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Abstract

Traditional Knowledge Distillation (KD) transfers all outputs from a teacher model to a
student model, often introducing knowledge redundancy. This redundancy dilutes critical
information, leading to degraded student model performance. To address this, we propose
Salient Feature Masking for Knowledge Distillation (SFKD), a lightweight enhancement that
masks out less informative components and selectively distills only the top-K activations.
SFKD is a drop-in modification applicable to both logit-based and feature-based KD, incurs
negligible overhead, and sharpens the student’s learning signal. Empirically, SFKD yields
consistent gains across architectures (ConvNeXt, ViT) and scales (CIFAR-100: +5.44 pp;
CUB: +6.39 pp; ImageNet-1K: +3.57 pp). We also provide intuition from the Information
Bottleneck perspective to motivate why filtering out less salient teacher signals benefits
the student. Overall, SFKD is a simple, empirically validated method for training student
models that are both leaner and more accurate.

1 Introduction

While deep neural networks continue to grow in depth, width, and computational demands, the devices that
ultimately rely on these algorithms – mobile phones, autonomous drones, and battery-constrained sensors
– operate under tight budgets with respect to memory, energy, and latency. Knowledge distillation (KD)
addresses this gap by transferring the behavior of a high-capacity teacher network to a compact student.
Conventional pipelines, however, relay the full spectrum of teacher signals: the entire logit vector, interme-
diate feature and attention maps (Romero et al., 2014; Komodakis & Zagoruyko, 2017; Tian et al., 2019;
Chen et al., 2021b). However, such indiscriminate transfer overwhelms the student model with peripheral
or even misleading activations, thereby misguiding its limited capacity and hindering generalization (Ojha
et al., 2023).

We reinterpret distillation through the lens of the Information Bottleneck (IB) principle (Saxe et al., 2018).
Each teacher activation constitutes a noisy channel between the input–label pair (X,Y ) and a representa-
tion F . The IB objective seeks the most concise F that maximizes I(F ;Y ) while suppressing redundant
information I(X;F ). From this perspective, only a subset of the teacher’s knowledge is worth transmitting.

Guided by the IB principle, we derive Salient Feature masking for Knowledge Distillation (SFKD), a
unified top-K masking rule that filters teacher signals before they reach the student. Viewing each teacher
activation as a noisy communication channel, SFKD ranks logit entries, feature map channels, and attention
coefficients by a lightweight mutual information proxy, and retains only the K most informative elements.
By discarding poor cues, the method suppresses transfer bias and compels the student to focus on the
evidence most predictive of Y , thereby improving accuracy, robustness, and interpretability at negligible
computational cost. Our contributions are as follows:

1. Unified saliency mask for distillation. We introduce SFKD, a single top-K masking rule that
selects the most informative logits, feature-map values, and attention coefficients, and distills only
these signals from teacher to student.

2. Information-Bottleneck justification and guarantee. By re-casting the mask selection as
an Information-Bottleneck optimization, we prove that the retained activations maximize mutual
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Figure 1: The concept of the proposed SFKD. SFKD distinctively concentrates on: 1) distilling critical clas-
sification knowledge, 2) transferring essential information from intermediate layers, and 3) refining attention
mechanisms for knowledge distillation.

information I(X;FK) under a budget on student capacity, and we bound the information lost when
discarding the remaining entries.

3. SFKD drops straight into existing KD pipelines. We find that SFKD consistently raises
top-1 accuracy across CIFAR-100, CUB200, and ImageNet-1K setups, while adding negligible com-
putational overhead.

2 Related Work

Knowledge Distillation (KD) variants generally fall into three categories based on the type of knowledge
transferred: logits (Hinton et al., 2015; Furlanello et al., 2018; Mirzadeh et al., 2019; Zhao et al., 2022; Jin
et al., 2023), features (Chen et al., 2021b; Heo et al., 2019; Park et al., 2019; Peng et al., 2019; Romero et al.,
2014; Tung & Mori, 2019; Tian et al., 2019; Liu et al., 2023), and attention (Komodakis & Zagoruyko, 2017;
Guo et al., 2023). Vanilla KD (Hinton et al., 2015) transfers class predictions from the teacher’s output
layer to guide the student’s training. In contrast, feature distillation extracts knowledge from intermedi-
ate layers; for example, FitNet (Romero et al., 2014) aligns feature maps between specific teacher-student
layers. Attention-based methods (Komodakis & Zagoruyko, 2017) use attention maps derived from feature
representations for comprehensive knowledge transfer across layers. Subsequent studies explore applications
of KD in semantic segmentation (Liu et al., 2019; Yang et al., 2022), object detection (Li et al., 2024; Zhang
et al., 2024), and student architecture search (Dong et al., 2023).

