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ABSTRACT

We propose a unified framework for building unsupervised representations of enti-
ties and their compositions, by viewing each entity as a histogram (or distribution)
over its contexts. This enables us to take advantage of optimal transport and con-
struct representations that effectively harness the geometry of the underlying space
containing the contexts. Our method captures uncertainty via modelling the entities
as distributions and simultaneously provides interpretability with the optimal trans-
port map, hence giving a novel perspective for building rich and powerful feature
representations. As a guiding example, we formulate unsupervised representations
for text, and demonstrate it on tasks such as sentence similarity and word entailment
detection. Empirical results show strong advantages gained through the proposed
framework. This approach can potentially be used for any unsupervised or super-
vised problem (on text or other modalities) with a co-occurrence structure, such
as any sequence data. The key tools at the core of this framework are Wasserstein
distances and Wasserstein barycenters, hence raising the question from our title.

1 INTRODUCTION

One of the main driving factors behind the recent successes in machine learning and natural language
processing has been the development of better representation methods for data modalities. Examples
include continuous vector representations for language (Mikolov et al.|[2013; |Pennington et al., 2014)),
Convolutional Neural Network (CNN) based text representations (Collobert & Weston, [2008; [ Kim)
2014} Kalchbrenner et al., 2014} [Severyn & Moschitti, [2015} [Deriu et al.,[2017)), or via other neural
architectures such as RNNs, LSTMs (Hochreiter & Schmidhuber, |1997; Kiros et al.,[2015), all sharing
one central idea — to map input entities to dense vector embeddings lying in a low-dimensional latent
space where the semantics of the inputs are preserved.

While these existing methods represent each entity of interest (e.g., a word) directly as a single point
in space (i.e., its embedding vector), we here propose a fundamentally different approach. We focus
on co-occurrence information of the entities and their contexts (e.g. context words), and leverage
embeddings of the contexts instead of the original entities. So instead of a single point per entity, we
represent each entity by the histogram of its contexts, where the contexts themselves are represented
as points in a suitable metric space. This allows us to cast the distance between histograms associated
with the contexts as an instance of the optimal transport problem (Monge| |1781; |Kantorovich, [1942;
Villani, |2008).

Our resulting framework then intuitively seeks to minimize the cost of moving the contexts of a given
entity to the contexts of another, which motivates the naming Context Mover’s Distance (CMD). Note
that the contexts here can be words, phrases, sentences, or any generic entities co-occurring with our
entities to be represented, and these entities further could be of various kinds, including e.g., products
such as movies or web-advertisements (Grbovic et al.,[2015)), nodes in a graph (Grover & Leskovec),
2016), sequence data, or any other entities (Wu et al.,2017)). Any co-occurrence structure will allow
construction of the histogram information, which is the crucial building block of our approach.

The main motivation for our proposed approach here comes from the domain of natural language,
where the entities (words, phrases, or sentences) generally have different semantics depending on
the context under which they are present. Hence, it is important that we consider representations
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that are able to effectively capture such inherent uncertainty and polysemy, and we will argue that
histograms (or probability distributions) over embeddings allows to capture more of this information
compared to point-wise embeddings alone. We will call this histogram over contexts embeddings as
the distributional estimate of our entity of interest, while we refer to the individual embeddings of
contexts as point estimates.

The connection to optimal transport at the level of entities and contexts paves the way to make
better use of its vast toolkit (like Wasserstein distances, barycenters, barycentric coordinates, etc.)
for applications in NLP, which in the past has primarily been restricted to document distances of
original words (Kusner et al., 2015; [Huang et al., |2016)), as opposed to contexts. Thanks to the
entropic regularization introduced by |Cuturi (2013)), optimal transport computations can be carried
out efficiently in a parallel and batched manner on GPUs.

Contributions:

e Employing the notion of optimal transport of contexts as a distance measure, we illustrate
how our framework can be of benefit for various important tasks, including word and
sentence representations, sentence similarity, as well as hypernymy (entailment) detection.
The method is static and does not require any additional learning, and can be readily used
on top of existing embedding methods.

o The resulting representations via the transport map give a clear interpretation of the resulting
distance (see also Figure[I)), on top of the co-occurrence information.

e Our Context Mover’s Distance can be used to measure any kind of distance (even asymmet-
ric) between words, by defining a suitable underlying cost on the movement of contexts,
which we show can lead to a state-of-the-art metric for word entailment.

e Defining the transport over contexts has the added benefit that the representations are
compositional - they directly extend from entities to groups of entities (of any size), such
as from word to sentence representations. To this end, we utilize the notion of Wasserstein
barycenters, which to the best of our knowledge has never been considered in the past.

The proposed framework is not specific to words or sentences but can allow building unsupervised
representations for any entity and composition of entities, where a co-occurrence structure can be
devised between entities and their contexts, and we leave this direction for a future work.

2 RELATED WORK

Most of the previous work in building representations for natural language has been focused
towards vector space models, in particular, popularized through the groundbreaking work in
Word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., [2014). The key idea in these
models has been to map words which are similar in meaning to nearby points in a latent space. Based
on which, many works (Levy & Goldberg| |2014a; Melamud et al.,[2015}; [Bojanowski et al., [2016)
have suggested specializing the embeddings to capture some particular information required for the
task at hand. One of the problems that still persists is the inability to capture, within just a point
embedding, the various semantics and uncertainties associated with the occurrence of a particular
word (Huang et al., 2012 |Guo et al., [2014).

A recent line of work has proposed the view to represent words with Gaussian distributions or
mixtures of Gaussian distributions (Vilnis & McCalluml, 2014} |Athiwaratkun & Wilson, 2017)),
or hyperbolic cones (Ganea et al., [2018) for this purpose. Also, concurrent works by Muzellec
& Cuturi (2018) and [Sun et al.|(2018)) have suggested using elliptical and Gaussian distributions
endowed with a Wasserstein metric respectively. While these already provide richer information
than typical vector embeddings, their form restricts what could be gained by allowing for arbitrary
distributions. In addition, hyperbolic embeddings (Nickel & Kielal |2017;|Ganea et al., 2018)) are so
far restricted to supervised tasks (and even elliptical embeddings (Muzellec & Cuturil 2018)) to the
most extent), not allowing unsupervised representation learning as in the focus of the paper here. To
this end, we propose to represent each word with a distributional estimate (i.e., histogram over context
embeddings), that inherently relies upon the empirically obtained co-occurrence information of a
word and its contexts. Hence, this naturally allows for the use of optimal transport (or Wasserstein
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metric) in the space containing the contexts, and leads to an interpretation (Figure [I) which is not
available in the above approaches.

Amongst the few explorations of optimal transport in NLP, i.e., document distances (Kusner et al.,
2015; Huang et al.l [2016), topic modelling (Rolet et al, 2016; Xu et al.| [2018]), document clus-
tering (Ye et al., 2017), bilingual lexicon induction (Zhang et al.,|2017), or orthogonal Procrustes
mapping (Grave et al.| 2018)), the focus has been on transporting words directly. For example, the
Word Mover’s Distance (Kusner et al., 2015) casts finding the distance between documents as an
optimal transport problem between their bag of words representation. Our approach is different as
we consider the transport over contexts instead, and use it to propose a representation for words or
entities. This provides the added flexibility to establish any kind of distance between entities and
extend the representation to composition of entities in a principled manner, as will be illustrated
further through the examples of entailment detection and sentence representation respectively.

3 BACKGROUND ON OPTIMAL TRANSPORT

Optimal Transport (OT) provides a way to compare two probability distributions defined over a
space G (commonly known as the ground space), given an underlying distance or more generally a cost
of moving one point to another in the ground space. In other terms, it lifts a distance between points to
a distance between distributions. Other methods of comparing distributions, such as Kullback-Liebler
(KL), squared Hellinger, etc., only focus on the probability mass values, thus ignoring the geometry of
the ground space: something which we utilize throughout this work via OT. Also, some divergences
like KL are not defined when the supports of distributions under comparison don’t match. Hence, we
give a short yet formal background on OT in the discrete case.

