0.810 0.771 0.795 0.700 0.751 0.772
orgHiredPerson 0.843 0.832 0.839 0.860 0.742 0.599 0.719 0.737

Overall 0.876 0.828 0.827 0.780 0.809 0.697 0.723 0.775
a We retrain the MINERVA model to follow the setting in Xiong et al. (2017), where each relation is trained

separately.
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A ADDITIONAL EXPERIMENTS

A.1 DESCRIPTION OF TASKS

We briefly describe the two tasks used to evaluate our method. The detailed experimental setup and
hyperparameters are described in Appendix B.

Three Glass Puzzle We first study the proposed ReinforceWalk algorithm in a synthetic three glass
puzzle (Ore, 1990) dataset. This is a problem studied in math puzzles and graph theory (Ore, 1990).
Specifically, there are three milk containers, denoted as containers A, B and C, respectively, and
their respective capacities are A, B, and C liters. None of the containers has markings to measure
the amount of remaining liquid except its total capacity. At each time step, we take one of the three
feasible actions on a container: (i) fill it (to its capacity), (ii) empty (dump) all its liquid, and (iii) pour
its liquid into another container. The objective of the problem is, for a given target volume, say, q
liters, we take a sequence of actions on the three containers so that at least one of them has q liters.
Using the graph walk formulation in Section 1, each node n ∈ N represents the amounts of liquid
remaining in containers A, B and C, respectively, and each edge represents one of the three feasible
actions that could be taken. Furthermore, the desired volume q is the input query. The task succeeds
if any one of the containers reaches the desired volume q. The training examples are in the form
of (aS , bS , cS , q), where aS , bS and cS denotes the starting volumes of the three containers. Figure
4 gives a concrete example, where an action sequence is shown to reach the desired volume of 4.
We generate 600 unique three glass puzzle as the synthetic dataset, where 500 samples are used for
training and the rest 100 samples are used for testing. In each sample, the agent starts from the initial
state and takes an action to move to the next state, until the agent reaches the maximum number of
actions (15 in this experiments) or the agent takes the action “STOP”. If the final state contains the
target volume, the reward is one and zero otherwise. We use policy gradient (PG) and Advantage
Actor-Critic (A2C) (Wang et al., 2016) as the baselines. We use the task success rate as the evaluation
metric.

Query: 4

Fill BB C
A

Volume:    2            4           5 

Status:      0            0           0

B C
A

Volume:  2            4           5 

Status :   0            4           0

Empty A

Pour A to B

Figure 4: Graph traversal in Three Glass Puzzle problem

Knowledge Graph Link Prediction In knowledge graph link prediction task, the goal is to find
the target relation given the initial entity and query relation. Following the setup in Xiong et al. (2017),
we use the NELL-995 (Carlson et al., 2010) dataset to evaluate the knowledge graph completion task.
The dataset is collected from the 995th iteration of the NELL system. NELL-995 dataset contains
154,213 triples with 75,492 unique entities and 200 unique relations. For each triple (h, r, t), we
append (t, r−1, h) to the dataset to connect tail entity t and head entity h with the reverse relation
r−1. We study the 10 relation task in Xiong et al. (2017) independently. For each relation ri task,
we remove all triples with ri or r−1i from the knowledge graph. We split the removed triples into
training and testing samples. We use previous proposed algorithms: TransE (Bordes et al., 2013),
TransR (Lin et al., 2015), PRA (Lao et al., 2011), and DeepPath (Xiong et al., 2017) as baselines.
The detailed hyperparameters are described in Appendix B.2.1. In evaluation, the model needs to
rank the candidate entities. We use the mean average precision (MAP) scores for each query relation
as our evaluation metric.