Information Bottleneck (IB) is a principle introduced by (Tishby et al., 2000), which aims to extract the
most relevant information from an input. The IB method defines a trade-off between compressing the input
representation and preserving information about the target variable. The IB framework was extended to
deep learning (Tishby & Zaslavsky, 2015), proposing that deep neural networks (DNNs) implicitly optimize
this trade-off during training. (Shwartz-Ziv & Tishby, 2017) applied the IB principle to analyze the training
dynamics of DNNs, showing that the learning process can be viewed as a progression from fitting the data
to compressing irrelevant information, thereby enhancing generalization.
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(Pogodin & Latham, 2020) further advanced this field by proposing learning rules based on the IB principle,
achieving performance comparable to backpropagation in image classification tasks. More recently, (Wang
et al., 2022) found that an intermediate model, often at an optimal training checkpoint, can serve as a
more effective teacher than a fully converged model, despite its lower accuracy. In contrast, our work
uniquely applies the IB principle to interpret the KD process. While (Goldfeld et al., 2019) analyzed mutual
information compression in representation learning, we are the first to use the IB framework to specifically
examine information flow during distillation, offering novel insights into the underlying dynamics of the
process.

3 Methods

Let a ∈ RN denote a one–dimensional teacher activation (e.g., the class–logit vector, a flattened feature map,
or a flattened attention tensor). Our goal is to retain only the K most informative elements (as measured
via mutual information) and suppress the rest. We define the top-K index set as:

ITop−K = { i ∈ {1, . . . , N} | ai is among the K largest elements of a } (1)

From ITop-K we construct the binary mask M ∈ 0, 1N with components

Mi =
{

1, if i ∈ ITop-K

0, otherwise.
(2)

Applying the mask to a via the element–wise (Hadamard) product ⊙ yields the top-K masked activation:

aK := M ⊙ a. (3)

This operation leaves the K salient entries untouched (aK,i = ai for i ∈ ITop-K) and zeros out all others
(aK,i = 0 otherwise). Whenever the activation vector is denoted F we write FK = M ⊙ F for brevity.

Our findings have broad applicability, covering a wide range of distillation techniques, as illustrated in
Figure 1. We focus on standard methods representing three main families of distillation approaches:
output-based (Hinton et al., 2015), feature-based (Romero et al., 2014), and attention-based (Komodakis &
Zagoruyko, 2017). The objectives of these methods are combined with the cross-entropy loss LCLS(zs, y) :=
−

∑c
j=1 yj log σj(zs), where y is the ground-truth one-hot label vector, zs is the student’s logit output,

σj(z) = ezj/
∑
i e
zi is the softmax function, and c is the number of classes.

(1) Output-based: The salient feature masking operates on the logit space by retaining only the top-K
logits from the teacher’s distribution based on their magnitude. The knowledge transfer is then performed
through KL-divergence minimization between the masked teacher distribution and student predictions:

LKL(zs, ztK ) := −τ2
c∑
j=1

σj

(ztK
τ

)
log σj

(zs
τ

)
, (4)

where ztK denotes the teacher’s logits after top-K masking; τ is a scaling temperature; and the overall loss
function is γLCLS + αLKL with balancing parameters γ and α.

(2) Feature-based: The student’s intermediate features F (l)
s are trained to mimic only the K relevant

features of the teacher’s F (l)
tK

for a given image X at layer l. The student’s features are first projected via
a transformation function r to match the spatial dimensions or number of channels of the teacher’s features
(e.g., a linear projection layer to align the number of channels in Fs with those in Ft). Their similarity is
then optimized by minimizing the mean squared error:

LHint(F (l)
s , F

(l)
tK

) = 1
2 ||F (l)

tK
− r(F (l)

s )||22. (5)
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The total loss is γLCLS+βLHint, where γ and β are balancing parameters. ‘Hint’ represents all feature-based
KD methods.

(3) Attention-based: Let I be the set of indices representing the teacher-student activation layer pairs
where attention maps are transferred. The total attention transfer loss is then defined as:

LAT = LCLS + β

2
∑
j∈I

∥∥∥∥∥ Qjs

∥Qjs∥2
−

Qj
tK

∥Qj
tK

∥2

∥∥∥∥∥
p

(6)

where Qjs = vec(ϕ(Ajs)) and Qj
tK

= vec(ϕ(TopK(Ajt )) are respectively the j-th pair of student and top-K
elements in the teacher’s attention maps in vectorized form. A mapping function ϕ maps a 3D activation
tensor A ∈ RC×H×W to a spatial attention map. β > 0 is a balancing parameter and ∥x∥p is the ℓp norm of
vector x (typically ℓ2 norm).

4 An Information-Theoretic Perspective On SFKD

In this section, we use the well-established Information Bottleneck (IB) theory as a conceptual lens to moti-
vate and analyze SFKD. This perspective provides a clear intuition for why selectively distilling information,
rather than transferring the teacher’s entire knowledge base, can lead to more efficient and effective student
models.