Linear Program Formulation. Consider an empirical probability measure of the form yu =
Sy aid(z;) where X = (21,...,2,) € G", §(z) denotes the Dirac (unit mass) distribution
at point # € G, and (aq, . .., a,) lives in the probability simplex ¥, := {p e R} | 37" | p; = 1}.
Now given a second empirical measure, v = ZT:l b;0(y;), withY = (y1,...,ym) € G, and
(b1,...,bm) € X, and if the ground cost of moving from point x; to y; is denoted by M;;, then the
Optimal Transport distance between p and v is the solution to the following linear program.

OT(p,v; M) := min T;;M;; suchthat Vi, » Ty =a;, Vj,» Tyy=b;. (1)
Tery*™ 7 j i
Here, the optimal 7' € R™*™ is referred to as the transportation matrix: T;; denotes the optimal
amount of mass to move from point x; to point y;. Intuitively, OT is concerned with the problem of
moving goods from factories to shops in such a way that all the demands are satisfied and the overall
transportation cost is minimal.

Distance. When G = R? and the cost is defined with respect to a metric Dg over G (i.e., M;; =
Dg(x;,y;)? for any 4, j), OT defines a distance between empirical probability distributions. This
is the p-Wasserstein distance, defined as W,(u, v) := OT (s, v; Dg)l/p. In most cases, we are only
concerned with the case where p = 1 or 2.

The cost of exactly solving OT problem scales at least in O(n?log(n)) (n being the cardinality of the
support of the empirical measure) when using network simplex or interior point methods. Following
Cuturi| (2013)), we consider the entropy regularized Wasserstein distance, W), » (1, v), where the
search space for the optimal 7' is instead restricted to a smooth solution close to the extreme points of
this linear program. The regularized problem can then be solved efficiently using Sinkhorn iterations
(Sinkhorn [1964), albeit at the cost of some approximation error. The regularization strength A > 0
controls the accuracy of approximation and recovers the true OT for A = 0. The cost of the Sinkhorn
algorithm is only quadratic in n at each iteration. Recently, |Altschuler et al.|(2017) have shown that
the Sinkhorn algorithm converges in a number of iterations independent of n, thus resulting in an

overall complexity of O(n?/e3) for an e-accurate solution.

Barycenters. Further on in our discussion, we will make use of the notion of averaging in the
Wasserstein space. More precisely, the Wasserstein barycenter, introduced by Agueh & Carlier|(2011)),
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Figure 1: Illustration of Context Mover’s Distance
(CMD) (Eq. |3) between elephant & mammal (when
represented with their distributional estimates and
using entailment ground metric discussed in Sec-
tion . Here, we pick four contexts at random
from a list of top 20 contexts (in terms of PPMI)
for the two histograms. Then we plot the trans-
portation matrix (or transport map) 71" obtained in
the process of computing CMD. Note how ‘ivory’
adjusts its movement towards ‘skin’ (as in skin
color) to allow ‘poaching’ to be easily moved to
‘endangered’ as going to other contexts of ‘mam-
mal’ is costlier for ‘poaching’, thus focussing on
an overall transport cost minimization.
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is a probability measure that minimizes the sum of (p-th power) Wasserstein distances to the given mea-
sures. Formally, given N measures {v1, ..., vy} with corresponding weights n = {n1,...,nn} €
YN, the Wasserstein barycenter can be written as B, (v1, ..., vy) = argmin,, Zf\il 0 Whp (1, v4)P.
We similarly consider the regularized barycenter B, 5, using entropy regularized Wasserstein dis-
tances W), » in the above minimization problem, following Cuturi & Doucet| (2014). Employing the
method of iterative Bregman projections (Benamou et al.,|2015), we obtain an approximation of the
solution at a reasonable computational cost.

4 METHODOLOGY

In this section, we define the distributional estimate that we use to represent each entity. In view of
the guiding example of building text representations, consider each entity to be a word for simplicity.

Distributional Estimate (P{;). For a word w, its distributional estimate is built from a histogram
over the set of contexts C, and an embedding of these contexts into a space G. The histogram
essentially measures how likely it is for a word w to occur in a particular context c, i.e., probability
p(w|c). The exact formulation of this distribution is generally intractable and hence it’s common to
empirically estimate this by the number of occurrences of the word w in context c, relative to the
total frequency of context c in the corpus.

Thus one way to build this histogram is to maintain a co-occurrence matrix between words in our
vocabulary and all possible contexts, where each entry indicates how often a word and context occur
in an interval (or window) of a fixed size L. Then, the bin values (H").c¢ of the histogram (H") for
a word w, can be viewed as the row corresponding to w in this co-occurrence matrix. In Section 5}
we discuss possible modifications of the co-occurrence matrix to improve associations and how to
reduce the number of bins in the histogram.

The simplest embedding of contexts is into the space of one-hot vectors of all the possible contexts.
However, this induces a lot of sparsity/redundancy in the representation and the distance between
such emebddings of contexts does not reflect their semantics. A classical solution would be to instead
find a dense low-dimensional embedding of contexts that captures the semantics, possibly using
techniques such as SVD or deep neural networks. We denote by V' = (v.).ec an embedding of the
contexts into this low-dimensional space G C R%, which we refer to as the ground space. (We will
consider example cases of how this metric can be obtained in Sections[6|and[7})

Combining the histogram H" and the embedding V', we represent the word w by the following

empirical distribution: w w
Vo= (HY)e 6(ve). 2)
ceC
Recall that §(v.) denotes the Dirac measure at the position v of the context c. We refer to this
representation (Eq. [2) as the distributional estimate of the word.

Distance. If we equip the ground space G with a meaningful metric Dg, then we can subsequently
define a distance between the representations of two words w; and wj, as the solution to the following
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Figure 2: Illustration of three words, each with their histograms (left), as well as the point estimates
of the relevant contexts (middle), and then jointly as their distributional estimates (right). The right
figure shows how the support (i.e. context words) of histograms gets assigned on the manifold. For
example, the red bars are still associated to the histogram of ‘Tennis’, but are located at the position
of the context vectors of “Tennis’ in the ground space.

optimal transport problem:
CMD(w;, wj; DZ) = OT(IPq“j",IPq“jj;DIg’) ~ Wy (P, PLY)P. 3)

Under this formulation, we call the above distance (Eq. E]) the Context Mover’s Distance (CMD),
borrowing the name from |[Rubner et al.|(2000)’s famous Earth Mover’s Distance in computer vision.

Intuition. Two words are similar in meaning if the contexts of one word can be easily transported
to the contexts of the other, with this cost of transportation being measured by Dg. This idea still
remains in line with the distributional hypothesis (Harris,|1954; Rubenstein & Goodenough, 1965)
that words in similar contexts have similar meanings, but provides a precise way to quantify it.

Interpretation. In fact, both elements of the distributional estimate: the histogram and point
estimates are closely tied together and required to serve as an effective representation. For in-
stance, let’s take a toy example and discuss a scenario that might arise when we only have the
histogram information. Consider three words, ‘Tennis’, ‘Football’, and ‘Law’, admitting as contexts
{Stadium, Court, Match, Firm}, with respective histograms shown in left part of Figure[2] Now, if
we only took into account the histograms, we would reach the inaccurate conclusion that “Tennis’ is
closer in semantics to ‘Law’ than to ‘Football’, as there is a considerable overlap at the important
context of ‘Court’ for ‘Tennis’ and ‘Law’. Whereas, together with the point estimate information,
it is apparent that the context ‘Stadium’ (in H°°®*@!y can be more cheaply moved to ‘Court’ (in
HTemmis) but moving ‘Firm’ (in HX%?) to some context in HT "% is more costly. Lastly, in the
reverse scenario of only considering the point estimates, we would lose much of the uncertainty
associated about the contexts in which the words occur. We illustrate these scenarios in Figure [2]

Roadmap. In the next section we discuss concretely how this can be applied and for the sake of
brevity we restrict to the particular case where contexts consist of single words. Section [6]details how
this framework can be extended to obtain representation for a composition of entities via Wasserstein
barycenter. Lastly in section[7] we utilize the fact that the CMD in [3]is parameterized by ground cost,
and show how this flexibility can be used to define an asymmetric cost measuring entailment.

