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Abstract

Traditional Knowledge Distillation (KD) transfers all outputs from a teacher model to a stu-
dent model, often introducing knowledge redundancy. This redundancy dilutes critical infor-
mation, leading to degraded student model performance. To address this, we propose Salient
Feature Masking for Knowledge Distillation (SFKD), where only the most informative fea-
tures are selectively distilled, enhancing student performance. Our approach is grounded in
the Information Bottleneck (IB) principle, where focusing on features with higher mutual
information with the input leads to more effective distillation. SFKD integrates with exist-
ing KD variants and enhances the transfer of “dark knowledge”. It consistently improves
image classification accuracy across diverse models, including ConvNeXt and ViT, achieving
gains of 5.44% on CIFAR-100 and 3.57% on ImageNet-1K. When combined with current
KD methods, SFKD outperforms state-of-the-art results by 1.47%.

1 Introduction

Knowledge distillation (KD) (Bucila et al., 2006} [Hinton et all [2015]) captures implicit information from
a teacher network to guide the training of a student network, making it a powerful approach for model
compression and enhancing transfer learning. This implicit information, often termed “dark knowledge”,
forms the core of the distillation process. Most existing KD methods transfer the full spectrum of knowledge
cues from teacher to student (Chen et al., |2021b} [Komodakis & Zagoruyko, 2017} [Li et al., 2022bjc; |Olvera-
Lépez et all [2010; |[Romero et al.l |2014; |Tian et al., [2019). This includes soft predictions (Hinton et al.
2015), intermediate representations (Romero et al., 2014)), and attention maps (Komodakis & Zagoruyko,
2017)), all distilled throughout the entire training process.

A significant challenge, however, arises from the intricate nature of the representations learned by high-
capacity teacher models, which often generate high-dimensional predictive outputs, capture fine-grained
details, and encode specific training instances. When transferred indiscriminately, such representations
can overwhelm the student model, leading to overfitted features that hinder generalization (Ojha et al.
2023). Consequently, current approaches may suffer from knowledge redundancy, where the student passively
absorbs all information without distinguishing critical knowledge from irrelevant details. This challenge
parallels information redundancy problems studied in feature selection Liu et al.[ (2011)).

Classification: Traditional KD methods primarily focus on transferring knowledge from the teacher model’s
probability distributions (Gou et all |2021)). However, these distributions often contain incorrect or noisy
predictions, which can mislead the student model. The student may struggle to distinguish between relevant
and irrelevant features, sometimes treating irrelevant information as significant (Li et al.; 2022a; [Song et al.,
2022). This interference can degrade the model’s classification performance, especially when the teacher
conveys information that contradicts the true class labels. To address this, we propose a salient feature-
informed classification approach. By transferring only the top-K highest confidence predictions from the
teacher’s softmax output, we minimize the impact of low-confidence, biased information. This selective
transfer aims to capture the most valuable knowledge, enhancing the overall effectiveness of the distillation
process.

Salient Feature Extraction: Existing feature-based KD methods enhance student models by leveraging
both the teacher’s outputs and intermediate representations as hints. We build on this by applying salient
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feature masking across both intermediate feature maps and attention mechanisms, selectively distilling only
the most informative elements. For attention-based architectures, we refine traditional attention transfer
(AT) (Komodakis & Zagoruykol [2017) by employing top-K selection, filtering out less significant components.
This targeted distillation guides the student to focus on critical details, balancing capacity and efficiency
while boosting interpretability and performance.

We introduce Salient Feature masking for Knowledge Distillation (SFKD), a method that selectively distills
only the most relevant logits, feature maps, and attention maps from the teacher model. Saliency is deter-
mined by filtering out the lowest elements using a top-K selection rule (see Fig. . This filtering reduces
bias during knowledge transfer, enhancing the quality of high-order feature representations. Using Informa-
tion Bottleneck (IB) theory (Tishby & Zaslavskyl 2015a)), we analyze the mutual information in the context
of salient feature masking and demonstrate that selective distillation preserves higher mutual information
between inputs and features, resulting in improved performance. Extensive experiments show that SFKD
achieves performance nearly equivalent to the teacher model. Our contributions are summarized as follows:

1. we propose SFKD as applied to the most salient logits, feature representations, and attention maps;

2. we provide a theoretical foundation using the Information Bottleneck theory, demonstrating that
higher mutual information exists between the input and filtered activation maps when less relevant
values are discarded;

3. SFKD can be applied alone, or integrated with existing KD methods. In all cases, it consistently
improves classification accuracy;

4. drawing from our observations and analyses, we develop a novel, simple yet effective algorithm to
identify the top-K salinet feature for enhancing distillation performance.

2 Related Work

Knowledge Distillation (KD) variants generally fall into three categories based on the type of knowledge
transferred: logits (Hinton et al., 2015; Furlanello et al., 2018; [Mirzadeh et al., 2019; Zhao et al., 2022; Jin
et al,[2023), features (Chen et al.,2021b; [Heo et al., [2019; [Park et al., 2019; [Peng et al., 2019; Romero et al.
2014; [Tung & Mori, [2019; [Tian et al.| 2019; [Liu et al., [2023), and attention (Komodakis & Zagoruykol, 2017
Guo et al) [2023). Vanilla KD (Hinton et al. 2015|) transfers class predictions from the teacher’s output
layer to guide the student’s training. In contrast, feature distillation extracts knowledge from intermedi-
ate layers; for example, FitNet (Romero et al., 2014)) aligns feature maps between specific teacher-student
layers. Attention-based methods (Komodakis & Zagoruyko, 2017) use attention maps derived from feature
representations for comprehensive knowledge transfer across layers. Subsequent studies explore applications
of KD in semantic segmentation (Liu et al.,|2019; [Yang et al.,|2022), object detection (Li et al., 2024} Zhang|

2024)), and student architecture search (Dong et al., 2023).

Information Bottleneck (IB) is a principle introduced by (Tishby et al., [2000), which aims to extract the
most relevant information from an input. The IB method defines a trade-off between compressing the input
representation and preserving information about the target variable. The IB framework was extended to
deep learning (Tishby & Zaslavskyl, [2015a)), proposing that deep neural networks (DNNs) implicitly optimize
this trade-off during training. (Shwartz-Ziv & Tishby, [2017)) applied the IB principle to analyze the training
dynamics of DNNs, showing that the learning process can be viewed as a progression from fitting the data
to compressing irrelevant information, thereby enhancing generalization.