A.2 PERFORMANCE OF REINFORCEWALK

We first evaluate the performance of ReinforceWalk algorithm on these two tasks and compare it
with other baseline methods. In Figure 5, we show the learning curves of the test accuracy for
ReinforceWalk against other methods, and in Figure 6, we show the learning curves of the test MAP
on the knowledge base completion (KBC) task. From the result, we can see that ReinforceWalk
learns better policies faster than other baseline methods. To have more comprehensive comparison,
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(b) Test Beam / Rollout = 300

Figure 5: Test Accuracy on Three Glass Puzzle task. Higher is better. RW stands for ReinforceWalk.
PG stands for policy gradient.
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(a) teamPlaySports Test
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(b) atheletePlaysForTeam Test
Figure 6: Test MAP on the KBC task (relations “teamPlaySport” and “atheletePlaysForTeam”)
Higher is better. RW stands for ReinforceWalk. PG stands for policy gradient.
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(a) Train Beam / Rollout
= 16
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(b) Train Beam / Rollout
= 32
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(c) Train Beam / Rollout
= 64
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Figure 7: The training success rate (i.e., percentage of trajectories with positive reward during
training) on Three Glass Puzzle task.

we report the final test MAP scores of ReinforceWalk on the knowledge base task (for all the 10
relations) in Table 1, and compare it to RL-based methods such as policy gradient (PG), advantage
actor-critic (A2C), MINERVA, and DeepPath as well as non-RL baselines such as PRA, TransE and
TransR. From the results in Table 1, we outperform previous work in most of the relations.

A.3 ANALYSIS OF REINFORCEWALK
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(a) teamPlaySports Train
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(b) atheletePlaysForTeam Train

Figure 8: The training success rate (i.e., percentage of trajectories with positive reward during
training) on the KBC task (relations “teamPlaySports” and “atheletePlaysForTeam”).
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Table 2: Three Glass Puzzle Test Accuracy, where “Beam” denotes beam search.

Test Accuracy (%)

Size PG
(Beam)

A2C
(Beam)

RW
(Beam)

RW
(MCTS)

1 9.3 ± 2.1 9.7 ± 4.0 18.0 ± 1.7 18.0 ± 1.7
10 30.7 ± 4.5 22.3 ± 1.5 46.0 ± 7.0 63.3 ± 5.0
50 39.3 ± 3.2 34.3 ± 3.1 60.3 ± 7.8 84.3 ± 3.1

100 45.3 ± 4.5 39.3 ± 2.3 67.0 ± 7.0 90.7 ± 2.5
200 47.7 ± 3.2 46.3 ± 3.2 69.0 ± 6.2 95.0 ± 2.6
300 48.7 ± 3.2 46.0 ± 1.0 69.3 ± 6.4 96.3 ± 1.5
400 49.0 ± 2.6 46.3 ± 1.5 71.7 ± 4.5 99.0 ± 1.0

Table 3: BFS, DFS and ReinforceWalk on Three Glass Puzzle.

Method Average # Steps Max # Steps
BFS 264.7 1030
DFS 192.2 1453

ReinforceWalk 94.9 897

We now analyze the ReinforceWalk algorithm using different experiment results to understand the
contributions of different components in ReinforceWalk. First, in Figures 7–8, we show the training
success rate (i.e., percentage of trajectories with positive reward during training) on the Three Glass
Puzzle task and the Knowledge Base Completion task. Compared to the policy gradient method (PG),
and advantage actor-critic (A2C) methods, ReinforceWalk with MCTS is able to generate trajectories
with more positive rewards, and this continues to improve as training progresses. This confirms
our motivation of using MCTS to generate higher-quality trajectories to alleviate the sparse reward
problem in graph walking. Furthermore, we also observe that with more MCTS simulations, the
performance further improves, showing the importance of MCTS in training.

Second, to understand the importance of MCTS during testing, we compare the test accuracy across
different algorithms with different beam search sizes and different MCTS rollouts during testing. The
number of MCTS simulations for training ReinforceWalk is fixed to be 32. We repeat our experiments
three times with different random seeds and report our experiments results in Table 2. We observe
that ReinforceWalk with MCTS achieves the best test accuracy overall. In addition, with larger beam
search sizes and MCTS rollouts, the test accuracy improves substantially. Furthermore, replacing the
MCTS in ReinforceWalk by beam search at test time degrades the performance greatly, Therefore,
MCTS is also very important for ReinforceWalk at test time.

As we mentioned earlier, the conventional graph traverse algorithms such as Breadth-First Search
(BFS) and Depth-First Search (DFS) cannot be applied to graph walking problem as we do not know
the ground truth target node at testing time. However, to understand how quickly ReinforceWalk
with MCTS could find the correct target node, we compare it with the BFS and DFS in the following
cheating setup for BFS and DFS. Specifically, we apply BFS and DFS to the test set of the Three
Glass Puzzle task by disclosing the target node to them. In Table 3, we report the average traversal
steps and maximum steps to reach the target node. The ReinforceWalk with MCTS algorithm is able
to find the target node more efficiently compared to BFS and DFS. Finally, in Table 4, we present
several examples of the knowledge graph traversal paths. Examples of Three Glass Puzzle traversal
paths can be found in Tables 5 and 6.

