
Workshop track - ICLR 2018

GENERATIVE MODELING FOR PROTEIN STRUCTUES

Namrata Anand & Possu Huang
Bioengineering Department
Stanford University
{namrataa, possu}@stanford.edu

ABSTRACT

We apply deep generative models to the task of generating protein structures, to-
ward application in protein design. We encode protein structures in terms of pair-
wise distances between alpha-carbons on the protein backbone, which by con-
struction eliminates the need for the generative model to learn translational and
rotational symmetries. We then introduce a convex formulation of corruption-
robust 3-D structure recovery to fold protein structures from generated pairwise
distance matrices, and solve this optimization problem using the Alternating Di-
rection Method of Multipliers. Finally, we demonstrate the effectiveness of our
models by predicting completions of corrupted protein structures and show that in
many cases the models infer biochemically viable solutions.

1 INTRODUCTION

In this paper, we use Generative Adversarial Networks (GANs) to generate novel protein structures
(Goodfellow et al. (2014); Radford et al. (2015)) and use our trained models to predict missing sec-
tions of corrupted protein structures. Analyzing the form and function of proteins is a key part of
understanding biology at the molecular and cellular level. In addition, a major engineering chal-
lenge is to design new proteins in a principled and methodical way. So far, progress in computa-
tional protein design has led to the development of new therapies (Whitehead et al. (2012); Strauch
et al. (2017)), enzymes (Röthlisberger et al. (2008); Siegel et al. (2010); Jiang et al. (2008)), small-
molecule binders (Tinberg et al. (2013)), and biosensors (Smart et al. (2017)). These efforts are
largely limited to modifying naturally occurring, or “native,” proteins. To fully control the structure
and function of engineered proteins, it is ideal in practice to design proteins de novo (Huang et al.
(2016)).

Proteins are macromolecules made up of chains of amino acids. Each amino acid has an amine
group, a carboxyl group, and one of 20 side chain (“R”) groups. The protein backbone formed
has a repeating pattern of amine and carbonyl groups, with various side chains branching off the
backbone. Interactions between side chains and the protein backbone give rise to local secondary
structure elements– such as rigid helices and sheets, or more flexible loops– and to the ultimate
tertiary structure of the protein.

We use a data representation restricted to structural information– pairwise distances of alpha-carbons
on the protein backbone. Despite this reduced representation, our method successfully learns to gen-
erate new structures and, importantly, in many cases infers viable solutions for completing corrupted
structures. We use the Alternating Direction Method of Multipliers (ADMM) algorithm (Boyd et al.
(2011)) to fold 2-D pairwise distance “maps” into 3-D Cartesian coordinates in order to evaluate the
generated structures.

The protein design process can be roughly separated into two parts: First, designing the scaffold
of a structure, and second, finding the sequence of amino acids or residues which will fold into
that structure. In practice, this is done by optimizing an energy function determined from native
structures. This is the operation at the heart of Rosetta– a widely-used tool in computational protein
design (Huang et al. (2016); Leaver-Fay et al. (2011); Huang et al. (2011)). Rosetta samples native
protein fragments to fold backbones and then optimizes over amino acid types and orientations
(“rotamers”) to determine the most likely amino acid sequence of the designed protein (Das &
Baker (2008)). We focus on the first part of this design process – generating and evaluating new

1

Workshop track - ICLR 2018

Figure 1: Examples of 20-residue inpainting solutions for 128-residue structures folded using
ADMM (PDB ID listed under structure). Native structures are colored green and reconstructed
structures are colored yellow. The omitted regions of each native structure are colored blue, and the
inpainted solutions are colored red.

protein structures. We use Rosetta as a baseline for speed and accuracy, folding structures directly
from the generated pairwise distance constraints between alpha-carbons.

The main contributions of this paper are (i) a generative model of proteins that estimates the distri-
bution of their structures in a way that is invariant to rotational and translational symmetry and (ii)
a differentiable, corruption-robust convex formulation for the resulting reconstruction problem that
scales to large problem instances.

2 METHODS AND RESULTS

Generating maps. We use deep convolutional generative adversarial networks (DCGANs) as our
generative models for protein structure (Radford et al. (2015)). Our data source is the Protein Data
Bank (Berman et al. (2000)), a repository of experimentally determined structures available on-line.
We encode 3-D structure as 2-D pairwise distances (“maps”) between alpha-carbons on the protein
backbone. Note that the maps preserve the order of the peptide chain from N- to C- terminus.

We generated 16-, 64-, 128-, and 256-residue maps by training GANs on non-overlapping fragments
of the same lengths from PDB structures. Importantly, the inputs to the model are not all distinct
domains which fold in vivo, but are fragments. Therefore, the model is not necessarily learning
protein structures which will fold, but rather is learning realistic secondary and tertiary structural
elements.