(Pogodin & Lathaml [2020) further advanced this field by proposing learning rules based on the IB principle,
achieving performance comparable to backpropagation in image classification tasks. More recently, (Wang
found that an intermediate model, often at an optimal training checkpoint, can serve as a
more effective teacher than a fully converged model, despite its lower accuracy. In contrast, our work
uniquely applies the IB principle to interpret the KD process. While (Goldfeld et al., 2019) analyzed mutual
information compression in representation learning, we are the first to use the IB framework to specifically
examine information flow during distillation, offering novel insights into the underlying dynamics of the
process.




Under review as submission to TMLR

Teacher
Model ©
@ | Dense
e — Teacher
Q Logits
(
Dense f
ﬁKnowlecé:gIe Feature
om Teacher Map
‘ ; Top-K
O ?:ilcieigr Selection
Knowledge i | Logits
from Teacher Sparse o
after Salient Feature
Feature filter Map
Input
©)| student
e - . | Logits
Student g
Model

Figure 1: The concept of the proposed SFKD. SFKD distinctively concentrates on: 1) distilling critical clas-
sification knowledge, 2) transferring essential information from intermediate layers, and 3) refining attention
mechanisms for knowledge distillation.

3 Methods

3.1 Formulation

Our findings have broad applicability, covering a wide range of distillation techniques, as illustrated
in Fig. [[] We focus on standard methods representing three main families of distillation approaches:
output-based (Hinton et al., 2015), feature-based (Romero et al., 2014)), and attention-based
Zagoruyko, [2017). The objectives of these methods are combined with the cross-entropy loss Lors(zs,y) :=
—Z;zl y;jlogo;(zs), where y is the ground-truth one-hot label vector, z, is the student’s logit output,
0j(z) =e* /3, e is the softmax function, and c is the number of classes.

(1) Output-based: The salient feature masking operates on the logit space by retaining only the top-K
logits from the teacher’s distribution based on their magnitude. The knowledge transfer is then performed
through KL-divergence minimization between the masked teacher distribution and student predictions:

L (2s, 245 ) i= —72 iaj (thK> log o (%) , (1)
j=1

where z;x denotes the teacher’s logits after top-K masking; 7 is a scaling temperature; and the overall loss
function is vLors + aL g with balancing parameters « and «.

(2) Feature-based: The student’s intermediate features Fs(l) are trained to mimic only the K relevant

features of the teacher’s Ft(Q for a given image X at layer [. The student’s features are first projected
(using additional parameters r) to match the dimensions of the teacher’s features, and their similarity is
then optimized by minimizing the mean squared error:

1
Lirint(F, Fid) = SIIF = r(FO) . @)
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The total loss is YLors+ 8L gint, where v and (8 are balancing parameters.  Hint’ represents all feature-based
KD methods.

(3) Attention-based: Let I be the set of indices representing the teacher-student activation layer pairs
where attention maps are transferred. The total attention transfer loss is then defined as:

QL Qh
1Q Q2

where Q1 = vec(¢(A7)) and Q7 = vec(¢(Topy (A])) are respectively the j-th pair of student and top-K

elements in the teacher’s attention maps in vectorized form. A mapping function ¢ maps a 3D activation
tensor A € ROXHXW o a spatial attention map. 3 > 0 is a balancing parameter and ||z, is the £, norm of

vector x (typically ¢ norm).

Lyr = Lcrs + g Z (3)

jeI

p

3.2 Salient Feature Masking for Selective Knowledge Sharing

In SFKD, during knowledge distillation, only the most salient values of a given feature map (attention map,
logits vector) F € RY from the teacher model are retained, while the remaining values are set to zero. For
logits, N is the number of classes; for feature maps, it is the product of their dimensions. Let I;opx be the
set of indices of the top-K values. The masking operator M € R™ can be expressed as:

M,L- _ 1, if7 € It.op—K (4)
0, otherwise

where i represents an index in F, and M; is the corresponding mask value at index ¢. The masked version
of F, denoted as F, is obtained by element-wise multiplication of F and M:

Fx =FoM. (5)

This operation zeroes out all values in F except for the top-K values.

3.3 Information-theoretic Analysis

Connecting Information Bottleneck with Knowledge Distillation. Let X and Y denote the in-
put variable and the target output of a learning model, respectively. The intermediate representation F'
is established through an encoder P(F|X) and a decoder P(Y|F). To optimize the structure of a deep
neural network, we leverage the Information Bottleneck (IB) principle Tishby & Zaslavsky| (2015a); |Shwartz-
Ziv & Tishby| (2017)), which provides a theoretical foundation for balancing information compression and
preservation. Specifically, the optimization objective can be formulated as:

min I(X; F) - CI(F;Y), (6)

where I(X; F) and I(F;Y) denote the mutual information between X and F', and between Y and F', respec-
tively. The parameter ¢ controls the trade-off between compressing the input information and preserving
the relevant information for the output.

The IB framework and interpretations have been applied to knowledge transfer in teacher-student networks.
The key insight is that preserving high mutual information between the teacher and student networks is
essential for effective knowledge distillation. Let F; and F denote the representations of the teacher model
and student model, respectively. Under the knowledge distillation framework, the optimization objective of
the student model |Ahn et al.| (2019) is:

min {I(X; Fy) = CI(Y3 Fy) — €1(F Fu)). (7)

Here, £ > 0 is a balancing parameter, and I(F;; Fs) denotes the mutual information between the teacher
and student representations. The IB principle can be corroborated by an information plane depicting the
trajectory of the points I((X;F),I(F;Y)) along the neural network training epochs. For the teacher-
student knowledge distillation, we plot the trajectories of (I(X; F:),I(Fy;Y)) and (I(X; Fy), I(Fs;Y)) on
the information plane (see Figs. [2b] {2d)).
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Figure 2: (a) An example of the optimal K selection for salient feature masking. The horizontal axis shows
the degree of top-K sparsity (K = 1 meaning no masking). (b)—(d) The information plane for different
teacher-student networks: the mutual information trajectories with respect to the training epochs.