B ALGORITHM IMPLEMENTATION DETAILS

The detailed algorithm of ReinforceWalk is described in Algorithm 1.

B.1 MCTS IMPLEMENTATION

In the MCTS implementation, we maintain a lookup table to record values Q(st, a) and N(st, a) for
each visited state-action pair. The state st in the graph walk problem contains all the information
along the traversal path, and nt is the node at the current step t. We assign an index ia to each
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Table 4: Examples of paths found by ReinforceWalk on the NELL-995 dataset. ReinforceWalk can
learn to traverse multiple paths to reach the target node (example i) and learn to explore new paths
when reach a dead end (example ii).
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ReinforceWalk: Learning to Walk in Graph with Monte Carlo Tree Search
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(c) Train Beam / Rollout = 64
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Figure 8. Training Success Rate Comparison.

Table 3. NELL-995 Link Prediction Performance Comparison using MAP scores.
Tasks RW PG A2C MINERVA3 DeepPath PRA TransE TransR

athletePlaysForTeam 0.831 0.769 0.700 0.630 0.750 0.547 0.627 0.673
athletePlaysInLeague 0.974 0.955 0.955 0.837 0.960 0.841 0.773 0.912
athleteHomeStadium 0.905 0.865 0.861 0.557 0.890 0.859 0.718 0.722

athletePlaysSport 0.985 0.962 0.971 0.916 0.957 0.474 0.876 0.963
teamPlaySports 0.881 0.631 0.679 0.751 0.738 0.791 0.761 0.814

orgHeadquaterCity 0.943 0.935 0.928 0.947 0.790 0.811 0.620 0.657
worksFor 0.786 0.758 0.758 0.752 0.711 0.681 0.677 0.692

bornLocation 0.786 0.767 0.766 0.782 0.757 0.668 0.712 0.812
personLeadsOrg 0.821 0.802 0.810 0.771 0.795 0.700 0.751 0.772
orgHiredPerson 0.843 0.832 0.839 0.860 0.742 0.599 0.719 0.737

Overall 0.876 0.828 0.827 0.780 0.809 0.697 0.723 0.775

(i) Search different paths after a dead end: coach andrew brunette ATHLETEHOMESTADIUM−−−−−−−−−−−−→?

a) coach andrew brunette ATHLETEPLAYSFORTEAM−−−−−−−−−−−−→ sportsteam blackhawks ATLOCATION−−−−−−→ county chicago ATLOCATION−1

−−−−−−−−→

stadiumoreventvenue orchestra hall ATLOCATION−−−−−−→ county chicago STADIUMLOCATEDINCITY−1

−−−−−−−−−−−−−−→

stadiumoreventvenue united center TEAMHOMESTADIUM−1

−−−−−−−−−−−−→ sportsteam chicago bulls TEAMHOMESTADIUM−1

−−−−−−−−−−−−→
stadiumoreventvenue united center, (V (sT )=0.383, False)

b) coach andrew brunette ATHLETEPLAYSFORTEAM−−−−−−−−−−−−→ sportsteam blackhawks ATHLETEPLAYSFORTEAM−1

−−−−−−−−−−−−−−→ athlete rich hill
ATHLETEPLAYSFORTEAM−−−−−−−−−−−−→ sportsteam blackhawks TEAMHOMESTADIUM−−−−−−−−−−→ stadiumoreventvenue wrigley field, (V (sT )=0.909, True)

ii) Search over multiple paths to the target entity: ceo evan williams PERSONLEADSORGANIZATION−−−−−−−−−−−−−−−→?

a) ceo evan williams WORKSFOR−−−−−−→ company twitter, (V (sT )=0.917, True)

b) ceo evan williams WORKSFOR−−−−−−→ company twitter ORGANIZATIONTERMINATEDPERSON−−−−−−−−−−−−−−−−−−→ ceo jack dorsey CEOOF−−−→ company twitter, (V (sT )=0.869, True)

iii) worksfor ⇐⇒ organizationhiredperson−1: ceo garo h armen WORKSFOR−−−−−−→?

ceo garo h armen ORGANIZATIONHIREDPERSON−1

−−−−−−−−−−−−−−−−→ biotechcompany antigenics inc, (V (sT )=0.935, True)

Table 4. Examples of paths found by ReinforceWalk on the NELL-995 dataset. ReinforceWalk can learn to traverse multiple paths to
reach the target node (example i) and learn to explore new paths when reach a dead end (example ii).