Folding maps via ADMM. In practice, using Rosetta’s optimization toolkit to find a low-energy
structure via sampling takes on the order of tens of minutes to fold small structures of less than 100
residues because of the fragment and rotamer sampling steps. Therefore we sought another, faster
way to reconstruct 3-D protein structure via the ADMM algorithm (Boyd et al. (2011)), which is a
combination of dual decomposition and the method of multipliers.

The task of determining 3-D cartesian coordinates given pairwise distance measurements is already
well-understood and has a natural formulation as a convex problem (Boyd & Vandenberghe (2004)).
Given m coordinates [a1, a2, . . . am] = A ∈ Rn×m, the Gram matrix G = ATA ∈ Sm+ . Note that
G is symmetric, positive-semidefinite with rank at most n. We want to recover A given pairwise
distance measurements D, with dij = ‖ai − aj‖2. Since gij = aTi aj and d2ij = gii+ gjj −2gij , we
can find G by solving an SDP over the positive semidefinite cone. While this optimization problem
can be solved quickly using SDP solvers for systems where n is small, the runtime of traditional
solvers is quadratic in n and renders large structure recovery problems out of reach. Hence, we use

2

Workshop track - ICLR 2018

ADMM which we found converges to the correct solution quickly. We write a modified optimization
problem

min
G,Z,η

λ ‖η‖1 +
1

2

 m∑
i=1,j=1

(gii + gjj − 2gij + ηij − d2ij)2
 + 1{Z ∈ Sm+ }

subject to G− Z = 0

(1)

where we have allowed a slack term η on each distance measurement, whose `1 norm is penalized.
Now we can decompose the problem into iterative updates over variables G, Z, and U as

Gk+1, ηk+1 = argmin
G,η

[λ ‖η‖1 +
1

2

 m∑
i=1,j=1

(gii + gjj − 2gij + ηij − d2ij)2
 +

ρ

2
‖G− Zk + Uk‖22]

Zk+1 = ΠSm
+

(Gk+1 + Uk)

Uk+1 = Uk +Gk+1 − Zk+1

(2)

with augmented Lagrangian penalty ρ > 0. The update for Z is simply the projection onto the set
of symmetric positive semidefinite matrices of rank n. We find Gk and ηk by several iterations of
gradient descent. After convergence, coordinates A can be recovered from G via SVD. Note that
this algorithm is generally applicable to any problem for structure recovery from pairwise distance
measurements, not only for protein structures.

Figure 2: Examples of inpainting for 20
missing residues on 128-residue maps.

Inpainting for protein design. We considered how to
use the trained generative models to infer contextually
correct missing portions of protein structures. We can for-
mulate this problem as an inpainting problem, where for
a subset of residues all pairwise distances are eliminated
and the task is to design a new segment reasonably, given
the context of the rest of the uncorrupted structure.

We used a modified version of the semantic inpainting
method described in Yeh et al. (2016), omitting the Pois-
son blending step. To minimize structural homology be-
tween the GAN training data and the inpainting test data,
we separated train and test structures by classified fold
type (Murzin et al. (1995)). Results for inpainting of
missing residues on 128-residue maps are shown in Fig-
ure 2. It is clear that the trained GAN can fill in semanti-
cally correct pairwise distances for the removed polypeptide sequences.

To test whether these inpainted portions correspond to legitimate reconstructions of missing parts of
the protein, we used ADMM to fold the new inpainted maps into structures. Some solutions found
are shown in Figure 1.

3 CONCLUSION

We use GANs to generate protein alpha-carbon pairwise distance maps and use ADMM to “fold” the
protein structure. We apply this method to the task of inferring completions for missing residues in
protein structures. We can extend our generative modeling procedure to solve the structure recovery
problem end-to-end. The current approach factors through the map representation, which overcon-
strains the recovery problem. By incorporating the ADMM recovery procedure as a differentiable
optimization layer of the generator, we can extend the models presented in this paper to directly
generate and evaluate 3-D structures.

ACKNOWLEDGMENTS

We would like to thank Frank DiMaio for helpful discussion on Rosetta and providing baseline
scripts to fold structures directly from pairiwse distances.

3

Workshop track - ICLR 2018

REFERENCES

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

HM Berman, J, G. Gilliland TN Bhat H. Weissig IN Shindyalov Westbrook, Z. Feng, and PE Bourne.
The protein data bank. Nucleic Acids Research, 106:16972–16977, 2000.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends R© in Machine Learning, 3(1):1–122, 2011.

Rhiju Das and David Baker. Macromolecular modeling with rosetta. Annu. Rev. Biochem., 77:
363–382, 2008.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in Neural Information Processing Systems, pp.
5769–5779, 2017.