Optimal K Selection. As an example of the selecting process, mutual information trajectories for ResNet-
18 and ResNet-34 are depicted in Fig. [2a] under different top-K sparsity conditions. These observations have
led to the following key insights: 1) The progression of all observed curves is consistent and aligns with
the IB principle as delineated in (Tishby & Zaslavskyl 2015b]). Notably, the trajectory of the larger model
(ResNet-34) consistently lies above that of the smaller model (ResNet-18), effectively serving as an upper
bound for the latter. 2) We observe a clear increase in mutual information I(X; F) as sparsity decreases
toward density, peaking before oscillating around a stable value. Interestingly, at complete density K'-°, the
mutual information is lower than at intermediate top-K values, indicating that top-K sparsity allows the
teacher to continue distilling useful information for the student. The point where top-K sparsity stabilizes
generally falls between K95 and K38,

The theoretical foundation and merit of the top-K masking approach can be argued through the lens of
entropy H and Kullback—Leibler (KL) divergence Dxky,. Specifically, we show that masking transformation
reduces uncertainty in distilled data by filtering out less informative knowledge. This is formally established
in the following proposition.

Proposition 1 (Masking concentrates distilled knowledge). Let Fy = {pi1,pa,...,pn} and Fjx =
{¢1,92,-..,qn} be two discrete probability distributions over n states, which represent the logit outputs of
the teacher model and its counterpart after top-K masking, respectively. Furthermore, let U = { L1 1

n'n’on
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denote the uniform distribution over these n states. Then, we have
Dxy(Fi||U) < Dxr(Fyx||U), (8)

meaning F; is more dispersed than Fyx. In other words, top-K masking helps distill the concentrated
knowledge.

Proof: Let H(F;) and H(F;x) denote the binary entropy of the two distributions F; and F;x, respectively.
Note that the uniform distribution U on a finite set has the maximum entropy (logn) among all discrete
distributions on that set |(Cover & Thomas| (2006)). In addition, the KL divergence from any distribution F'
to U is given as: Dy (F||U) =logn — H(F). For F; and F,x, we get:

Dxr(F||U) = logn — H(F), (9)
Dy (Fix||U) = logn — H(Fix). (10)

Since post-processing reduces entropy (Cover & Thomas| 2006} pg. 44), we have H(Fyx) = H(Mg(F;)) <
H(F;), where Mg (F}) is the top-K masking operator. Thus, it follows that Dk, (Fy||U) < Dki(Fix ||U): F;
is closer to the uniform distribution U than F;x in the sense of KL divergence.

IB-based Analysis of SFKD. We establish a theoretical foundation for our proposed top-K masking
mechanism in SFKD by linking KD with the IB theory. Our analysis shows that during deep network
training, the mutual information I(Y’; F') with the labels consistently increases, while I(X; F') with the input
data initially rises but then declines. While maximizing I(Y; F') aids the teacher model, it is less crucial for
KD since the ground truth labels are already incorporated into the distillation objective. Instead, preserving
I(X; F) captures “dark knowledge”, which is vital for effective KD. For instance, an image labeled “camel,
horse, car” may still encode features relevant to “people”, offering valuable information for the student model.

Existing KD methods often utilize high temperatures to soften network predictions, exposing such informa-
tion from the teacher model. However, IB theory demonstrates that a full feature knowledge transferred
from teacher to student tends to be overconfident, making it challenging to recover suppressed knowledge
by only scaling the temperature. In contrast, selective features, despite sparse information due to non-
optimal I(Y; F'), may possess a larger I(X; F') and improve KD performance. This insight corroborates our
observation that selected features serve as valuable and more precise information.

Mutual Information Estimation. Estimating mutual information is challenging, as it often requires
inferring complex probability densities from limited data, complicating accurate dependence measurement,
especially for continuous or high-dimensional data. This limitation introduces potential bias, particularly
when true underlying distributions are unknown. In pursuit of approximating the reconstruction loss, we
integrate a decoder with the last convolutional layer of a pre-trained and static network model, aiming
to reconstruct a pseudo input image, denoted as X. Subsequently, this decoder undergoes training until
convergence using the Adam optimizer, coupled with a binary cross-entropy (BCE) loss between X and the
original input X. This method of calculating reconstruction loss serves as a proxy for estimating I(X; F),
adhering to the methodology outlined in Ref. (Wang et al., 2021). More detailed settings are provided in
the supplementary material (Sec. [A).

Our motivation for SFKD aligns with the observed phenomenon, as illustrated in Figs. 2b] {2d] Specifically,
we find that: 1) Compared with the independent student case, masked or unmasked KD always facilitates
faster learning of the student with steeper initial trajectories, which yields higher values of I(Y; F'). This
phenomenon is consistently observed for various teacher-student networks. 2) Masked KD (SFKD) has higher
values of I(X; F') than the unmasked KD throughout the training epochs. This implies masked KD tends to
compress less information from the input X, which can improve the student’s performance. 3) As shown in
Fig. when the teacher and student have the same type of network, mutual information I(X; F') decreases
with the depth of layers, which is justified by the data processing inequality (DPI) (Cover & Thomas| |2006],

pg. 34).
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4 Experiments

We demonstrate that our SFKD approach is method-agnostic by testing it across various existing distillation
methods. Additionally, we show its two applications: (i) Selective Knowledge Sharing in Multi-Teacher
Knowledge Distillation and (ii) Salient Feature Masking in Data-Free Knowledge Distillation. Furthermore,
we perform ablation studies, implementing both as a standalone approach and in conjunction with the KD
loss.

Table 1: Classification accuracy of different pairs of teacher (T) and student model (S) with various knowledge
distillation methods on the CIFAR-100 dataset. The table is divided into two sections: the left section
presents results for homogeneous T/S model pairs, averaged over 5 runs, while the right section details the
classification accuracy for heterogeneous T/S model pairs, with averages taken over 3 runs.

/S Pair WRN40-2/ WRN40-2/  ResNet-32x4/ VGG-13/ VGG-13/ ResNet-32x4/  ResNet-32x4/ WRN-40-2/
WRN16-2(%)  WRN40-1(%) ResNet-8x4 (%) VGG-8 (%) |MobileNetV2 (%) ShuffleNetV1 (%) ShuffleNetV2 (%) ShuffleNetV1 (%)
Teacher 75.61 75.61 79.42 74.64 74.64 79.42 79.42 75.61
Student, 73.26 71.98 73.09 70.36 64.60 70.50 71.82 70.50
Method baseline SFKD | baseline SFKD | baseline SFKD | baseline SFKD | baseline SFKD | baseline SFKD |baseline SFKD | baseline SFKD

KD (Hinton et al.|[2015 74.92 7539 | 73.54 7405 | 73.33 74.41 | 7298 73.58 | 67.37 68.30 74.07 74.73 74.45 75.50 74.83 76.16