5 CONCRETE FRAMEWORK

Making associations better. We consider co-occurrences of a word and a context word if the latter
appears in a symmetric window of size L around the target word (the word whose distributional
estimate we seek). While each entry of the co-occurrence matrix reflects the co-occurrence count
of a target word and its context, the counts alone may not necessarily suggest a strong association
between the two. The well-known Positive Pointwise Mutual Information (PPMI) matrix (Church &
Hanks| |1990; [Levy et al.,2015) addresses this shortcoming, and is defined as follows: PPMI(w, ¢) :=

max(log(%), 0). The PPMI entries are non-zero when the joint probability of co-occurring
target and context words is higher than the probability when they are independent. Typically, these
probabilities are estimated from the co-occurrence counts in the corpus. Further improvements to
the PPMI matrix have been suggested, like in [Levy & Goldberg|(2014b)), and following them we
make use of a shifted and smoothed PPMI matrix, denoted by SPPMI,, ; where o and s denote

the smoothing and k-shift parameters|'| Overall, these variants of PPMI enable us to extract better

"Please refer to Appendixfor the definition of SPPMI and more details such as our column normalization.
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semantic associations from the co-occurrence matrix. Hence, the bin values (at context c) for the

histogram of word w in Eq. can be formulated as: (H"). := spm;/ggﬁ](w,a’ -
cec a,s 3

Computational considerations. The view of optimal transport between histograms of contexts
introduced in Eq. 3] offers a pleasing interpretation (see Figure[I). However, it might be computa-
tionally intractable in its current formulation, since the number of possible contexts can be as large
as the size of vocabulary (if the contexts are just single words) or even exponential (if contexts
are considered to be phrases, sentences and otherwise). This is problematic because the Sinkhorn
algorithm for regularized optimal transport (Cuturi, 2013| see Section 3)) scales roughly quadratically
in the histogram size, and the ground cost matrix can also become prohibitive to store in memory. One
possible fix is to instead consider a set of representative contexts in this ground space, for example
via clustering. We believe that with dense low-dimensional embeddings and a meaningful metric
between them, we may not require as many contexts as needed before. For instance, this can be
achieved by clustering the contexts with respect to metric Dg. Apart from the computational gain,
the clustering will lead to transport between more abstract contexts. This will although come at the
loss of some interpretability.

Now, consider that we have obtained K representative contexts, each covering some part Cy, of the
set of contexts C. The histogram for word w with respect to these contexts can then be written as
= Zszl (H")x 6(¥}1,). Here ¥, € V is the point estimate of the k™" representative context, and

(I:Iw) « denote the new histogram bin values with respect to the part Cy,,

o SPPMI,, 4(w,C .
H)) = —5 (0, Cr) ,with  SPPMI,, ,(w,Ct) := Y SPPMI,  (w,c). (4)
S°K  SPPMI, . (w, Cy) =

Summary. With the above aspects in account and using batched implementations on (Nvidia TitanX)
GPUs, it is possible to compute around 13,700 Wasserstein-distances/second (for histogram of size
100). Same also holds for barycenters, where we can compute 4,600 barycenters/second for sentences
of length 25 and histogram size of 100. Building this histogram information comes almost for
free during the typical learning of embeddings, as in GloVe (Pennington et al.,|2014). A practical
take-home message of this work thus is to not throw away the co-occurrence information e.g. when
using GloVe, but to instead pass it on to our method.

6 SENTENCE REPRESENTATION WITH COMB

Traditionally, the goal of this task is to develop a representation for sentences, that captures the
semantics conveyed by it. Most unsupervised representations proposed in the past rely on the
composition of vector embeddings for the words, through either additive, multiplicative, or other
ways (Mitchell & Lapatal 2008; |Arora et al.| 2017; Pagliardini et al.,|2017). We propose to represent
sentences as probability distributions to better capture the inherent uncertainty and polysemy.

Our belief is that a sentence representation is meaningful if it best captures the simultaneous occur-
rence of the words in it. We hypothesize that a sentence, S = (w1, ws, ..., wy), can be efficiently
represented via the Wasserstein barycenter (see Section |3)) of the distributional estimates of its words,

P := B, (Ml,@lv"?,...,lﬁiv"fv), (5)

which is itself again a distribution over the ground space G. We refer to this representation as the
Context Mover’s Barycenters (CoMB) henceforth. Interestingly, the classical weighted averaging
of point-estimates, like Smooth Inverse Frequency (SIF) in (Arora et al., 2017) (without principal
component removal), can be seen as a special case of CoMB, when the distribution associated to a
word is just a Dirac at its point estimate. It becomes apparent that having a rich distributional estimate
for a word could turn out to be advantageous.

Since with barycenter representation as in Eq.[5] each sentence is also a distribution over contexts,
we can utilize the Context Mover’s Distance (CMD) defined in Eq. to define the distance between
two sentences .S; and Sz, under a given ground metric Dg as follows,

CMD(S1, Sa; D%) = OT(Py!, Py?; DE) = W, A (P, P?)P. (6)
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Validation Set Test Set
Model STS16 STS12 STS13 STS14 STS15 Avg.
BowW 22.6 23.8 20.2 29.4 31.5 26.2
Skip-thought NA 30.8 24.8 314 31.0 29.5
SIF (a = 0.001, no PC removed) 22.7 32.9 214 334 37.8 314
SIF (a = 0.001, PC removed) 41.2 34.4 43.0 452 48.1 42.7
SIF (a = 0.0001, PC removed) 554 40.5 49.8 51.0 52.0 48.3
CoMB (a=0.15, 5=0.5, s=1) 474 449 48.1 50.1 52.9 49.0
CoMB (a=0.55, 5=0.5, s=5) 47.6 49.1 40.6 534 52.7 48.9
CoMB (a=0.55, 8=1, s=5) 49.1 48.3 41.5 53.6 53.3 49.2

Table 1: Performance of Context Mover’s Barycenters (CoMB) and related baselines on the STS
tasks using Toronto Book Corpusﬂ The numbers are average Pearson correlation x 100 (with respect
to groundtruth scores). CoMB outperforms the best SIF baseline on 3 out of 4 tasks in the test set and
also leads to an overall improvement on average for several hyperparameter settings. It is also 1.5x
better than the SIF with no PC removed and Skip-thought, and twice as better than BoW. Here, «, 3, s
denote the PPMI smoothing, column normalization exponent (Eq. and k-shift. Skip-thought
scores are taken from |Arora et al.[|(2017).

Empirical Evaluation. To evaluate CoMB as an effective sentence representation, we consider 24
datasets from SemEval semantic textual similarity (STS) tasks (Agirre et al.,[2012;2013;2014;[2015;
2016). The objective here is to give a score of how similar two sentences are in their meanings.

As a ground metric (Dg), we consider the Euclidean distance between the point estimates (embed-
dings) of words. We train the GloVe (Pennington et al., [2014) embeddings on the Toronto Book
Corpus (Zhu et al.,[2015)), and in this process also obtain the histogram information needed for the
distributional estimate. Since GloVe embeddings for similar words are constructed to be close in
terms of cosine similarity for similar words, we find the representative points by performing K-means
clustering with respect to this similarity for K = 300.

We benchmarkE] our performance against SIF (Smooth Inverse Frequency) from|Arora et al.|(2017)
who regard it as a “simple but tough-to-beat baseline”, Skip-thought (Kiros et al., 2015)), as well as
against the plain Bag of Words (BoW) averaging. Hyperparameters for both SIF and CoMB are tuned
on STS16, and the best configurations so obtained are used for comparison on the other STS tasks.