4.1 The IB Principle

Let X and Y denote the input and label random variables, and let F be an intermediate representation
generated by a parameterized encoder pϕ(F |X). The classical IB objective (Tishby & Zaslavsky, 2015;
Shwartz-Ziv & Tishby, 2017) seeks a trade-off between compressing the input and preserving predictive
information about the label:

min
ϕ

I(X;F ) − ζ I(F ;Y ), (7)

where ζ > 0 controls the trade-off. We acknowledge that for deterministic networks, the mutual information
I(X;F ) is technically infinite. Following common practice in IB analysis of deep neural networks, we use
practical MI estimators that rely on well-established lower bounds, allowing us to qualitatively analyze the
information flow during training (Shwartz-Ziv & Tishby, 2017; Ahn et al., 2019).

Viewing this through the IB lens, the goal of knowledge distillation should be to create a “bottleneck” that
filters the teacher’s knowledge before it is transferred to the student. This ensures the student focuses its
limited capacity on the most salient information.

The IB principle inspires several hypotheses about how SFKD should affect the student’s learning dynamics,
which we can visualize on the “information plane” (I(X;F ) vs. I(F ;Y )).

• H1 Less input compression – By focusing only on salient features, SFKD allows the student to retain
more information about the original input, leading to a higher I(X;Fs).

• H2 Faster label informativeness – By receiving a cleaner, more concentrated learning signal, the
student model trained with SFKD should learn the relationship with the output labels more quickly,
resulting in a steeper initial increase in I(Fs;Y ).

• H3 Intermediate K is best – Transferring too little information (a very small K) or too much (no
masking) is suboptimal. An ideal “elbow point” for K should exist, where the student’s performance
is maximized.

Our empirical results, visualized in Figure 2, strongly support these hypotheses. We observe that SFKD
consistently guides the student to a better position on the information plane (H1) and accelerates the learning
of label-relevant information (H2) compared to standard KD. Furthermore, our ablation on the value of K
confirms that an intermediate level of masking is indeed optimal (H3), validating the core idea of creating
an information bottleneck.
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Figure 2: (a) An example of the optimal K selection for salient feature masking. The horizontal axis shows
the degree of Top-K sparsity (K = 1 meaning no masking). (b)–(d) The information plane for different
teacher-student networks: the mutual information trajectories with respect to the training epochs.

5 Experiments

We demonstrate that our SFKD approach is method-agnostic by testing it across various existing distillation
methods. Additionally, we show its two applications: (i) Selective Knowledge Sharing in Multi-Teacher
Knowledge Distillation and (ii) Salient Feature Masking in Data-Free Knowledge Distillation. Furthermore,
we perform ablation studies, implementing both as a standalone approach and in conjunction with the KD
loss.

Results on CIFAR-100. Table 1 demonstrates the performance and robustness of SFKD when applied to
similar vs. dissimilar model architectures. We extend our evaluation to more advanced network architectures,
including ConvNeXt and Vision Transformers: ViT-based teachers distilled to both CNN-based and ViT-
based students, with results presented in Table 2. This broader testing scope further validates the versatility
of our method across diverse neural network designs to distill knowledge effectively across any architectures,
such as from ViTs (Swin-T) to CNN-based student (ResNet-18) and from ConvNeXt to Swin-P1.

Results on ImageNet. Table 3 reports Top-1 and Top-5 accuracies for SFKD (“Ours”) compared to
baseline methods (Chen et al., 2021b; Tian et al., 2019). Across teacher–student pairs of varying capacity

1Swin-Pico referred to as Swin-P
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gaps, SFKD yields consistent gains in both metrics. These findings demonstrate the scalability of our
approach to large-scale datasets, where maintaining signal quality during transfer is particularly challenging.

Results on CUB200. Table 4 evaluates SFKD on the fine-grained CUB200 bird classification task (Welin-
der et al., 2010), which requires discriminating between subtle inter-class variations. SFKD achieves sub-
stantial accuracy improvements across all tested configurations, indicating that its selective feature transfer
enhances the capture of fine-grained discriminative cues.

Table 1: Comprehensive performance comparison on CIFAR-100. Bold indicates the best, underbar is the
second-best value.

Method Same architecture style Different architecture style
T/S Pair WRN-40-2 WRN-40-2 ResNet-32x4 VGG-13 VGG-13 ResNet-32x4 WRN-40-2

WRN-16-2 WRN-40-1 ResNet-8x4 VGG-8 MobileNetV2 ShuffleNetV2 ShuffleNetV1
Teacher 75.61 75.61 79.42 74.64 74.64 79.42 75.61
Student 73.26 71.98 73.09 70.36 64.60 71.82 70.50

CAT-KD (Guo et al., 2023) (CVPR’23) 75.60 74.82 76.91 74.65 69.13 78.41 77.35
ReviewKD (Chen et al., 2021b) (CVPR’21) 76.12 75.09 75.63 74.84 70.37 77.78 77.14