FitNet (Romero et al.|[2014 73.58  73.80 | 72.24 72.60 | 73.50 74.43 | 71.02 72.35 | 64.14 6529 | 73.59  74.44 | 73.54 7530 | 7373 74.99
AT (Komodakis & Zagoruyko| 74.08 TAS8 | 7277 7342 | 7344 7371 | 7143 7254 | 5940  60.82 | TL73 7342 | 7273  73.62 | 73.32 7431
SP (Tung & Mori/[2019 73.83 7488 | 7243 7351 | 7294 73.21 | 7268 73.23 | 66.30  67.05 | 7348  76.05 | 74.56  76.20 | 7452  76.11

CC \ 73.56  73.73 | 7221 7242 | 7297 73.17 | 70.71 71.97 | 64.86 65.58 71.14 71.84 71.29 73.04 71.38 72.07
VID (Ahn et al. m 74.11 74.63 73.30  73.62 73.09 73.39 71.23  71.94 | 65.56 65.72 73.38 74.19 73.40 74.93 73.61 75.05
RKD 73.35  73.76 | 7222 7256 | 71.90 7259 | 71.48 71.66 | 64.52 65.58 72.28 73.15 73.21 74.13 72.21 73.53
PKT ‘Passalis & 1 74.54  75.26 73.45 73.83 73.64 74.36 72.88 73.19 67.13 68.03 74.10 75.02 74.69 75.84 73.89 75.29
CRD ‘Tian et al. |@ 7548  75.76 | T74.14 7443 | 7551 7580 | 73.94 74.08 | 69.73 69.84 75.11 75.84 75.65 76.33 76.05 76.36

SimKD (Chen et al.| 76.23  76.53 | 75.56 7587 | 78.08 7853 | 7493 7523 | 68.95 70.38 77.18 77.82 78.39 78.48 77.09 77.64

4.1 Experiment Settings

Table 2: SFKD with heterogeneous architectures on CIFAR-100: ViT-based teachers distilled to both CNN-
based and ViT-based students.

ViT-based Teachers T. Swin-T ViT-S Mixer-B/16 ~ ConvNeXt-T
S. ResNet-18  ResNet-18  ResNet-18 Swin-P
Teacher acc. 89.26 92.43 87.62 88.41
Student acc. 74.01 74.01 74.01 72.63
DIST (Huang et al.| 2022) 77.75 76.49 76.36 76.41
Logit-based KD QHinton et al.|2015) 78.74 77.26 77.79 76.44
KD+Ours 80.62 155 78.90, ¢ 79.18 15  78.87...s

Datasets and Baselines. In this study, we utilize the CIFAR-10/100 (Krizhevsky & Hintonl [2009), CUB200
(Welinder et al.| [2010]) datasets and ImageNet (Deng et al., [2009). To demonstrate SFKD’s versatility, we
evaluate it with multiple KD methods: vanilla KD (Hinton et all [2015), FitNet (Romero et al}, [2014), AT
(Komodakis & Zagoruykol 2017)), SP (Tung & Mori, 2019), CC (Peng et al.,[2019), VID (Ahn et al., [2019),
CRD (Tian et al.,2019), RKD (Park et al.,|2019), PKT (Passalis & Tefas| |2018)), DKD (Zhao et al.,2022) and
Simple Knowledge Distillation (SimKD) (Chen et al., 2022). SFKD was implemented both as a standalone
approach and in conjunction with the KD loss (except vanilla KD and SimKD) to demonstrate its efficacy
and versatility. Experiments were performed using renowned backbone networks such as VGG (Simonyan
& Zissermanl, [2014), ResNet (He et al [2016), Wide Residual Networks (WRN) (Zagoruyko & Komodakis|
2016), MobileNet (Sandler et al., 2018), ShuffleNet (Ma et al., 2018} Zhang et al., 2018) and more advanced
networks, including ConvNeXt (Liu et al., |2022) and Vision Transformers (ViTs): ViT (Dosovitskiy} [2020)
and Swin , across a range of teacher-student model pairings. To ensure a fair comparison
with baseline methods, all training settings, including learning rate, batch size, and temperature, were
standardized according to the baseline configurations. Further details can be found in suppl. mat.
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4.2 Results

Results on CIFAR-100. Tab. |l| demonstrates the performance and robustness of SFKD when applied to
similar vs. dissimilar model architectures. We extend our evaluation to more advanced network architectures,
including ConvNeXt and Vision Transformers: ViT-based teachers distilled to both CNN-based and ViT-
based students, with results presented in Tab.[2] This broader testing scope further validates the versatility
of our method across diverse neural network designs to distill knowledge effectively across any architectures,
such as from ViTs (Swin-T) to CNN-based student (ResNet-18) and from ConvNeXt to Swin-I{l] Moreover,
as illustrated in Tab. [d] our SFKD outperforms most of the previous SOTA methods on CIFAR-100 dataset.
To provide a deeper understanding of our approach, we conducted an ablation study exploring the impact of
each technique both individually and in combination with KD. The results of this analysis can be found in
Tab.[6] This analysis reveals how each technique affects the overall performance and how their interactions
contribute to the final results.

Results on ImageNet. We report Top-1 and Top-5 accuracies (%) for our proposed method, referred to as
“Ours” in Tab. [3] The results of baseline methods taken from the original papers report (Chen et al.l |2021b
Tian et al}|2019). Experiments’ outcome demonstrates the scalability of our method accross a broader range
of dataset sizes.

Table 3: Top-1 and Top-5 accuracy (%) on ImageNet validation.

Teacher/Student ResNet-34/ResNet-18 ResNet-50/MobileNet
Accuracy top-1 top-5 top-1 top-5
Teacher 73.31 91.42 76.16 92.86
Student 69.75 89.07 68.87 88.76
ReviewKD (Chen et al.| [2021b) 71.61 90.51 72.56 91.00
SimKD (Chen et al.||[2022) 71.59 90.48 72.25 90.86
CAT-KD (Guo et al.|[2023) 71.26 90.45 72.24 91.13
LS (MLKD++LS) (Sun et al.| [2024) 72.08 90.74 73.22 91.59
AT (Komodakis & Zagoruyko| 2017) 70.69 90.01 69.56 89.33
AT—"-OUFS 70.84+(),15 89.91 70.88+1‘32 90.00+()_(;7
KD (Hinton et al.||[2015) 70.66 89.88 68.58 88.98
KD—l—Ours 71.82+1,]6 90.414,(].53 72.15+3_57 90.52+],54
DKD (Zhao et al.||2022) 71.70 90.41 72.05 91.05
DKD+Ours 72.100.4 90.700.29 72.95 0.9 91.30.40.25

Results on CUB200. CUB200 (Welinder et al. [2010) is utilized for assessing fine-grained classification
tasks, which consist of 200 different bird species. The results are presented in Tab.