TableE]shows that, on all the tasks CoMB outperforms the best variant of SIF on 3 out of 4 tasks in the
test set and leads to an overall gain. Please refer to Tables [6]and [7in Appendix [A]for detailed results
and discussion. Also, we encourage the reader to check out Section [A.6] where we qualitatively
analyse CoMB & SIF.

Online computation. The principal component removal in SIF, which plays a crucial role as
evident from the Table|[T] has an aspect that typically goes under the rug. In particular, these principal
components are estimated based on embeddings of sentences in the test set. This way it cleverly
utilizes the information shared across sentences in the test set of downstream tasks, but can act as a
hindrance in the practical usecase. For instance, consider the probable scenario (like for a chatbot)
where we have to resolve a query about the similarity of two sentences in an online manner. Here
SIF would undergo a significant performance drop, but CoMB is devoid of any issues arising in the
online mode while retaining its performance.

Summary and further prospects. Our focus in these experiments was to compare methods which
can build up sentence representations by just obtaining the word vector information. Hence, we
didn’t consider unsupervised methods such as Sent2vec (Pagliardini et al.,|2017)), that are specifically
trained to work well on sentence similarity. We observe that CoMB serves as a competitive sentence

3The SIF numbers reported in|Arora et al.|(2017)) are on Common Crawl which has 840 billion tokens, and
hence have some difference on Toronto Book Corpus containing just 0.98 billion tokens.

*We use SIF’s publicly available implementation (https://github.com/PrincetonML/SIF) and
use SentEval (Conneau & Kiela,2018) for evaluating BoW and CoMB.
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representation method and remains applicable in the online usecase. The empirical results are quite
encouraging, given the fact that we haven’t even utilized the important property of non-associativity
for Wasserstein barycenters (i.e., By, (i, By (v, &) # Bp(Bp(p, v),€)). This implies that we can
take into account the word order with various aggregation strategies, like parse trees, and build the
sentence representation by recursively computing barycenters phrase by phrase, which although
remains beyond the scope of this paper.

Overall, this highlights towards the advantage of having distributional estimates for words, that can
be extended to give a meaningful representation of sentences via CoMB in a principled manner.

7 HYPERNYMY DETECTION

In linguistics, hypernymy is a relation between words (or sentences) where the semantics of one
word (the hyponym) are contained within that of another word (the hypernym). A simple form of this
relation is the is-A relation, e.g., cat is an animal. Hypernymy is a special case of the more general
concept of lexical entailment, the detection of which is relevant for tasks such as Question Answering
(QA). Given a database of lexical entailment relations containing, e.g., is-A(Roger Federer, tennis
player) might help a QA system answer “Who is Switzerland’s most successful tennis player?”.

The early unsupervised approaches for this task exploited different linguistic properties of hypernymy
(Weeds & Weir, 2003; [Kotlerman et al.| 2010; Santus et al., 2014} |[Rimell, 2014). While most of these
are count-based, point embedding based methods (Chang et al.,2017; Henderson & Popal 2016) have
become more popular in recent years. Other approaches represent words by Gaussian distributions
with KL-divergence as a measure of entailment (Vilnis & McCallum, 2014} |Athiwaratkun & Wilson,
2017). These methods have proven to be powerful, as they not only capture the semantics but also the
uncertainty about the contexts in which the word appears.

Therefore, hypernymy detection is a great testbed to verify the effectiveness of our approach (and the
particular formulation) to represent each entity by the distribution of its contexts. To be successful on
this task, a method has to consider if all contexts of the hyponym can be encompassed within the
contexts of the hypernym. It can’t just get away by predicting words that are similar. Hence, it is
natural to make use of the Context Mover’s Distance (CMD), Eq. [3] but with an appropriate ground
cost that measures entailment relations well.

For this purpose, we utilize a recently proposed method by (Henderson & Popal 2016; |Hendersonl
2017) which explicitly models what information is known about a word, by interpreting each entry of
the embedding as the degree to which a certain feature is present. Based on the logical definition
of entailment they derive an operator measuring the entailment similarity between two so-called
entailment vectors defined as follows: ¥; &¥; = o(—1;)-log o(—7;), where the sigmoid ¢ and log are
applied component-wise on the embeddings ;, U;. Thus, we use as ground cost D?f“d' = —7; © V.
This asymmetric ground cost also shows that our framework can be flexibly used with an arbitrary
cost function defined on the ground space.

For tuning the hyperparameters, we utilize the HypeNet training set of |Shwartz et al.|(2016)) (from
the random split),

Evaluation. In total, we evaluated our method on 10 standard datasets: BLESS (Baroni & Lenci,
2011), EVALution (Santus et al.,|[2015), Benotto| (2015)), Weeds et al.| (2014}, BIBLESS (Kiela et al.,
2015)), Baroni et al.| (2012), Kotlerman et al.| (2010), Levy et al.|(2014), HypeNet-Test (Shwartz et al.,
2016)), and [Turney & Mohammad| (2015). As an evaluation metric, we use average precision AP@all
Zhu| (2004). Following (Chang et al.|(2017) we pushed any OOV (out-of-vocabulary) words in the
test data to the bottom of the list, effectively assuming that the word pairs do not have a hypernym
relation.

The foremost thing that we would like to check is the benefit of having a distributional estimate
in comparison to just the point embeddings. Here, we observe that by employing CMD along
with the entailment embeddings, leads to a significant boost on most of the datasets, except on
Baroni and Turney, where the performance is still competitive with the other state of the art methods
like Gaussian embeddings. The more interesting observation is that on some datasets (EVALution,
HypeNet, LenciBenotto) we even outperform or match state-of-the-art performance (cf. Table [2),

by simply using CMD together with this ground cost Dge“d' based on the entailment embeddings.
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Validation Set Test Set
Method HypeNet-Train HypeNet-Test EVALution LenciBenotto Weeds Turney Baroni BIBLESS
GE +C NA 21.6 26.7 43.3 520 539 697 NA
GE + KL NA 23.7 29.6 45.1 513 520 64.6 NA
DIVE + C-AS NA 32.0 33.0 50.4 655 572 835 NA
DHend. 29.0 28.8 31.6 44.8 60.8 56.6 78.3 70.5
CMD g —ag0+D"" 534 53.4 38.1 50.1 63.9 560 67.5 74.0
CMD g —o50+D"™ 536 53.7 37.1 49.9 638 563 673 74.9

Table 2: Comparison of the entailment vectors from Henderson|(2017) used alone (DH") and when
used together with our Context Mover’s Distance, (CMDy, where K is the number of clusters),
in the form of ground cost D" The two listed CMD variants are the ones with best validation
performance, when K is fixed to 200 and 250. For reference, this table also includes state-of-the-art
methods, like Gaussian embeddings with cosine similarity (GE+C) or KL-divergence (GE+KL), and
DIVE. Scores for GE+C, GE+KL, and DIVE + C-AS are taken from |[Chang et al.|(2017)) as we use
the same evaluation setu[ﬂ The scores are AP@all (%). More details about the training setup and
results on other datasets (along with the effect of PPMI parameters) can be found in Section [A.T]
Section & Table[A.8]l Numbers in bold indicate the best score for that dataset and the ones
underlined denote the second best.

Notably, this approach is not specific to the entailment vectors from |Henderson| (2017 and more
accurate set of vectors might help additionally. Alternatively, this also suggests that using CMD along
with a method that produces embedding vectors (specialized for measuring the degree of entailment)
can be a potential way to further improve the performance of that method.