.

and relations. Recent approaches have demonstrated limita-
tions of prior approaches using vector space models alone
as vector-space models suffer cascading error when dealing

with compositional (multi-step) relationships (Guu et al.,
2015). Hence, recent work (Gardner et al., 2014; Neelakan-
tan et al., 2015; Guu et al., 2015; Lin et al., 2015a; Toutanova

Table 5: ReinforceWalk Traversal Paths in Three Glass Puzzle, where “Index” stands for MCTS Path
Index.

Query Index ReinforceWalk Action Sequence Estimated V

(A,B,C, q)

0
(0, 0, 0)→ (14, 0, 0)→ (0, 14, 0)→ (14, 14, 0)

1.13e-6→ (0, 14, 14)→ (14, 14, 14)→ (0, 14, 28)→ (14, 14, 14)→
(0, 14, 28)→ (14, 0, 28)→ (14, 45, 28)→ (14, 26, 47)→ END

=(14, 45, 47, 15)

1
(0, 0, 0)→ (0, 0, 47)→ (14, 0, 33)→ (0, 14, 33)→ (14, 14, 19)

6.31e-8→ (0, 14, 19)→ (14, 0, 19)→ (14, 19, 0)→ (14, 19, 47)→
(14, 45, 21)→ (14, 0, 21)→ (0, 14, 21)→ END

... ... ...

14 (0, 0, 0)→ (0, 45, 0)→ (0, 0, 45)→ (14, 0, 31)→ (14, 45, 31)→ 0.9999
(14, 29, 47)→ (14, 29, 0)→ (0, 29, 14)→ (14, 15, 14)→ END

... ... ...

Table 6: ReinforceWalk Traversal Paths in Three Glass Puzzle, where “Index” stands for MCTS Path
Index.

Query Index ReinforceWalk Action Sequence Estimated V

(A,B,C, q)

0
(0, 0, 0)→ (0, 0, 30)→ (11, 0, 30)→ (0, 11, 30)→ (11, 11, 19)

2.13e-8→ (0, 11, 30)→ (11, 11, 19)→ (0, 11, 30)→ (11, 0, 30)
→ (0, 11, 30)→ (11, 11, 30)→ (7, 15, 30)→ END

=(11, 15, 30, 8)

1 (0, 0, 0)→ (0, 0, 15)→ (0, 0, 15)→ (0, 15, 15)→ (11, 4, 15) 0.999→ (0, 4, 26)→ (4, 0, 26)→ (4, 15, 26)→ (11, 8, 26)→ END
... ... ...

4
(0, 0, 0)→ (11, 0, 0)→ (0, 0, 11)→ (11, 0, 11)→ (0, 11, 11)

1.72e-8→ (11, 11, 11)→ (0, 11, 22)→ (11, 11, 11)→ (7, 15, 11)→
(7, 0, 11)→ (7, 15, 11)→ (7, 15, 30)→ END

... ... ...

candidate action a from nt, indicating a is the ia-th action of the node nt. Thus the state st can be
encoded as a path string Pst = (q, n0, ia0 , n1, ia1 , . . . , nt). We build a dictionary D using the path
string as a key and we record Q(st, a) and N(st, a) as values in D. In the backup stage, the Q and
N values are updated for each state-action pair along with the traversal path in MCTS:

N(st, a) = N(st, a) + γL−t

Q(st, a) = Q(st, a) + γL−tVθ(sL),

where L is the length of the traversal path, and γ is the reward discount.
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Algorithm 1 ReinforceWalk Training Algorithm
1: Input: Graph G; Initial node nS ; Query q; Target node nT ; Maximum Path Length Tmax; MCTS

Search Number E;
2: for episode e in [1..E] do
3: Set current node n0 = nS ; q0 = fθq (q, 0, 0, n0)
4: for t = 0 . . . Tmax do
5: Lookup from dictionary to obtain Q(st, a) and N(st, a)
6: Select the action at with the maximum PUCT value:

at =

argmax
a

{
c·πθ(a|st)β

√∑
a′ N(st, a′)