4.3 Application 1: Selective Knowledge Sharing in Multi-Teacher Knowledge Distillation

It would be advantageous to apply our method when data comes not only from a single teacher but multiple
teachers. Unlike conventional multi-teacher KD methods (Du et al., [2020; |You et al., |2017; [Fukuda et al.|
2017; 'Wu et al., [2019) that might dilute the specificity of knowledge due to averaging or varying confidence
levels among teachers, our SFKD method stands out by selectively channeling the most pertinent insights
from the teacher(s). This selective sharing mechanism makes SFKD especially suited for distillation contexts
involving multiple teachers, as evidenced by the results presented in Tab. [} SFKD’s superior accuracy
further validates its utility in enhancing the quality and efficiency of knowledge distillation. We apply
our selective knowledge sharing technique to “AEKD” (Du et all [2020) and its enhanced version “AEKD-
F”, which respectively aggregate teacher predictions using an adaptive weighting strategy and incorporate

1Swin-Pico referred to as Swin-P
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Table 4: Comparison with recent SOTA methods on the CIFAR-100 dataset. Bold indicates the best,
underbar is the second-best value.

Method Same architecture style Different architecture style

T/S Pair WRN-40-2 WRN-40-2 ResNet-32x4 VGG-13| VGG-13  ResNet-32x4 WRN-40-2

WRN-16-2 WRN-40-1 ResNet-8x4 VGG-8 |MobileNetV2 ShuffleNetV2 ShuffleNetV1
Teacher 75.61 75.61 79.42 74.64 74.64 79.42 75.61
Student 73.26 71.98 73.09 70.36 64.60 71.82 70.50
CAT-KD (Guo et al.||2023) (CVPR’23) 75.60 74.82 76.91 74.65 69.13 78.41 77.35
ReviewKD (Chen et al.||2021b) (CVPR’21)| 76.12 75.09 75.63 74.84 70.37 77.78 77.14
DIST (Huang et al.| [2022) (NeurIPS’22) N/A 74.73 76.31 N/A N/A 77.35 N/A
KD-Zero (Li et al.|[2023a) (NeurIPS’23) 76.42 N/A 77.85 75.26 70.42 77.45 77.52
Auto-KD (Li et al.|[2023b) (ICCV’23) 76.86 N/A 77.61 75.36 70.58 77.52 77.46
LS (Sun et al.| 2024) (CVPR’24) 76.95 75.56 78.28 75.22 70.94 78.76 N/A
DKD (Zhao et al.|[2022) (CVPR’22) 76.24 74.81 76.32 74.68 69.71 77.07 76.70
DKD + SFKD 76.51 74.96 76.68 74.82 69.94 77.34 76.95
SimKD (Chen et al.||2022) (CVPR’22) 76.23 75.56 78.08 74.93 68.95 78.39 N/A
SimKD + SFKD 76.53 75.87 78.53 75.23 70.38 78.48 77.64
MLKD (Jin et al.||2023) (CVPR’23) 76.63 75.35 77.08 75.18 70.57 78.44 77.44
MLKD + SFKD 77.01 75.72 78.06 75.60 70.58 79.16 77.50

Table 5: Performance on the CUB200 dataset was evaluated across three teacher-student configurations: 1)
identical structure but different sizes, 2) different architectures with equivalent depth, and 3) completely
different networks in both architecture and depth.

Teacher ResNet-32x4  ResNet-32x4 VGG-13 VGG-13 ResNet-50
Acc 66.17 66.17 70.19 70.19 60.01
Student MobileNetV2  ShuffleNetV1 MobileNetV2 VGG-8 ShuffleNetV1
Acc 40.23 37.28 40.23 46.32 37.28
SP (Tung & Mori| 2019) 48.49 61.83 44.28 54.78 55.31
CRD (Tian et al.||2019) 57.45 62.28 56.45 66.10 57.45
SemCKD (Chen et al.| [2021a) 56.89 63.78 68.23 66.54 57.20
ReviewKD (Chen et al.“_2021b:) - 64.12 58.66 67.10 -
KD (Hinton et al.| [2015) 56.09 61.68 53.98 64.18 57.21
KD+SFKD 61.68 5 59 65.67 . 399 60.37 .39 65.64 1 46 61.01 55
DKD (Zhao et al.|[2022) 59.94 64.51 58.45 67.20 59.21
DKD+SFKD 62.15+2_21 67.09+2,58 61.49+;;_()4 68.88+1_68 63.99+4_75

intermediate features. As shown in Tab. [/} SFKD always achieves the best performance. Tri-ResNet-32x4,
which includes three ResNet-32x4 models, serves as a teacher for both students VGG-8 and ShuffleNetV2.

4.4 Application 2: Salient Feature Masking in Data-Free Knowledge Distillation

Leveraging SFKD in the domain of Data-Free Knowledge Distillation (DFKD) (Chen et al., [2019; [Yin et al.,
2020) offers a strategic enhancement, especially when navigating the challenges of training without access
to original datasets. Our methodology, centered around the selective transmission of highly informative
features, is particularly beneficial in these settings. SFKD’s selective nature preserves the integrity of the
knowledge transferred, filtering out noise and enhancing the quality of synthetic data. Such a targeted
method of knowledge transfer is instrumental in ensuring that the student model is primed to generalize
effectively to new, unseen data, a critical advantage in practical applications where the model encounters
data variants not represented in the synthetic training set.
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Table 6: Individual and joint contributions to performance are illustrated through feature-based and logit-
based combinations. The baseline method represents a feature-based approach, while KD indicates a logit-
based method.

Method /T-S pair WRN-40-2/ShuffleNet V1

SP (Tung & Mori| 2019) v

SP + ours v

SP + KD v

SP + (KD+ours) v

(SP + ours) +KD v

(SP + ours) + (KD+ours) v
74.52 7556 T76.11 76.76 76.63 76.68

Table 7: SFKD with Multi-Teacher Knowledge Distillation. The student models ShuffleNetV2 & VGG-8
were trained under the configuration of pre-trained Tri-ResNet-32x4.

Teacher Networks Student Network\ S.  AEKD SFKD + AEKD SFKD + AEKD-F \ Ensemble
Tri-ResNet-32x4  ShuffleNetV2 |71.82% 75.87%  76.17% 77.16% 81.31%
Tri-ResNet-32x4 VGG-8 70.36% 73.11%  73.36% 73.80% 81.31%

Table 8: Results of DFKD to various students on CIFAR-10.