8 CONCLUSION

We advocate for representing entities by a distributional estimate on top of any given co-occurrence
structure. For each entity, we jointly consider the histogram information (with its contexts) as well
as the point embeddings of the contexts. We show how this enables the use of optimal transport
over distributions of contexts. Our framework results in an efficient, interpretable and compositional
metric to represent and compare entities (e.g. words) and groups thereof (e.g. sentences), while
leveraging existing point embeddings. We demonstrate its performance on several NLP tasks such as
sentence similarity and word entailment detection. Motivated by the empirical results on the selected
tasks, applying the proposed framework on co-occurrence structures beyond NLP is a promising
direction.
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A  SUPPLEMENTARY MATERIAL

A.1 EXPERIMENTAL DETAILS

Sentence Representations. While using the Toronto Book Corpus, we remove the errors caused
by crawling and pre-process the corpus by filtering out sentences longer than 300 words, thereb
removing a very small portion (500 sentences out of the 70 million sentences). We utilize the cod
from GloVe for building the vocabulary of size 205513 (obtained by setting min_count=10) and
the co-occurrence matrix (considering a symmetric window of size 10). Note that as in GloVe, the
contribution from a context word is inversely weighted by the distance to the target word, while
computing the co-occurrence. The vectors obtained via GloVe have 300 dimensions and were trained
for 75 iterations at a learning rate of 0.005, other parameters being the default ones. The performance
of these vectors from GloVe was verified on standard word similarity tasks.

Hypernymy Detection. The training of the entailment vector is performed on a Wikipedia dump
from 2015 with 1.7B tokens that have been tokenized using the Stanford NLP library (Manning et al.,
2014). In our experiments, we use a vocabulary with a size of 80’000 and word embeddings with
200 dimensions. We followed the same training procedure as described in [Henderson| (2017 and
were able to reproduce their scores on the hypernymy detection task. For tuning the hyperparameters,
we utilize the HypeNet training set of [Shwartz et al.|(2016)) (from the random split), following the
procedure indicated in |[Chang et al.|(2017)) for tuning DIVE and Gaussian embeddings.

A.2 PPMI DETAILS

Formulation and Variants. Typically, the probabilities used in PMIare estimated from the co-
occurrence counts # (w, ¢) in the corpus and lead to

PP ) = max (1o (502 o), ™

where, #(w) = > #(w,c), #(c) = >, #(w,c)and |Z] = Y > #(w,c). Also, it is known
that PPMI is biased towards infrequent words and assigns them a higher value. A common solution is
to smootherﬂ the context probabilities by raising them to an exponent of a lying between 0 and 1.
Levy & Goldberg|(2014b) have also suggested the use of the shifted PPMI (SPPMI) matrix where the
shif{’| by log(s) acts like a prior on the probability of co-occurrence of target and context pairs. These
variants of PPMI enable us to extract better semantic associations from the co-occurrence matrix.
Finally, we have

SPPML, , (w, ¢) :=max (log <#<“;é(czu)x E‘;’(jicl)a ) — log(s), 0) .

Computational aspect. We utilize the sparse matrix support of Scipy@] for efficiently carrying out
all the PPMI computations.

PPMI Column Normalizations. In certain cases, when the PPMI contributions towards the par-
titions (or clusters) have a large variance, it can be helpful to consider the fraction of Ci’s SPPMI
(Eq.[8] [O) that has been used towards a word w, instead of aggregate values used in ] Otherwise the
process of making the histogram unit sum might misrepresent the actual underlying contribution. We
call this PPMI column normalization (). In other words, the intuition is that the normlization will
balance the effect of a possible non-uniform spread in total PPMI across the clusters. We observe
that setting 3 to 0.5 or 1 help in boosting performance on the STS tasks. The basic form of column

"nttps://github.com/stanfordnlp/GloVe
8 — _ #()"
Da(c) ==  ONECALE

“Here, we denote the shift parameter by s instead of the k defined in (Levy et al.l2015) to avoid confusion
with the other usage of k.
Ynttps://docs.scipy.org/doc/scipy/reference/sparse.html
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normalization is shown in

~w (I:Iw);€ .

H = —_—— th 8
Hw= S ey, ™ ®
"), = SPPML, o (w,Ci) o)

Y, SPPMI,, 4 (w,Ck)

Another possibility while considering the normalization to have an associated parameter 3 that can
interpolate between the above normalization and normalization with respcect to cluster size.

(Hg)k = %, where
Zk:l (HB )k (10)
SPPMI,, ;(w,Ck)
N > . SPPMI, s (w, Ci)?

(Hg)w :

In particular, when 8 = 1, we recover the equation for histograms as in [9} and 3 = 0 would imply
normalization with respect to cluster sizes.

A.3 OPTIMAL TRANSPORT

Implementation aspects. We make use of the Python Optimal Transport (POTE] for performing
the computation of Wasserstein distances and barycenters on CPU. For more efficient GPU imple-
mentation, we built custom implementation using PyTorch. We also implement a batched version
for barycenter computation, which to the best of our knowledge has not been done in the past. The
batched barycenter computation relies on a viewing computations in the form of block-diagonal
matrices. As an example, this batched mode can compute around 200 barycenters in 0.09 seconds,
where each barycenter is of 50 histograms (of size 100) and usually gives a speedup of about 10x.

Scalability. For further scalability, an alternative is to consider stochastic optimal transport tech-
niques (Genevay et al., 2016). Here, the idea would be to randomly sample a subset of contexts from
the distributional estimate while considering this transport.

Stability of Sinkhorn Iterations. For all our computations involving optimal transport, we typi-
cally use A around 0.1 and make use of log or median normalization as common in POT to stabilize
the Sinkhorn iterations. Also, we observe that clipping the ground metric matrix (if it exceeds a
particular large threshold) also sometimes results in performance gains.

Value of p. It has been shown in |Agueh & Carlier| (2011)) that when the underlying space is
Euclidean and p = 2, there exists a unique minimizer to the Wasserstein barycenter problem.
But, since we are anyways solving the regularized Wasserstein barycenter (Cuturi & Doucet, 2014)
problem over here instead of the exact one, the particular value of p seems less of an issue. Empirically
in the sentence similarity experiments, we have observed p = 1 to perform better than p = 2 (by
about 2-3 points).

A.4 CLUSTERING.

For clustering, we make use of kmcuda’ efficient implementation of K-Means algorithm on GPUs.

A.5 SOFTWARE RELEASE

Core code and histograms. We plan to make all our code (for all these parts) and our pre-computed
histograms (for the mentioned datasets) publicly available on GitHub soon.

Uhttp://pot.readthedocs.io/en/stable/
Zhttps://github.com/src-d/kmcuda
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Standard evaluation suite for Hypernymy. To ease the evaluation pipeline, we have collected
the most common benchmark datasets and compiled the code for assessing a model’s performance
on hypernymy detection or directionality into a Python package, called HypEval, which is publicly
available. This also handles OOV (out-of-vocabulary) pairs in a standardized manner and allows for
efficient, batched evaluation on GPU.

A.6 QUALITATIVE ANALYSIS OF SENTENCE REPRESENTATIONS

Here, we would like to qualitatively probe the kind of results obtained when computing Wasserstein
barycenter of the distributional estimates, in particular, when using CoMB to represent sentences. To
this end, we consider a few simple sentences and find the closest word in the vocabulary for CoMB
(with respect to CMD) and contrast it to SIF with cosine distance.

uer CoMB (with CMD SIF (with cosine, no PC removal)
y
[P’ "love’, *her’] love, hope, always, actually, because, love, loved, breep-breep, want, clash-clash-clang,
’ > doubt, imagine, but, never, simply thysel, know, think, nope, life
['my’. *favorite’, "sport’| sport, costume, circus, costumes, outfits, favorite, favourite, sport, wiccan-type, pastime,
Yy > SP super, sports, tennis, brand, fabulous pastimes, sports, best, hangout, spectator
Meees e e s e best, for, also, only, or, life, day, best, c.5, writer/mummy, days,
['best’, “day’, "of”, "my", "life’] anymore, all, is, having, especially margin-bottom, time, margin-left,night
['he’, "lives, "in’, europe”, *for’] america, europe, decades, asia, millenium, lives, europe, life, america, lived,
’ g » europe, preserve, masters, majority, elsewhere, commerce world, england, france, people, c.5
['he’. "may’, "not’, ’live’] unless, perhaps, must, may, anymore, may, live, should, will, might,
’ Y ’ will, likely, youll, would, certainly must, margin-left, henreeeee, 0618082132, think
anytime, yesterday, skip, overnight, wed, help, can, going, want, go,

Ucan’, "you’, "help’, me’, "shopping’] afterward, choosing, figuring, deciding, shopping do, think, need, able, take

whenever, forgetting, afterward, pretending, rowan, lot, sleep, much, besides, better,

['he’, "likes’, *to’, "sleep’, "a’, "lot’] eden, casper, nash, annabelle, savannah, likes, really, think, probably, talk

Table 3: Top 10 closest neighbors for CoMB and SIF (no PC removed) found across the vocabulary,
and sorted in ascending order of distance from the query sentence. Words in italics are those which
in our opinion would fit well when added to one of the places in the query sentence. Note that, both
CoMB (under current formulation) and SIF don’t take the word order into account.