DIST (Huang et al., 2022) (NeurIPS’22) N/A 74.73 76.31 N/A N/A 77.35 N/A
KD-Zero (Li et al., 2023a) (NeurIPS’23) 76.42 N/A 77.85 75.26 70.42 77.45 77.52
Auto-KD (Li et al., 2023b) (ICCV’23) 76.86 N/A 77.61 75.36 70.58 77.52 77.46

RLD (Sun et al., 2024b) (ICCV’25) 76.02 74.88 76.64 74.93 69.97 77.56 N/A
LS (MLKD+LS) (Sun et al., 2024a) (CVPR’24) 76.95 75.56 78.28 75.22 70.94 78.76 N/A

DKD (Zhao et al., 2022) (CVPR’22) 76.24 74.81 76.32 74.68 69.71 77.07 76.70
DKD + SFKD 76.51 74.96 76.68 74.82 69.94 77.34 76.95

SimKD (Chen et al., 2022) (CVPR’22) 76.23 75.56 78.08 74.93 68.95 78.39 N/A
SimKD + SFKD 76.53 75.87 78.53 75.23 70.38 78.48 77.64

MLKD (Jin et al., 2023) (CVPR’23) 76.63 75.35 77.08 75.18 70.57 78.44 77.44
MLKD + SFKD 77.01 75.72 78.06 75.60 70.58 79.16 77.50

Table 2: SFKD with heterogeneous architectures on CIFAR-100: ViT-based teachers distilled to both CNN-
based and ViT-based students.

ViT-based Teachers T. Swin-T ViT-S Mixer-B/16 ConvNeXt-T
S. ResNet-18 ResNet-18 ResNet-18 Swin-P

Teacher acc. 89.26 92.43 87.62 88.41
Student acc. 74.01 74.01 74.01 72.63

DIST (Huang et al., 2022) 77.75 76.49 76.36 76.41
Logit-based KD (Hinton et al., 2015) 78.74 77.26 77.79 76.44

KD + SFKD 80.62+1.88 78.90+1.64 79.18+1.39 78.87+2.43

6 Discussion

Across CIFAR-100, ImageNet, and CUB200, SFKD consistently outperforms strong KD baselines, with
relative gains up to +6.39 percentage points in accuracy on the CUB200 dataset. The breadth of tested
teacher–student combinations—from homogeneous CNN–CNN settings to heterogeneous ViT–CNN and Con-
vNeXt–ViT transfers—demonstrates that SFKD’s masking mechanism generalizes well to diverse architec-
tural paradigms.

Furthermore, these performance improvements align with the Information Bottleneck perspective underpin-
ning SFKD: by filtering out low-informative activations, the method reduces transfer noise and compels the
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Table 3: Top-1 and Top-5 accuracy (%) on ImageNet validation.

Teacher/Student ResNet-34/ResNet-18 ResNet-50/MobileNet
Accuracy top-1 top-5 top-1 top-5
Teacher 73.31 91.42 76.16 92.86
Student 69.75 89.07 68.87 88.76
ReviewKD (Chen et al., 2021b) 71.61 90.51 72.56 91.00
SimKD (Chen et al., 2022) 71.59 90.48 72.25 90.86
CAT-KD (Guo et al., 2023) 71.26 90.45 72.24 91.13
AT (Komodakis & Zagoruyko, 2017) 70.69 90.01 69.56 89.33
AT+SFKD 70.84+0.15 89.91 70.88+1.32 90.00+0.67

KD (Hinton et al., 2015) 70.66 89.88 68.58 88.98
KD+SFKD 71.82+1.16 90.41+0.53 72.15+3.57 90.52+1.54

DKD (Zhao et al., 2022) 71.70 90.41 72.05 91.05
DKD+SFKD 72.10+0.4 90.70+0.29 72.95+0.9 91.30+0.25

Table 4: Performance on the CUB200 dataset was evaluated across three teacher-student configurations: 1)
identical structure but different sizes, 2) different architectures with equivalent depth, and 3) completely
different networks in both architecture and depth.

Teacher ResNet-32x4 ResNet-32x4 VGG-13 VGG-13 ResNet-50
Acc 66.17 66.17 70.19 70.19 60.01

Student MobileNetV2 ShuffleNetV1 MobileNetV2 VGG-8 ShuffleNetV1
Acc 40.23 37.28 40.23 46.32 37.28

SP (Tung & Mori, 2019) 48.49 61.83 44.28 54.78 55.31
CRD (Tian et al., 2019) 57.45 62.28 56.45 66.10 57.45

SemCKD (Chen et al., 2021a) 56.89 63.78 68.23 66.54 57.20
ReviewKD (Chen et al., 2021b) - 64.12 58.66 67.10 -

KD (Hinton et al., 2015) 56.09 61.68 53.98 64.18 57.21
KD+SFKD 61.68+5.59 65.67+3.99 60.37+6.39 65.64+1.46 61.01+3.8

DKD (Zhao et al., 2022) 59.94 64.51 58.45 67.20 59.21
DKD+SFKD 62.15+2.21 67.09+2.58 61.49+3.04 68.88+1.68 63.99+4.78

student to focus on the most predictive components. This not only yields higher accuracy but also enhances
representation quality, as corroborated by t-SNE and class activation map analyses (Section 7.3). The re-
sults further suggest that SFKD is particularly beneficial in settings with limited student capacity or noisy
supervision signals, such as data-free or multi-teacher distillation.