Teacher Required data VGG-11 VGG-11 ResNet-34
Student VGG-11 ResNet-18 ResNet-18
Student accuracy Yes 92.25%  95.20% 95.20%
Noise ~ N (0,1) 13.55%  13.45% 13.61%
DeepDream No 36.59%  39.67% 29.98%
Deeplnversion (DI) No 84.16%  83.82% 91.43%
DI + SFKD (K°7) No 85.24% 84.86%  91.82%

We synthesized 100K images using the Deeplnversion (DI) technique (Yin et al.l 2020) for DFKD, generating
synthetic data from VGG-11 and ResNet-34 models trained on CIFAR-10. Tab. [§|shows that SFKD improves
all teacher-student pair combinations in DFKD. Our findings highlight the benefits of SFKD in improving
model training strategies and synthetic data utilization, enhancing model interpretability and effectiveness.

4.5 \Visualization

Visualization of Class Activation Maps. A Class Activation Map (CAM) (Zhou et al.l [2016) serves as
a visualization technique that displays the activation regions for specific categories within neural networks,
thereby aiding in understanding how these networks classify images across different categories. In Fig.
the first row presents the input images, while the second, third, and fourth rows show the class activation
maps of the teacher model, baseline AT (K!), and SFKD (K*) respectively. x denotes the optimal K value
to precise. In line 3, it is observed that the model with baseline AT does not focus exclusively on the car,

10
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input

Teacher

Figure 3: Class activation map of the distilled student model deployed with our method and baseline AT,
the teacher model. The deeper the color, the more salient the corresponding feature of the image. The top
row presents the input images, while the second, third, and fourth rows display the class activation maps of
the teacher model, baseline AT (K!), and SFKD (K*) respectively.
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Figure 4: t-SNE clustering: demonstrating model accuracy on CIFAR-100. 10 out of 100 classes were
randomly sampled, as indicated by their respective colors. A high density of same-class dots and large
separation among classes suggests better model classification accuracy.

bird, and horse categories, but rather on outer areas unrelated to the target. Conversely, in line 4 of Fig. [3]
the student models trained with AT+SFKD are not distracted; their attention is fully concentrated on the
car, bird and horse area in the image almost acting like a teacher model, demonstrating that our proposed
methods enhance the focus on deep features. Since our SFKD is method-agnostic, we can choose any of the
previous KD techniques as a baseline. In this case, ResNet-32x4 as a teacher & ResNet-8x4 as a student,
and AT as a baseline was used.

Visualization with t-SNE. t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten &|
provides a clear view of the image processing workflow in student models. A tight clustering
within classes and a distinct separation between classes indicate the model’s strong classification capabilities.
We present visualizations from an independent student model, baseline CRD, and our approach SFKD with
varying K. Fig. [ shows experiments on CIFAR-100 using ResNet-32x4 — ResNet-8x4, comparing feature
distributions of student networks. It is observed that the features of the student trained with SFKD (K%3,
K%9), as shown in Fig. Ekb, ¢), are more distinguishable among different classes compared to those of the
student trained from scratch. This indicates that precise selective teacher knowledge can effectively enhance
the discrimination ability of the student network. Moreover, compared to the baseline method, our SFKD
approach results in more compact feature clusters within the same classes, as exemplified by the blue, green,
light green, and orange clusters in the figure. We calculate the L1 error between the teacher’s and student’s

11
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classifier weight correlation matrices, and illustrate this variance using a heatmap (Fig.|5). Four methods were
examined: the independent student without any distillation, alongside students trained with AT
\& Zagoruyko, 2017), CRD (Tian et all [2019), and our approach, SFKD (K°3). The findings demonstrate
that SFKD records the minimal difference across both sets of teacher-student pairs, showcasing SFKD’s
superior ability to replicate the teacher’s correlation patterns. We also provide an additional evaluation of
our method in the suppl. mat.

Independent Student

(b) Teacher: VGG-13, Student: MobileNetV2

Figure 5: Contrast in correlation matrices of teacher and student classifier weights on CIFAR-100. The
correlation matrices are computed using normalized weights.

5 Conclusion and Discussion

In this work, we introduce salient feature masking for knowledge distillation, a simple but effective method
that selectively distills the most pertinent features to enhance student performance. Compatible with existing
KD variants, logit-based SFKD allows direct manipulation of a pre-trained network’s logits by preserving high
probability class values. This effective technique is easily applicable to large networks in real-world scenarios,
which requires no retraining or modification of the original model. Leveraging the information bottleneck
principle, we provide theoretical analysis and interoperability of SFKD’s effectiveness, which explores insights
into the teacher model’s decision-making process. Our work opens up a few interesting research directions.
First, it is intriguing to explore the characteristics of information flow during the distillation process. Second,
finding the optimal K value effectively without extensive tuning is important for the top-K salient feature
distillation regarding heterogeneous teacher-student networks.
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Appendix

This supplementary document details mutual information estimation for I(X;F) and I(Y;F) (Sec. [A),
complete training setup with hyperparameters for CIFAR-100, CUB200, and ImageNet (Sec. , and addi-
tional experiments including ablations, CIFAR-10 evaluation, data-free knowledge distillation results, and
representation visualizations (Sec. [C).

A Mutual Information Estimation.

Estimating I(X;F). Let R(X|F) denote the expected error for reconstructing X from F. It is well
known that R(X|F) follows I(X; F) = H(X) — H(X|F) > H(X) — R(X|F), where H(X) is the Shannon
entropy of X, which is a constant (Hjelm et al. 2019). Therefore, we estimate I(X; F') by training a decoder
parameterized by w to obtain the minimal reconstruction loss, namely I(X; F') &~ max,,[H(X) — Ry, (X|F)].
In practice, we use the binary cross-entropy loss for R, (X|F).

Estimating I(Y;F). Since I(Y;F) = H(Y) - HY|F) = H(Y) — E(p,y)[—logp(Y|F)], a straightforward
approach is to train an auxiliary classifier g, (Y'|F') with parameters ) to approximate p(Y'|F'), such that we
have I(Y; F) ~ maxy{H(Y) —Ep[>_y —p(Y|F)logqy(Y|F)]}. Finally, we estimate the expectation over F
using its sample mean I(Y; F') =~ max,{H(Y) — %[Zf\il —log ¢y (Y;|F})]}, where {(X;, F},Y:)}Y, are the

i=1
samples. Consequently, ¢, (Y|F) can be trained in a regular classification fashion with the cross-entropy

loss.
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Figure 6: (a) ConvNeXt-T distilled to ViT-based student, evaluated on CIFAR-100. (b)—(c) ReviewKD and
AT with our method, evaluated on ImageNet. (d) DKD with our approach, evaluated on CUB200.
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B Training Details.