Observations. We find that closest neighbors (see Table ) for CoMB consist of relatively more
diverse set of words which fit well in the context of given sentence. For example, take the sentence “i

CLINT3

love her”, where CoMB captures a wide range of contexts, for example, “i actually love her”, “i love
her because”, “i doubt her love” and more. Also for an ambiguous sentence “he lives in europe for”,
the obtained closest neighbors for CoMB include: ‘decades’, ‘masters’, ‘majority’, ‘commerce’ , etc.,
while with SIF the closest neighbors are mostly words similar to one of the query words. Further, if
you look at the last three sentences in the Table 3| the first closest neighbor for CoMB even acts as
a good next word for the given query. This suggests that CoMB might perform well on the task of

sentence completion, but this additional evaluation is beyond the scope of this paper.
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A.7 DETAILED RESULTS

Detailed results of the hypernymy detection and sentence representation experiments are listed on the
following pages.

A.7.1 HYPERNYMY DETECTION

Dataset

Method BLESS EVALution LenciBenotto Weeds BIBLESS Baroni

Henderson et al. (D4 6.4 31.6 44.8 60.8 70.5 78.3

CMD (K=200) + DHend: 5.8 38.1 50.1 63.9 74.0 67.5

CMD (K =250) + DHend: 5.8 37.1 49.9 63.8 74.9 67.3
Dataset

Method Kotlerman Levy HypeNet-Test Turney Avg.Gain

Henderson et al. (DM"d) 34.0 11.7 28.8 56.6 -
CMD (K =200) + DHend 34.7 122 53.4 56.0 +3.2
CMD (K =250) + DHend 34.4 12.9 53.7 56.3 +3.3

Table 4: Comparison of the entailment vectors alone (Hend.) and when used together with our
Context Mover’s Distance, CMD(K) (where K is the number of clusters), in the form of ground cost
DHend: We also indicate the average gain in performance across these 10 datasets by using CMD
along with the entailment vectors. All scores are AP at all (%).

The above listed variants of CMD are the ones with best validation performance on HypeNet-Train
(Shwartz et al., [2016). The other hyperparameters (common) for both of them are as follows:
e PPMI smoothing, o = 0.5.
PPMI column normalization exponent, 5=0.5.
PPMI k-shift, s=1.
Regularization constant for Wasserstein distance, A=0.1

Number of Sinkhorn iterations = 500.

Log normalization of Ground Metric.

Out of Vocabulary Details.

Dataset Number of pairs (N)  Out of vocabulary pairs (OOV)
BLESS 26554 1504
EVALution 13675 92
LenciBenotto 5010 1172
Weeds 2928 354
BIBLESS 1668 33
Baroni 2770 37
Kotlerman 2940 172
Levy 12602 4926
HypeNet-Test 17670 11334
Turney 2188 173

Table 5: Dataset sizes. N is the number of word pairs in the dataset, and OOV denotes how many
word pairs are not processed.
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A.7.2 SENTENCE REPRESENTATION

We observe empirically that the PPMI smoothing parameter «, which balances the bias of PPMI
towards rare words, plays an important role. While its ideal value would vary on each task, we found
the settings mentioned in the Table [6|to work well uniformly across the above spectrum of tasks.

STS12

Model MSRpar MSRvid SMTeuroparl WordNet SMTnews

BoW 19.3 0.2 26.6 37.1 35.6
SIF (a = 0.001, no PC removed) 19.5 41.7 24.3 54.0 25.0
SIF (a = 0.001, PC removed) 21.0 36.5 31.0 554 279
SIF (a = 0.0001, PC removed) 20.1 58.8 31.2 55.8 36.9
CoMB (a=0.15, 8=0.5, s=1) 31.6 68.2 39.0 514 34.4
CoMB (a=0.55, =0.5, s=5) 32.6 63.6 48.8 534 47.1
CoMB (a=0.55, 8=1, s=5) 31.3 62.1 47.8 53.7 46.5
STS13

Model FNWN Headlines WordNet

BoW 18.4 25.8 16.2
SIF (a = 0.001, no PC removed) 11.5 46.1 6.8
SIF (a = 0.001, PC removed) 14.3 54.3 60.4
SIF (a = 0.0001, PC removed) 13.5 60.5 75.5
CoMB (a=0.15, 8=0.5, s=1) 20.6 53.7 69.9
CoMB (a=0.55, 8=0.5, s=5) 6.3 53.5 62.1
CoMB (a=0.55, f=1, s=5) 11.5 53.7 59.4
STS14

Model Forum News Headlines Images WordNet Twitter

BoW 152 397 25.8 22.9 335 39.0

SIF (@ = 0.001, no PC removed) 158  31.7 44.6 38.0 26.7 43.6
SIF (a = 0.001, PC removed) 152  35.7 52.1 474 62.6 58.0
SIF (a = 0.0001, PC removed) ~ 23.3  43.0 57.0 52.8 76.4 53.8
CoMB (a=0.15,3=0.5,s=1) 337 582 46.1 46.2 65.2 51.2
CoMB (a=0.55, 3=0.5,s=5)  32.1  62.7 48.7 51.0 67.2 55.9
CoMB (a=0.55, =1,s=5) 35.0  64.1 50.1 50.4 64.2 57.8

Table 6: Detailed test set performance of Context Mover’s Barycenters (CoMB) and related baselines
on the STS12, STS13, and STS14 tasks using Toronto Book Corpus. The numbers are average Pearson
correlation x 100 (with respect to groundtruth scores). Here, «, 3, s denote the PPMI smoothing,
column normalization exponent (Eq. [I0)), and k-shift.
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STS15

Model Forum Students Belief Headlines Images

BoW 20.1 45.4 24.4 36.5 31.2

SIF (a = 0.001, no PC removed) 26.4 38.3 31.6 523 40.4
SIF (a = 0.001, PC removed) 30.0 62.0 39.0 59.1 50.6
SIF (a = 0.0001, PC removed) 34.0 63.7 48.4 62.4 51.7
CoMB (a=0.15, =0.5,s=1)  44.7 584 43.2 60.0 584
CoMB (a=0.55, =0.5, s=5) 39.0 63.3 37.8 60.3 63.1
CoMB (a=0.55, =1, s=5) 36.8 63.0 44.5 60.7 614

Table 7: (continued from Table [6) Detailed test set performance of Context Mover’s Barycenters
(CoMB) and related baselines on the STS15 using Toronto Book Corpus. The numbers are average
Pearson correlation x 100 (with respect to groundtruth scores). Here, «, 3, s denote the PPMI
smoothing, column normalization exponent (Eq. [I0)), and k-shift.