The empirical evidence provided supports SFKD as a lightweight, theoretically grounded enhancement to a
wide range of KD frameworks, offering both practical performance gains and conceptual clarity on the role
of selective knowledge transfer.

7 Advanced Application of SFKD

Beyond the standard single-teacher distillation framework, we demonstrate that SFKD’s core principle pro-
vides significant advantages in more complex scenarios. In this section, we explore two such advanced
applications: (1) enhancing knowledge transfer from an ensemble of models in Multi-Teacher Knowledge
Distillation and (2) improving student performance in Data-Free Knowledge Distillation. Finally, we pro-
vide a series of visualizations that offer qualitative insights into how SFKD achieves its performance gains
by improving the student’s feature representations and focus.
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Table 5: SFKD with Multi-Teacher Knowledge Distillation. The student models ShuffleNetV2 & VGG-8
were trained under the configuration of pre-trained Tri-ResNet-32x4.

Teacher Networks Student Network S. AEKD SFKD + AEKD SFKD + AEKD-F Ensemble
Tri-ResNet-32x4 ShuffleNetV2 71.82% 75.87% 76.17% 77.16% 81.31%
Tri-ResNet-32x4 VGG-8 70.36% 73.11% 73.36% 73.80% 81.31%

Table 6: Results of DFKD to various students on CIFAR-10.

Teacher Required data VGG-11 VGG-11 ResNet-34
Student VGG-11 ResNet-18 ResNet-18
Student accuracy Yes 92.25% 95.20% 95.20%
Noise ∼ N (0, 1) 13.55% 13.45% 13.61%
DeepDream No 36.59% 39.67% 29.98%
DeepInversion (DI) No 84.16% 83.82% 91.43%

DI + SFKD (K0.7) No 85.24% 84.86% 91.82%

  

input

Teacher

baseline

Ours(K  )

Figure 3: Class activation map of the distilled student model deployed with our method and baseline AT,
the teacher model. The deeper the color, the more salient the corresponding feature of the image. The top
row presents the input images, while the second, third, and fourth rows display the class activation maps of
the teacher model, baseline AT (K1), and SFKD (K⋆) respectively.

7.1 Application 1: Selective Knowledge Sharing in Multi-Teacher Knowledge Distillation

In multi-teacher distillation, conventional methods [(Du et al., 2020; You et al., 2017; Fukuda et al., 2017;
Wu et al., 2019)] that average teacher outputs risk diluting specialized knowledge. SFKD avoids this pitfall
by selectively distilling only the most salient signals from the teacher ensemble. This makes it uniquely
suited for multi-teacher contexts, a claim supported by its superior accuracy in our experiments (Table 5).
We demonstrate this by applying SFKD to the AEKD framework (Du et al., 2020), using a Tri-ResNet-32x4
ensemble to teach both VGG-8 and ShuffleNetV2 students. Across all configurations, SFKD consistently
achieves the best performance by effectively channeling the most pertinent insights from the multiple experts.
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(a) Student (b) SFKD (K0.3) (c) SFKD (K0.5) (d) SFKD (K0.7) (e) baseline CRD

Figure 4: t-SNE clustering: demonstrating model accuracy on CIFAR-100. 10 out of 100 classes were
randomly sampled, as indicated by their respective colors. A high density of same-class dots and large
separation among classes suggests better model classification accuracy.

Independent Student AT CRD SFKD

(a) Teacher: ResNet-32×4, Student: ResNet-8×4

Independent Student AT CRD SFKD

(b) Teacher: VGG-13, Student: MobileNetV2

Figure 5: Contrast in correlation matrices of teacher and student classifier weights on CIFAR-100. The
correlation matrices are computed using normalized weights.

7.2 Application 2: Salient Feature Masking in Data-Free Knowledge Distillation

Data-Free Knowledge Distillation (DFKD) relies on synthetic data, making it critical to filter out noise
and artifacts. SFKD’s methodology is particularly advantageous here, as it preserves the integrity of the
distilled knowledge by focusing only on highly informative features. This targeted knowledge transfer helps
the student model generalize better to real-world data. To validate this, we synthesized 100K images via
DeepInversion (DI) (Yin et al., 2020) from CIFAR-10-trained VGG-11 and ResNet-34 teachers. As shown
in Table 6, applying SFKD during distillation consistently improves the student’s accuracy across all tested
teacher-student pairs, highlighting its effectiveness in improving synthetic data utilization.