The hyperparameters for the baselines (when K!) are aligned with those in the original papers, as indicated
in Tab. @ The experimental setup for CIFAR-100 and CUB200 is identical to that used in CRD (Tian et al.,
2019); the training lasts 240 epochs, except for MLKD being 480 as in (Jin et al.;|2023; |Sun et al., 2024]), with
the learning rate being reduced by a factor of 10 at the 150th, 180th, and 210th epochs. The initial learning
rate for architectures in the MobileNet/ShuffleNet series is 0.01, while it is 0.05 for all other architectures. A
batch size 64 is used, alongside a weight decay of 5x10~* and stochastic gradient descent (SGD) optimizer.
All results are presented as averages from 5 trials for homogeneous (Teacher/Student) T/S pairs and 3 trials
for heterogeneous T/S pairs. Throughout this paper, the temperature 7 for the KD loss is consistently set at
4. We run ViT-based knowledge distillation processes for 300 epochs following the training scheme in (Hao
et al.l |2024)). In IB analysis, we train the decoder to convergence with the Adam optimizer, with learning
rate set to 0.05. All models on CIFAR-100 of the paper were run on NVIDIA GeForce GTX 1080 Ti GPUs
(6 GPUs). Note: the default setting is for a single-GPU training. For ImageNet, the initial learning rate
is set to 0.1 and then divided by 10 at 30th, 60th, 90th of the total 120 training epochs. We conducted
experiments on ImageNet using 24 NVIDIA A100 GPUs.

Table 9: Hyperparameter settings of baseline distillation methods. 3 is the weight balance of distillation loss
in the baselines.

,\Imlm<\.~‘1{f) Hinton et al. 12015 FitNet (Romero et al. 12014| AT {Komodakis & Zagoruyko[2017| SP {Tung & Mori[f2019] CC [Peng et al.[§2019] VID {Ahn et al §2019] RKD (Park et al.§2019] PKT (Passalis & Tefas{2018| CRD (Tian et al. [2019| SimKD [Chen et al. 2022
8 ‘ 0 100 1000 3000 0.02 1 1 30000 0.9 1

C More Ablation Studies and Results

More Experiments. Our approach effectively supports ViT distillation due to its model-agnostic nature,
with experiments conducted on CIFAR100 under the same conditions as (Hao et al) [2024). As shown in
Tab. 2 of our main manuscript, our method consistently enhances KD performance across various ViT-based,
CNN-based, and MLP-based (Mixer-B/16) models. Fig. illustrates both training and testing accuracy
measurements comparing standard KD against KD enhanced with our SFKD method when distilling from
ConvNeXt-T to ViT-based student. Additional validation on ImageNet (Deng et al., 2009)) with ReviewKD
(Chen et al. |2021b|) was conducted on ResNet-50 to MobileNet, achieving Top-1 accuracy 73.25% with
SFKD, as shown in Fig. Validation on CUB200 dataset (Welinder et al.l [2010), DKD with our approach
in Fig. [6d] shows that it enhances the accuracy.

Results on CIFAR-10. For CIFAR-10, we run three scenarios with varying network architectures for
both student and teacher networks: the first two experiments used WRNs, the next two used ResNets, and
in the final experiment, the teacher and student networks had different architectures.

Table 10: Top-1 accuracy (%) of various knowledge distillation methods on CIFAR-10.

Distillation type Logits Attention Features
Teacher Student Teacher  Student | KD (Hinton et all2015]  Ours T{Komodakis & Zagoruyko;ZOl?:‘ Ours F(Tung & Mori|[2019]  Ours
WRN-16-2 WRN-16-1  93.94  91.26 9206 92.95 | 9172 ) 92.68 | 9248 92.83
WRN-40-2 'WRN-16-2 95.07 93.94 94.00 94.54 94.11 94.84 94.48 94.66
ResNet-26 ResNet-8 93.40 87.74 88.75 89.09 88.15 89.0 88.94 89.19
ResNet-26  ResNet-14 93.40 91.51 92.57 92.84 92.11 92.84 92.55 92.61
ResNet-26 ' WRN-16-1 93.40 91.26 92.43 92.89 91.32 92.9 92.47 92.74

Standard Deviation for CIFAR-100 Benchmark Results. Sensitivity analyses involving a broader
range of K values variability measured by standard deviation across multiple trials on the CIFAR-~100 bench-
mark is provided in Tab. [I1] for student and teacher models that share the same architecture, over five runs,
and dissimilar architectural designs, over three runs. The variance of the baseline has been omitted due to
space constraints. Additional ablation study by combining distillation methods with KD, demonstrating the
compatibility of our objective is provided in Tab. [I3]
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Table 11: Classification accuracy of different pairs of the teacher model (T) and the student model (S) with
various knowledge distillation methods on the CIFAR-100 dataset. The table is divided into two sections:
the left section presents results for homogeneous T/S model pairs, averaged over 5 runs, while the right
section details the classification accuracy for heterogeneous T/S model pairs, with averages taken over 3
runs.

/S Pair WRN40-2/ WRN40-2/ ResNet-32x4/ VGG-13/ VGG-13/ ResNet-32x4/ ResNet-32x4/ WRN-40-2/
WRN16-2(%) WRN40-1(%) ResNet-8x4 (%) VGG-8 (%) MobileNetV2 (%)  ShuffleNetV1 (%)  ShuffleNetV2 (%)  ShuffleNetV1 (%)

Teacher 75.61 75.61 79.42 74.64 74.64 79.42 79.42 75.61

Student 73.26 71.98 73.09 70.36 64.60 70.50 71.82 70.50

Method baseline  SFKD | baseline SFKD | baseline SFKD |baseline SFKD |baseline SFKD |baseline SFKD |baseline SFKD |baseline SFKD