1+N(st, a)
+
Q(st, a)

N(st, a)

}
7: Update qt+1 = fθq (qt, hA,t, hat,t, nt+1)
8: if at is STOP then
9: Compute estimated reward value Vθ(st)

10: Add generated path p into a path list
11: Backup along the path p to update visit count Q(st, a) and N(st, a)
12: Break
13: end if
14: end for
15: end for
16: for each path p in the path list do
17: Set reward r = 1 if the end of the path nt = nT otherwise r = 0
18: Update the model parameters with Q-learning:

θ ← θ + α · ∇θQθ(st, at)×(
r(st, at) + γmax

a′
Qθ(st+1, a

′)−Qθ(st, at)
)

Update the Reward Estimation Network by minimizing the MSE loss:

min
θ

E(r(sT , aT )− Vθ(sT ))2

19: end for

B.2 EXPERIMENT DETAILS

B.2.1 KNOWLEDGE GRAPH LINK PREDICTION

The NELL-995 knowledge dataset contains 75, 492 unique entities and 400 relations. We set the
entity embedding dimension to 4 and relation embedding dimension to 64. The maximum length of
graph walking path is 8, which indicates only the STOP action can be taken in the last step. After the
STOP action being taken, the system evaluates the action sequence and assigns a reward r = 1 if the
agent reaches the target node, otherwise r = 0. The initial query q is the concatenation of the entity
embedding vector and the relation embedding vector. The fθS and fθA functions are modeled by two
different DNNs with the same architecture: two fully-connected layers with 64 hidden dimensions
and the ReLU activation function. fθv is a two fully-connected layers with 16 hidden dimensions,
where the first hidden layer is with Tanh activation function and the output layer with linear activation
function. fθq is a modeled by a GRU with hidden size 64. The hyperparameters in PUCT is set
as c = 2 and β = 0.5. We rollout 32 MCTS paths in the training and prediction. We use ADAM
optimization algorithm for model training with learning rate 0.0001 and we set the mini-batch size as
8.

B.2.2 THREE GLASS PUZZLE

In the experiments of Three Glass Puzzle, we randomly draw four integers from [1, 50) to represent
the capacity of A,B,C and the desired volume q, respectively. We restrict each puzzle to be
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A ≤ B ≤ C and q < C to avoid data duplication. We clean up the puzzles if there is no solution to
them. Finally, we keep 600 unique puzzles as the experimental dataset, where 500 puzzles are used
for training and the other 100 are used to test model’s generalization capability on unseen test set.

Let a, b, c be the current status of each container, we define the puzzle status at step t as nt =
[ITA , I

T
B , I

T
C , I

T
a , I

T
b , I

T
c ]
T , where Ix is the one-shot representation to encode the value of x. Given

A,B,C, a, b and c are all smaller than 50 in the experiment, the dimension of nt is 300. The initial
query q is obtained by q = E[q], where E is a query embedding lookup table and E[x] indicates the
x-th column. The query embedding dimension is set as 64.

In the three glass puzzle, there are 13 actions in total: fill one container to its capacity, empty one
container to empty, pour one container to the other container, and a STOP action to terminate the
game. We set the maximum length of action sequence as 12, which indicates only the STOP action
can be taken in the last step. After the STOP action being taken, the system evaluates the action
sequence and assigns a reward r = 1 if the final status is a success, otherwise r = 0.

The fθS and fθA functions are modeled by two different DNNs with the same architecture: two
fully-connected layers with 32 hidden dimensions and ReLU activation function. fθv is a two fully-
connected layers with 16 hidden dimensions, where the first hidden layer is with ReLU activation
function and the output layer is with linear activation function. fθq is a modeled by a GRU with
hidden size 64. The hyperparameters in PUCT is set as c = 0.5 and β = 0.2. We use ADAM
optimization algorithm with learning rate 0.0005 during training and we set the mini-batch size as 8.

Table 7: A List of Actions for Each Container in the Three Glass Puzzle. The agent can also determine
to take the STOP action to terminate the game.

Empty A Fill A Pour A to B Pour A to C
Empty B Fill B Pour B to A Pour B to C
Empty C Fill C Pour C to A Pour C to B
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