Po-Ssu Huang, Yih-En Andrew Ban, Florian Richter, Ingemar Andre, Robert Vernon, William R
Schief, and David Baker. Rosettaremodel: a generalized framework for flexible backbone protein
design. PloS one, 6(8):e24109, 2011.

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320, 2016.

Lin Jiang, Eric A Althoff, Fernando R Clemente, Lindsey Doyle, Daniela Röthlisberger, Alexandre
Zanghellini, Jasmine L Gallaher, Jamie L Betker, Fujie Tanaka, Carlos F Barbas, et al. De novo
computational design of retro-aldol enzymes. science, 319(5868):1387–1391, 2008.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andrew Leaver-Fay, Michael Tyka, Steven M Lewis, Oliver F Lange, James Thompson, Ron Jacak,
Kristian W Kaufman, P Douglas Renfrew, Colin A Smith, Will Sheffler, et al. Rosetta3: an
object-oriented software suite for the simulation and design of macromolecules. In Methods in
enzymology, volume 487, pp. 545–574. Elsevier, 2011.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. arXiv preprint arXiv:1611.02163, 2016.

Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia. Scop: a structural classifi-
cation of proteins database for the investigation of sequences and structures. Journal of molecular
biology, 247(4):536–540, 1995.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Daniela Röthlisberger, Olga Khersonsky, Andrew M Wollacott, Lin Jiang, Jason DeChancie, Jamie
Betker, Jasmine L Gallaher, Eric A Althoff, Alexandre Zanghellini, Orly Dym, et al. Kemp
elimination catalysts by computational enzyme design. Nature, 453(7192):190, 2008.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pp. 2234–2242, 2016.

4

Workshop track - ICLR 2018

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1874–1883, 2016.

Justin B Siegel, Alexandre Zanghellini, Helena M Lovick, Gert Kiss, Abigail R Lambert, Jennifer
L St Clair, Jasmine L Gallaher, Donald Hilvert, Michael H Gelb, Barry L Stoddard, et al. Com-
putational design of an enzyme catalyst for a stereoselective bimolecular diels-alder reaction.
Science, 329(5989):309–313, 2010.

Ashley D Smart, Roland A Pache, Nathan D Thomsen, Tanja Kortemme, Graeme W Davis, and
James A Wells. Engineering a light-activated caspase-3 for precise ablation of neurons in vivo.
Proceedings of the National Academy of Sciences, 114(39):E8174–E8183, 2017.

Eva-Maria Strauch, Steffen M Bernard, David La, Alan J Bohn, Peter S Lee, Caitlin E Anderson,
Travis Nieusma, Carly A Holstein, Natalie K Garcia, Kathryn A Hooper, et al. Computational
design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding
site. Nature biotechnology, 35(7):667, 2017.

Christine E Tinberg, Sagar D Khare, Jiayi Dou, Lindsey Doyle, Jorgen W Nelson, Alberto Schena,
Wojciech Jankowski, Charalampos G Kalodimos, Kai Johnsson, Barry L Stoddard, et al. Com-
putational design of ligand-binding proteins with high affinity and selectivity. Nature, 501(7466):
212, 2013.

Timothy A Whitehead, Aaron Chevalier, Yifan Song, Cyrille Dreyfus, Sarel J Fleishman, Cecilia
De Mattos, Chris A Myers, Hetunandan Kamisetty, Patrick Blair, Ian A Wilson, et al. Optimiza-
tion of affinity, specificity and function of designed influenza inhibitors using deep sequencing.
Nature biotechnology, 30(6):543, 2012.

Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N Do. Semantic
image inpainting with perceptual and contextual losses. arXiv preprint arXiv:1607.07539, 2016.

5

Workshop track - ICLR 2018

A GAN TRAINING DETAILS

For all our models we used a fixed noise vector size of 100 units. Many of our models show inherent
instability, but usually only after converging to a very good solution for map generation. While
we implemented various methods for stabilizing GAN training (Metz et al. (2016); Arjovsky et al.
(2017); Gulrajani et al. (2017); Salimans et al. (2016)), we found that in practice for this problem,
these were not necessary for training a good model.

For upsampling by the generator, we use strided convolution transpose operations instead of pixel
shuffling (Shi et al. (2016)) or interpolation, as we found this to work better in practice. We typically
set the slope of the LeakyReLU units to 0.2 and the dropout rate to 0.1 during training. We did
not normalize input maps but scaled them down by a constant factor. During training, we enforce
that G(z) be symmetric by setting G(z) ← G(z)+G(z)T

2 before passing the generated map to the
discriminator. We train our models using the Adam optimizer (Kingma & Ba (2014)). All models
were implemented using PyTorch (Paszke et al. (2017)).

Folded structures from our trained 64-residue model are shown in Figure 3, alongside examples from
the training set. We found that the generator was able to learn to construct meaningful secondary
structure elements such as alpha helices and beta sheets, with a bias toward the former.