74.92  75.3940.20 | 73.54 T4.054022| 73.33 T4d4lioa2| 72.98 73.58x023 | 67.37 68.30x0a7 | T4.07 T4T3i0a7| 7445 T75.5010.0s | 74.83 76.16x0.15
73.58  73.80x0.13 | 7224 72.604027| 73.50 74431026 | 71.02 72351026 | 64.14 65294043 | 73.59 T44dioa3| 73.54  75.30x0.a7| 73.73  T4.99:034
74.08  T4.5840.30 | T2.77  T3.42401s| 73.44  T3.Tlioae| T1.43 72541032 | 59.40 60.824031 | TL73 73424013 | 72.73  73.621p027| 73.32 T4.3lioao
73.83  T4.8840.30 | 7243  T3.5lposs| 7294 T3.214007| 72.68 73234019 | 66.30 67.0540.20 | 73.48 76.0540.32| 74.56 76.2040.20 | 74.52  76.11i0.3
73.56  T3.7340.22 | 7221 T2424015| 7297 73174012 | 70.71 71971030 | 64.86 65584014 | T1.14  T1.844016| 71.29 73.0d4036 | 71.38  72.0710.22
7411 T4.63+0.20 | 73.30  73.6240.1s | 73.09 73.3910.16| 7123 71941022 | 65.56 65.72+0.42 | 73.38 74194028 | 73.40 74.9340.07| 73.61  75.0510.21
7335  T3.7610.20 | 7222  T2.5610.24 | 71.90 72591008 | 7148 71.66:023 | 64.52 65.58+0.21 | 7228 T3.1510.19| 73.21 74131038 | 72.21  73.53:0.30
T4.54  T5.26+0.14 | T3.45 T73.8340.20| 73.64 74361017 | 72.88 73191021 | 67.13  68.0310.20 | 7410  75.0240.03 | T4.69 75.844035 | 73.89 75291029
7548  T5.7640.as | T4.14 T4434029| 75.51 75.8040.19 | 73.94 74081007 | 69.73  69.8440.27 | T5.11  T75.844027| 75.65 76.331026| 76.05 76.3610.30
76.23  76.53+0.31 | 75.56 75.8Ti0.21| 78.08 78531024 | 74.93 75231008 | 68.95 70.381031| T7.18  T7.8240.as5| 7839 T848i0a3| T7.09  77.64:0.10

J[2019)
Park et al.|[201]
Passalis & Tefas| [2018

Tian et al.[2019]

C.1 Data-Free Knowledge Distillation.

We extend our investigation to the domain of Data-Free Knowledge Distillation (DFKD) specifically to
evaluate our method’s robustness when dealing with potentially degraded and/or suboptimal feature maps.
While our method is designed to leverage high-quality feature maps from well-trained teacher models, we
recognize that such optimal conditions may not always be available in real-world applications. Through
DFKD experiments, we deliberately test our approach in scenarios where feature map quality is inherently
compromised due to the synthetic nature of the training data.

Using DeeplInversion (DI) 2020), we synthesize 100K CIFAR-10 images from teacher models VGG-
11 and ResNet-34. To comprehensively assess how our method performs with these potentially degraded
feature maps, we employ multiple evaluation metrics: (a) single-value measures including Inception Score
(IS) (Salimans et al. [2016]) and Frechet Inception Distance (FID) (Heusel et all 2017), and (b) two-value
measures such as Precision and Recall (P&R) (Sajjadi et al., |2018). These metrics help quantify both the
quality degradation in synthetic data and our method’s resilience to such degradation. Tab. [I2] presents a
comparative analysis between our synthesized images and those generated by WGAN-GP, a baseline GAN-
based model trained on original data.

Table 12: Metric result of synthesized images. A higher score of IS, Precision and Recall is better, whereas
a lower score of FID is better.

CIFAR-10
Inverted Model IS + FID | Precision T Recall 1
VGG-11 2.91 176.76  0.3824 0.0022
ResNet-34 4.21  99.79 0.5824 0.1928
WGAN-GP (Gulrajani et al.| 2017) 7.86 29.30 0.7040 0.4353

C.2 More Visualizations

In Fig.[7] we present visualizations comparing feature representations from models trained with our proposed
distillation method (SFKD), alongside those from a teacher model, a student model trained without distil-
lation, and CRD (Tian et all [2019). The visual evidence in Fig.[7] demonstrates that combining CRD with
SFKD results in more distinct and separable features compared to the original representations, suggesting
that SFKD enhances the distinguishability of deep features within the student model.
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Table 13: Test accuracy (%) of student networks on CIFAR-100 by combining distillation methods with KD,

demonstrating the compatibility of our objective.

T/S Pair WRN40-2/ WRN40-2/ ResNet-32x4/ VGG-13/
WRN16-2 (%) WRN40-1 (%) ResNet-8x4 (%) VGG-8 (%)
Teacher 75.61 75.61 79.42 74.64
Student 73.26 71.98 73.09 70.36
Method baseline SFKD | baseline SFKD | baseline SFKD | baseline SFKD
KD 74.92 75.39 73.54 74.05 73.33 74.41 72.98 73.58
KD + FitNet 75.75 75.96 74.12 74.48 74.31 75.26 73.54 73.70
KD + AT 75.28 75.73 74.45 74.80 74.26 75.43 73.62 73.70
KD + SP 75.34 75.56 73.15 74.15 74.74 75.13 73.44 73.64
KD + VID 74.79 75.32 74.20 74.60 74.82 75.36 73.96 74.18
KD + RKD 75.40 75.77 73.87 74.06 74.47 75.05 73.72 73.94
KD + PKT 76.01 76.09 74.40 74.61 74.17 74.66 73.37 73.64
T/ Pair VGG-13/ ResNet-32x4/ ResNet-32x4/ WRN-40-2/
MobileNetV2 (%) | ShuffleNetV1 (%) | ShuffleNetV2 (%) | ShuffleNetV1 (%)
Teacher 74.64 79.42 79.42 75.61
Student 64.60 70.50 71.82 70.50
KD 67.37 68.30 74.07 74.73 74.45 75.50 74.83 76.16
KD + FitNet | 68.58 68.86 74.82 75.37 75.11 76.14 75.55 76.06
KD + AT 69.34 69.62 74.76 76.40 75.30 76.70 75.61 76.61
KD + SP 66.89 68.19 73.80 75.88 75.15 76.41 75.56 76.76
KD + VID 66.91 68.49 74.28 75.32 75.78 76.15 75.36 76.82
KD + RKD 68.50 69.03 74.20 75.19 75.74 75.98 75.45 76.40
KD + PKT 67.89 68.89 74.06 75.18 75.18 76.21 75.51 76.35
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¢) SFKD [K*7] d) baseline

Figure 7: t-SNE clustering: demonstrating model accuracy on CIFAR-100. Points with the same color
indicate they are from the same category, highlighting the model’s proficiency in distinguishing between
classes. A model that groups data points closely within the same class while keeping them widely separated
from points of other classes demonstrates effective classification performance.
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