7.3 Visualization

To provide insight into how SFKD improves student models, we visualize and analyze the learned represen-
tations.
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Focused Attention with Class Activation Maps (CAMs). We use CAMs (Zhou et al., 2016) to
visualize where the model is “looking”. Figure 3 contrasts the student model’s attention when trained
with a baseline method (AT) versus our AT+SFKD. The baseline model’s focus often spreads to irrelevant
background areas. In contrast, the SFKD-trained student concentrates its attention squarely on the target
objects (car, bird, horse), closely mimicking the teacher’s focus and demonstrating an improved ability to
learn salient features.

Improved Feature Separability with t-SNE. To assess feature quality, we use t-SNE (van der Maaten
& Hinton, 2008) to project the feature distributions of student networks trained on CIFAR-100 (ResNet-32x4
→ ResNet-8x4). As shown in Figure 4, a student trained from scratch or with a baseline (CRD) exhibits
significant class overlap. The student trained with SFKD, however, produces feature clusters that are far
more compact and clearly separated, indicating a more discriminative and effective representation.

Classifier Pattern Matching. We further quantify the student’s ability to learn the teacher’s internal
logic by measuring the L1 error between their classifier weight correlation matricesand illustrate this variance
using a heatmap (Figure 5). Four methods were examined: the independent student without any distillation,
alongside students trained with AT (Komodakis & Zagoruyko, 2017), CRD (Tian et al., 2019), and our
approach, SFKD (K0.3). The findings demonstrate that SFKD records the minimal difference across both sets
of teacher-student pairs, showcasing SFKD’s superior ability to replicate the teacher’s correlation patterns.

8 Conclusion

In this work, we introduce salient feature masking for knowledge distillation, a simple but effective method
that selectively distills the most pertinent features to enhance student performance. Compatible with existing
KD variants, logit-based SFKD allows direct manipulation of a pre-trained network’s logits by preserving high
probability class values. This effective technique is easily applicable to large networks in real-world scenarios,
which requires no retraining or modification of the original model. Leveraging the information bottleneck
principle, we provide theoretical analysis and interoperability of SFKD’s effectiveness, which explores insights
into the teacher model’s decision-making process. Our work opens up a few interesting research directions.
First, it is intriguing to explore the characteristics of information flow during the distillation process. Second,
finding the optimal K value effectively without extensive tuning is important for the top-K salient feature
distillation regarding heterogeneous teacher-student networks.
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Appendix

This supplementary document details mutual information estimation for I(X;F ) and I(Y ;F ) (Section A),
complete training setup with hyperparameters for CIFAR-100, CUB200, and ImageNet (Section B), and
additional experiments including ablations, data-free knowledge distillation results, and representation visu-
alizations (Section C).

A Mutual Information Estimation.

Estimating I(X;F). Let R(X|F ) denote the expected error for reconstructing X from F . It is well
known that R(X|F ) follows I(X;F ) = H(X) − H(X|F ) ≥ H(X) − R(X|F ), where H(X) is the Shannon
entropy of X, which is a constant (Hjelm et al., 2019). Therefore, we estimate I(X;F ) by training a decoder
parameterized by w to obtain the minimal reconstruction loss, namely I(X;F ) ≈ maxw[H(X) −Rw(X|F )].
In practice, we use the binary cross-entropy loss for Rw(X|F ).

Estimating I(Y;F). Since I(Y ;F ) = H(Y ) − H(Y |F ) = H(Y ) − E(F,Y )[− log p(Y |F )], a straightforward
approach is to train an auxiliary classifier qψ(Y |F ) with parameters ψ to approximate p(Y |F ), such that we
have I(Y ;F ) ≈ maxψ{H(Y ) − EF [

∑
Y −p(Y |F ) log qψ(Y |F )]}. Finally, we estimate the expectation over F

using its sample mean I(Y ;F ) ≈ maxψ{H(Y ) − 1
N [

∑N
i=1 − log qψ(Yi|Fi)]}, where {(Xi, Fi, Yi)}Ni=1 are the

samples. Consequently, qψ(Y |F ) can be trained in a regular classification fashion with the cross-entropy
loss.
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Figure 6: (a) ConvNeXt-T distilled to ViT-based student, evaluated on CIFAR-100. (b)–(c) ReviewKD and
AT with our method, evaluated on ImageNet. (d) DKD with our approach, evaluated on CUB200.
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B Experimental Settings