STS16

Model Answer Headlines Plagiarism Postediting Question

BoW 17.1 33.5 25.8 37.1 -0.6

SIF (a = 0.001, no PC removed) 21.3 49.1 14.2 35.5 -6.4
SIF (a = 0.001, PC removed) 26.0 57.0 434 61.5 18.2
SIF (a = 0.0001, PC removed) 34.2 60.2 58.0 71.2 53.5
CoMB (a=0.15, 3=0.5, s=1) 21.6 51.9 48.8 64.0 50.9
CoMB (a=0.55, 3=0.5, s=5) 18.0 53.0 54.6 65.6 46.7
CoMB (a=0.55, f=1, s=5) 26.2 54.8 51.3 66.6 46.6

Table 8: Detailed validation set performance of Context Mover’s Barycenters (CoMB) and related
baselines on the STS16 using Toronto Book Corpus. The numbers are average Pearson correlation x
100 (with respect to groundtruth scores). Note that, STS16 was used as the validation set to obtain
the best hyperparameters for all the methods in these experiments. As a result, high performance on
STS16 may not be indicative of the overall performance. Here, a, 3, s denote the PPMI smoothing,
column normalization exponent (Eq. [I0), and k-shift.
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A.8 EFFECT OF PPMI PARAMETERS FOR HYPERNYMY DETECTION

Dataset

Method BLESS EVALution LenciBenotto Weeds BIBLESS Baroni

Henderson et al. (D) 6.4 31.6 44.8 60.8 70.5 78.3
CMD (a=0.15, s=1) + DHend: 7.3 37.7 49.0 63.6 74.8 64.4
CMD (a=0.15, s=5) + DHend: 6.9 39.1 494 64.3 74.0 65.2
CMD (0=0.15, s=15) + DHend: 7.0 39.8 48.5 64.7 75.0 65.6
CMD (a=0.5, s=1) + DHend 6.6 39.2 48.6 62.9 76.1 64.6
CMD (a=0.5, s=5) + DHend 5.9 40.4 49.9 65.7 73.9 67.2
CMD (a=0.5, s=15) + DHend: 5.5 40.5 49.5 66.2 72.8 67.4
Dataset

Method Kotlerman Levy Turney Avg.Gain Avg. Gain (w/o Baroni)

Henderson et al. (D) 34.0 117 56.6 - -
CMD (a=0.15, s=1) + DHHend: 33.9 10.8 572 +0.5 +2.2
CMD (a=0.15, s=5) + DHend: 342 116 570 +0.8 +2.5
CMD (a=0.15, s=15) + DHend- 34.9 123 573 +1.2 +2.9
CMD (a=0.5, s=1) + D¢ 34.7 102 568 +0.6 +2.4
CMD (a=0.5, s=5) + D 34.6 113 565 +1.2 +2.7
CMD (a=0.5, s=15) + DHend: 35.6 126  56.1 +1.3 +2.8

Table 9: Comparison of the entailment vectors alone (Hend.) and when used together with our
Context Mover’s Distance, CMD(«, s) (where « and s are the PPMI smoothing and shift parameters),
in the form of ground cost D¢ All of the CMD variants use K = 100 clusters. We observe that
using our method with the entailment vectors performs better on 8 out of 9 datasets in comparsion
to just using these vectors alone. Avg. gain refers to the average gain in performance relative to
the entailment vectors. Avg. gain w/o Baroni refers to the average performance gain excluding the
Baroni dataset. The hyperparameter « refers to the smoothing exponent and s to the shift in the PPMI
computation. All scores are AP at all (%).

This table was generated during an earlier version of the paper, when we were not considering the
validation on HypeNet-Train. Hence, the above table doesn’t contain numbers on HypeNet-Test, but
an indication of performance on it can be seen in Section[A.7.1] In any case, this table suggests that
our method works well for several PPMI hyper-parameter configurations.
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Effect of number of clusters
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Figure 3: Effect of the number of clusters (K) on validation performance. A, B, C correspond to the
three best performing variants of CoMB obtained as per validation on STS16 and as presented in
the Table[l] In particular, A denotes the hyperparameter setting of [(a=0.55, f=1, s=5], B refers
to [@=0.55, 5=0.5, s=5] and C denotes [a=0.15, 5=0.5, s=1]. The ‘avg’ plot shows the average
trend across these three configurations.

A.9 EFFECT OF NUMBER OF CLUSTERS

Here, we analyse the impact of number of clusters on the performance of Context Mover’s Barycenters
(CoMB) for the sentence similarity experiments (c.f. Section |§|) In particular, we look at the three
best performing variants (A, B, C) on the validation set (STS 16) as well as averaged across them.

We observe in Figure 3] that on average the performance significantly improves when the number of
clusters are increased until around K = 300, and beyond that mostly plateaus (£ 0.5). But, as can be
seen for variants B and C the performance typically continues to rise until X = 500. It seems that
the amount of PPMI column normalization (5 = 0.5 vs 5 = 1) might be at play here.

Overall, going from K = 300 to K = 500 comes at the cost of increased computation time, and
doesn’t lead to a substantial gain in performance. This reflects the tradeoff between accuracy and
efficiency. Hence, we stick to K = 300 for our results on sentence similarity tasks.

Such a trend seems to be inline with the ideal case where we wouldn’t need to do any clustering and
just take all possible contexts into account. Thus, it suggests that better ways (other than clustering)
to deal with this problem might further boost the performance.
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B QUALITATIVE ANALYSIS OF SENTENCE SIMILARITY

In this section, we aim to qualitatively analyse the particular examples where our method, Context
Mover’s Barycenters (CoMB), performs better or worse than the Smooth Inverse Frequency (SIF)
approach from |Arora et al.[(2017).

B.1 EVALUATION PROCEDURE

Comparing by rank. It doesn’t make much sense to compare the raw distance values between two
sentences as given by Context Mover’s Distance (CMD) for CoMB and cosine distance for SIF. This
is because the spread of distance values across sentence pairs can be quite different. Note that the
quantitative evaluation of these tasks is also carried out by Pearson/Spearman rank correlation of the
predicted distances/similarities with the ground-truth scores.

Thus, in accordance with this reasoning, we compare the similarity score of a sentence pair relative
to its rank based on ground-truth score (amongst the sentence pairs for that dataset). So, the better
method should rank sentence pairs closer to the ranking obtained via ground-truth scores.

Ground-Truth Score Implied meaning
5 The two sentences are completely equivalent, as they mean the same thing.
4 The two sentences are mostly equivalent, but some unimportant details differ.
3 The two sentences are roughly equivalent, but some important information differs/missing.
2 The two sentences are not equivalent, but share some details.
1 The two sentences are not equivalent, but are on the same topic.
0 The two sentences are completely dissimilar.

Table 10: STS ground scores and their implied meanings, as taken from |Agirre et al.[(2015)

Ground-truth details. The ground-truth scores (can be fractional) and range from O to 5, and the
meaning implied by the integral score values can be seen in the Table In the case where different
examples have the same ground-truth score, the ground-truth rank is then based on lexicographical
ordering of sentences for our qualitative evaluation procedure. (This for instance means that sentence
pairs ranging from 62 to 74 would correspond to the same ground-truth score of 4.6). The ranking is
done in the descending order of sentence similarity, i.e., most similar to least similar.

Example selection criteria. For all the examples, we compare the best variants of CoMB and SIF
on those datasets. We particularly choose those examples where there is the maximum difference in
ranks according to CoMB and SIF, as they would be more indicative of where a method succeeds
or fails. Nevertheless, such a qualitative evaluation is subjective and is meant to give a better
understanding of things happening under the hood.

B.2 EXPERIMENTS AND OBSERVATIONS

We look at examples from three datasets, namely: Images from STS15, News from STS14 and
WordNet from STS14 to get a better idea of an overall behavior. In terms of aggregate quantitative
performance, on Images and News datasets, CoOMB is better than SIF, while the opposite is true for
WordNet. These examples across the three datasets may not probably be exhaustive and are up to
subjective interpretation, but hopefully will lend some indication as to where and why each method
works.