Figure 3: Examples of real (left) 64-residue fragments from the training dataset versus generated
(right) 64-residue fragments folded subject to distance constraints using Rosetta.

A.1 TESTING THE COMPLEXITY OF THE GAN

We asked whether for all native structures x we could find a corresponding z ∈ Rn such that
G(z) ≈ x. To do this, we optimized z using pretrained GANs with a modified reconstruction loss
objective Lz , adding a K-L divergence regularizer term LKL over the mean and variance of elements
of z.

Lz({z1, z2 . . . , zm}) =
1

m

m∑
j=1

(‖G(zj)− xj‖2) + γ LKL({z1, z2 . . . , zm}) (3)

LKL({z1, z2 . . . , zm}) = −1

2

n∑
i=1

(1 + log(σ2
i)− µ2

i − σ2
i) (4)

In practice, we calculate µi, σi over a large batch of vectors and set γ = 10. Results for recovery
of 64-residue and 128-residue structures are shown in Figure 4. We successfully recover maps with
most of the input structural details. For the 128-residue maps, occasionally details are lost in the
recovered map, which suggests perhaps we need to increase the complexity of that model.

6

Workshop track - ICLR 2018

Figure 4: Recovery of maps for 64-residue (top) and 128-residue (bottom) models by optimization
of GAN input vector z

Figure 5: Examples of non-native and incorrect 20-residue (left) and 10-residue (right) inpaint-
ing solutions for selected 128-residue and 64-residue structures, respectively, folded using ADMM
(PDB ID listed under structure). Native structures are colored green and reconstructed structures
are colored yellow. The omitted regions of each native structure are colored blue, and the inpainted
solutions are colored red.

B CORRUPTION ROBUSTNESS OF FOLDING

Figure 6: Mean rigid-body alignment error of
structures versus log fraction of corruptions logm

Our folding procedure via ADMM is fairly ro-
bust to corruption of data. In Figure 6, we show
folding error of structures versus log fraction
of corruptions logm in pairwise distances with
Lagrangian penalty weight ρ = 10 and vary-
ing slack weight λ and noise∼Unif[−c, c]. The
error is calculated by doing least-squares rigid-
body alignment of the new coordinates with re-
spect to the coordinates for the true structure.
We see that for c = 5 and c = 10, the rigid-
body alignment error is roughly constant until
about 10% of the pairwise distance measure-
ments are corrupted.

C INPAINTING EXPERIMENT DETAILS AND ANALYSIS

For inpainting, we optimize the input vector z of the GAN to find a fake image which, when over-
layed over the masked region of the input, gives a good inpainting solution. There are three loss
terms optimized for this procedure. The first is a context loss term, which is an `1 reconstruction

7

Workshop track - ICLR 2018

loss with higher weighting for pixels nearer to the masked region of the input. Given input x and bi-
nary mask M delineating the area to be inpainted, the weighting term W is found by convolving the
mask complement MC with a 2-D identity filter of fixed size. For our experiments with 64-residue
and 128-residue maps, we set the filter sizes to 9× 9 and 15× 15, respectively. The context loss is

Lcontext(z) = ‖(W ∗MC) ∗ (G(z)− x)‖1 (5)

The next loss term is a prior discriminator loss with respect to the generated image used for the
inpainting.

Lprior(z) = log(1−D(G(z))) (6)
Finally, there is the discriminator loss on the final inpainting solution.

Ldisc(z) = log(1−D(M ∗G(z) +MC ∗ x)) (7)

The full objective is
min
z

Lcontext(z) + γ Lprior(z) + Ldisc(z) (8)

where we set weighting term γ = 0.003. As during training, we enforce that the generator output
G(z) be symmetric.

Figure 7: Discriminator score and mean
coordinate `2 alignment error for 64-
residue inpainting task

In Figure 7 we see that as the inpainting task becomes
harder, the discriminator score for the inpainting solution
decreases and the rigid-body alignment error increases.
However, in the case when the inpainted solution is good
but deviates from the native structure, the rigid-body
alignment error will be high. Therefore, we cannot nec-
essarily view this metric as a good indicator of whether
the reconstructed solution is reasonable.

In Figure 5, we show some non-native and incorrect in-
painting solutions found. The model sometimes renders
a solution that does not align with the native structure, as
in 3fr4 where the solution is to lengthen a loop between a
helix and beta strand, or in 1owt where a short beta strand
is replaced by a helix of similar length and position. In
some cases, the model makes obvious mistakes, for example, in 1v88 where the a beta sheet is
replaced with a helix-like loop that folds in unnaturally on itself.

8

	Introduction
	Methods and Results
	Conclusion
	GAN training details
	Testing the complexity of the GAN

	Corruption robustness of folding
	Inpainting experiment details and analysis