Datasets and Baselines. In this study, we utilize the CIFAR-100 (Krizhevsky & Hinton, 2009), CUB200
(Welinder et al., 2010) datasets and ImageNet (Deng et al., 2009). To demonstrate SFKD’s versatility, we
evaluate it with multiple KD methods: vanilla KD (Hinton et al., 2015), FitNet (Romero et al., 2014), AT
(Komodakis & Zagoruyko, 2017), SP (Tung & Mori, 2019), CC (Peng et al., 2019), VID (Ahn et al., 2019),
CRD (Tian et al., 2019), RKD (Park et al., 2019), PKT (Passalis & Tefas, 2018), DKD (Zhao et al., 2022) and
Simple Knowledge Distillation (SimKD) (Chen et al., 2022). SFKD was implemented both as a standalone
approach and in conjunction with the KD loss (except vanilla KD and SimKD) to demonstrate its efficacy
and versatility. Experiments were performed using renowned backbone networks such as VGG (Simonyan
& Zisserman, 2014), ResNet (He et al., 2016), Wide Residual Networks (WRN) (Zagoruyko & Komodakis,
2016), MobileNet (Sandler et al., 2018), ShuffleNet (Ma et al., 2018; Zhang et al., 2018) and more advanced
networks, including ConvNeXt (Liu et al., 2022) and Vision Transformers (ViTs): ViT (Dosovitskiy, 2020)
and Swin (Liu et al., 2021), across a range of teacher-student model pairings. To ensure a fair comparison
with baseline methods, all training settings, including learning rate, batch size, and temperature, were
standardized according to the baseline configurations.

Training details: We follow the conventional experimental settings of previous works (Tian et al., 2019;
Zhao et al., 2022; Sun et al., 2024a;b) for CIFAR-100 and CUB200, training models for 240 epochs, except
for MLKD being 480 as in (Jin et al., 2023; Sun et al., 2024a), with the learning rate being reduced by a
factor of 10 at the 150th, 180th, and 210th epochs. The initial learning rate for architectures in the Mo-
bileNet/ShuffleNet series is 0.01, while it is 0.05 for all other architectures. A batch size 64 is used, alongside
a weight decay of 5×10−4 and stochastic gradient descent (SGD) optimizer. All results are presented as
averages from 5 trials for homogeneous (Teacher/Student) T/S pairs and 3 trials for heterogeneous T/S
pairs. We run ViT-based knowledge distillation processes for 300 epochs following the training scheme in
(Hao et al., 2024). In IB analysis, we train the decoder to convergence with the Adam optimizer, with
learning rate set to 0.05. All models on CIFAR-100 of the paper were run on NVIDIA GeForce GTX 1080 Ti
GPUs (6 GPUs). Note: the default setting is for a single-GPU training. For ImageNet, the initial learning
rate is set to 0.1 and then divided by 10 at 30th, 60th, 90th of the total 120 training epochs. We conducted
experiments on ImageNet using 24 NVIDIA A100 GPUs.

C More Ablation Studies and Results

More Experiments. Our approach effectively supports ViT distillation due to its model-agnostic nature,
with experiments conducted on CIFAR-100 under the same conditions as (Hao et al., 2024). As shown in
Table 2 of our main manuscript, our method consistently enhances KD performance across various ViT-based,
CNN-based, and MLP-based (Mixer-B/16) models. Figure 6a illustrates both training and testing accuracy
measurements comparing standard KD against KD enhanced with our SFKD method when distilling from
ConvNeXt-T to ViT-based student. Additional validation on ImageNet (Deng et al., 2009) with ReviewKD
(Chen et al., 2021b) was conducted on ResNet-50 to MobileNet, achieving Top-1 accuracy 73.25% with
SFKD, as shown in Figure 6b. Validation on CUB200 dataset (Welinder et al., 2010), DKD with our
approach in Figure 6d shows that it enhances the accuracy.

Standard Deviation for CIFAR-100 Benchmark Results. Sensitivity analyses involving a broader
range of K values variability measured by standard deviation across multiple trials on the CIFAR-100 bench-
mark is provided in Table 7 for student and teacher models that share the same architecture, over five runs,
and dissimilar architectural designs, over three runs.

Ablation study. To provide a deeper understanding of our approach, we conducted an ablation study
exploring the impact of each technique both individually and in combination with KD. The results of this
analysis can be found in Table 8. This analysis reveals how each technique affects the overall performance
and how their interactions contribute to the final results.
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Table 7: Comprehensive performance comparison on CIFAR-100. The table shows the classification accuracy
(%) for various distillation methods and their performance when enhanced with SFKD. Teacher/student pairs
are abbreviated for space (e.g., R32x4/R8x4 is ResNet-32x4/ResNet-8x4; MNV2 is MobileNetV2; SNV2 is
ShuffleNetV2).

T/S Pair WRN-40-2/
WRN-40-1

R32x4/
R8x4

VGG13/
VGG8

VGG13/
MNV2

R32x4/
SNV2

Teacher Acc. 75.61 79.42 74.64 74.64 79.42
Student Acc. 71.98 73.09 70.36 64.60 71.82

Performance Format: Baseline Method / Baseline + SFKD

KD (Hinton et al., 2015) 73.54 / 74.05±0.22 73.33 / 74.41±0.12 72.98 / 73.58±0.23 67.37 / 68.30±0.17 74.45 / 75.50±0.08
FitNet (Romero et al., 2014) 72.24 / 72.60±0.27 73.50 / 74.43±0.26 71.02 / 72.35±0.26 64.14 / 65.29±0.13 73.54 / 75.30±0.17
AT (Komodakis & Zagoruyko, 2017) 72.77 / 73.42±0.18 73.44 / 73.71±0.16 71.43 / 72.54±0.32 59.40 / 60.82±0.31 72.73 / 73.62±0.27
SP (Tung & Mori, 2019) 72.43 / 73.51±0.35 72.94 / 73.21±0.07 72.68 / 73.23±0.19 66.30 / 67.05±0.29 74.56 / 76.20±0.29
CC (Peng et al., 2019) 72.21 / 72.42±0.15 72.97 / 73.17±0.12 70.71 / 71.97±0.30 64.86 / 65.58±0.14 71.29 / 73.04±0.36
VID (Ahn et al., 2019) 73.30 / 73.62±0.18 73.09 / 73.39±0.16 71.23 / 71.94±0.22 65.56 / 65.72±0.42 73.40 / 74.93±0.07
RKD (Park et al., 2019) 72.22 / 72.56±0.24 71.90 / 72.59±0.28 71.48 / 71.66±0.23 64.52 / 65.58±0.21 73.21 / 74.13±0.38
PKT (Passalis & Tefas, 2018) 73.45 / 73.83±0.20 73.64 / 74.36±0.17 72.88 / 73.19±0.21 67.13 / 68.03±0.20 74.69 / 75.84±0.35
CRD (Tian et al., 2019) 74.14 / 74.43±0.29 75.51 / 75.80±0.19 73.94 / 74.08±0.07 69.73 / 69.84±0.27 75.65 / 76.33±0.26
SimKD (Chen et al., 2022) 75.56 / 75.87±0.21 78.08 / 78.53±0.24 74.93 / 75.23±0.08 68.95 / 70.38±0.31 78.39 / 78.48±0.13

Table 8: Individual and joint contributions to performance are illustrated through feature-based and logit-
based combinations. The baseline method represents a feature-based approach, while KD indicates a logit-
based method.

Method/T-S pair WRN-40-2/ShuffleNetV1
SP (Tung & Mori, 2019) ✓

SP + SFKD ✓

SP + KD ✓

SP + (KD+SFKD) ✓

(SP + SFKD) +KD ✓

(SP + SFKD) + (KD+SFKD) ✓

74.52 75.56 76.11 76.76 76.63 76.68

C.1 Data-Free Knowledge Distillation.

We extend our investigation to the domain of Data-Free Knowledge Distillation (DFKD) specifically to
evaluate our method’s robustness when dealing with potentially degraded and/or suboptimal feature maps.
While our method is designed to leverage high-quality feature maps from well-trained teacher models, we
recognize that such optimal conditions may not always be available in real-world applications. Through
DFKD experiments, we deliberately test our approach in scenarios where feature map quality is inherently
compromised due to the synthetic nature of the training data.

Using DeepInversion (DI) (Yin et al., 2020), we synthesize 100K CIFAR-10 images from teacher models VGG-
11 and ResNet-34. To comprehensively assess how our method performs with these potentially degraded
feature maps, we employ multiple evaluation metrics: (a) single-value measures including Inception Score
(IS) (Salimans et al., 2016) and Frechet Inception Distance (FID) (Heusel et al., 2017), and (b) two-value
measures such as Precision and Recall (P&R) (Sajjadi et al., 2018). These metrics help quantify both the
quality degradation in synthetic data and our method’s resilience to such degradation. Table 9 presents a
comparative analysis between our synthesized images and those generated by WGAN-GP, a baseline GAN-
based model trained on original data.
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Table 9: Metric result of synthesized images. A higher score of IS, Precision and Recall is better, whereas a
lower score of FID is better.

CIFAR-10
Inverted Model IS ↑ FID ↓ Precision ↑ Recall ↑
VGG-11 2.91 176.76 0.3824 0.0022
ResNet-34 4.21 99.79 0.5824 0.1928
WGAN-GP (Gulrajani et al., 2017) 7.86 29.30 0.7040 0.4353

C.2 More Visualizations

In Figure 7, we present visualizations comparing feature representations from models trained with our
proposed distillation method (SFKD), alongside those from a teacher model, a student model trained without
distillation, and CRD (Tian et al., 2019). The visual evidence in Figure 7 demonstrates that combining
CRD with SFKD results in more distinct and separable features compared to the original representations,
suggesting that SFKD enhances the distinguishability of deep features within the student model.

a) Teacher b) Student

d) baselinec) SFKD [K0.7]

Figure 7: t-SNE clustering: demonstrating model accuracy on CIFAR-100. Points with the same color
indicate they are from the same category, highlighting the model’s proficiency in distinguishing between
classes. A model that groups data points closely within the same class while keeping them widely separated
from points of other classes demonstrates effective classification performance.
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