B.2.1 TAsSK: STS14, DATASET: NEWS

We look in detail at the examples in News dataset from STS 2014 (Agirre et al.,2014). The results
of qualitative analysis on Images and WordNet datasets can be found in Section|B.5| For reference,
CoMB does a better job overall with a Pearson correlation (x100) of 64.1 versus 43.0 for SIF, as
presented in Table[§] The main observations are:

Observation 1.  Examples 1, 2, 4, 5 are sentence pairs which are equivalent in meaning (c.f.
Table[T0), but typically have additional details in the predicates of the sentences. Here, CoMB is
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Ground-Truth  Ground-Truth  CoMB SIF
Sentence 1 Sentence 2
Score Ranking Ranking Ranking
1 | the united states government and other  the united states and other nato members 4.6 30 67 152
nato members have refused to ratify the have refused ratify the amended treaty
amended treaty until officials in moscow  until russia completely withdraws from
withdraw troops from the former soviet moldova and georgia .
republics of moldova and georgia .
2 | jewish-american group the anti- the anti-defamation league took out full- 44 36 35 128
defamation league ( adl ) published page advertisments in swiss and interna-
full-page advertisements in swiss and tional newspapers earlier in april 2008
international papers in april 2008 ac- accusing switzerland of funding terror-
cusing switzerland of funding terrorism  ism through the deal .
through the deal .
3 | thejudicial order accused raghad of fund- the court accused raghad saddam hussein 42 59 258 124
ing terrorism . of funding terrorism .
4 | estonian officials stated that some of the officials in estonia including prime min- 38 86 84 206
cyber attacks that caused estonian gov- ister andrus ansip have claimed that
ernment websites to shut down temporar- some of the cyber attacks came from
ily came from computers in the admin- russian government computers including
istration of russia including in the office  computers in the office of russian presi-
of president vladimir putin . dent vladimir putin .
5 | the african union has proposed a peace- the african union has proposed a peace- 3.6 119 104 262
keeping mission to help somalia* s strug-  keeping mission to aid the struggling
gling transitional government stabilize  transitional government in stabilizing so-
somalia . malia , particularly after the withdrawal
of ethiopian forces
6 | some asean officials stated such standard- some officials stated the task would be 3.6 117 244 108
ization would be difficult due to different ~ difficult for asean members because of
countries * political systems . varied legal and political systems .
7 | nicaragua commemorated the 25th an- nicaragua has not reconciled how to ap- 24 213 250 48
niversary of the sandinista revolution . proach the anniversary of the sandinista
revolution .
8 | south korea launches new bullet train  south korea has had a bullet train system 2 232 267 130
reaching 300 kph . since the 1980s .
9 | south korea and israel oppose prolifera- china will resolutely oppose the prolifer- 14 262 164 235
tion of weapons of mass destruction and ~ ation of mass destructive weapons .
an arms race .
10 | china is north korea * s closest ally . north korea is a reclusive state . 1.2 265 279 196
11 | the chinese government gave active co- the ecuadorian foreign ministry said in 1 277 158 231
operation and assistance to the organi- a statement that delegates from the orga-
zation for the prohibition of chemical nization for the prohibition of chemical
weapons inspections . weapons ( opaq ) will also take part in
the meeting .
12 | do quy doan is a spokesman for the viet- grenell is spokesman for the u.s. mission 0.8 282 213 292
namese ministry of culture and informa- to the united nations .
tion .

Table 11: Examples of some indicative sentence pairs, from News dataset in STS/4, with ground-truth
scores and ranking as obtained via (best variants of) CoMB and SIF. The total number of sentences is
300 and the ranking is done in descending order of similarity. The method which ranks an example
closer to the ground-truth rank is better and is highlighted in blue. CoMB ranking is the one produced
when representing sentences via CoMB and then using CMD to compare them. SIF ranking is when
sentences are represented via SIF and then employing cosine similarity.

better than SIF at ranking the pairs closer to the ground-truth ranking. This probably suggests the
averaging of word embeddings, which is the 1% step in SIF, is not as resilient to the presence of such
details than the Wasserstein barycenter of distributional estimates in CoMB. We speculate that when
having distributional estimates (where multiple senses or contexts are considered), adding details can
help towards refining the particular meaning implied.

Observation 2.  Let’s consider the examples 3 and 6 where SIF is better than CoMB. These
are sentence pairs which are equivalent or roughly equivalent in meanings, but with a few words
substituted (typically subjects) like “judicial order” instead of “court” in example 3. Here it seems
that the substitution is adverse for CoMB while considering varied senses through the distributional
estimate, in comparison to looking at the “point” meaning given by SIF.
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Observation 3. In 7, 8, and 10, each sentence pair is about a common topic, but the meaning of
individual sentences is quite different. For instance, example 8: “south korea launches new bullet
train reaching 300 kph” & “south korea has had a bullet train system since the 1980s”. Or like in
example 10: “china is north korea ’ s closest ally” & “north korea is a reclusive state”. Note that
typically in these examples, the subject is same in a sentence pair, and the difference is mainly in the
predicate. Here, CoMB identifies the difference and ranks them closer to the ground-truth. Whereas,
SIF fails to understand this and ranks them as more similar (and far away) than the ground-truth.

Observation 4.  The examples 9, 11, and 12 are related sentences and differ mainly in details such
as the name of the country, person, department, i.e. proper nouns. In particular, consider example
9: “south korea and israel oppose proliferation of weapons of mass destruction and an arms race” &
“china will resolutely oppose the proliferation of mass destructive weapons”. The main difference in
these examples stems from differences in the subject rather than the predicate. CoMB considers these
sentence pairs to be more similar than suggested by ground-truth. Hence, in such scenarios where the
subject (like the particular proper nouns) makes the most difference, SIF seems to be better.

B.3 CONCLUSIONS FROM QUALITATIVE EXAMPLES

Summarizing the observations from the above qualitative analysis on News dataset we conclude
the following about the nature of success or failures of each method.

e When the subject of the sentence is similar and main difference stems from the predicate,
CoMB is the winner. This can be seen for both the case when predicates are equivalent but
described distinctly (observation I) and when predicates are not equivalent (observation 3).

e When the predicates are similar and the distinguishing factor is in the subject (or object),
SIF takes the lead. This seems to be true for both scenarios when the subject used increases
or decreases the similarity as measured by CoMB, (observations 2 and 4).

e The above two points in a way also signify where having distributional estimates can be
better or worse than point estimates.

e CoMB and SIF appear to be complementary in the kind of errors they make. Hence,
combining the two is an exciting future avenue.

Lastly, it also seems worthwhile to explore having different ground metrics for CoMB and CMD
(which are currently shared). The ground metric plays a crucial role in performance and the nature of
these observations. Employing a ground metric(s) that better handles the above subtleties would be a
useful research direction.

13 Similar findings can also be seen for the two other datasets in Section
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B.4 EFFECT OF SENTENCE LENGTH

In this section, we look at the length of sentences across all the datasets in each of the STS tasks.
Average sentence length is one measure of the complexity of a particular dataset. But looking at just
sentence lengths may not give a complete picture, especially for the textual similarity tasks where
there can be many words common between the sentence pairs. The Table |12] shows the various
statistics of each dataset, with respect to the sentence lengths along with the better method on each of
them (out of CoMB and SIF).

Avg. word overla Avg. effective sentence length
Task-Dataset #sentence pairs  Avg. sentence length & .p & A g Better method
(per sentence pair) (excluding common words)

STS12-MSRpar 750 21.16 14.17 6.99 CoMB
STS12-MSRvid 750 7.65 4.70 2.95 CoMB
STS12-SMTeuroparl 459 12.33 8.11 4.22 CoMB
STS12-WordNet 750 8.82 5.03 3.79 SIF
STS12-SMThnews 399 13.62 8.66 4.96 SIF
STS13-FNWN 189 22.94 2.53 20.41 CoMB
STS13-Headlines 750 7.80 3.76 4.05 SIF
STS13-WordNet 561 8.17 4.64 3.53 SIF
STS14-Forum 450 10.48 7.03 3.45 CoMB
STS14-News 300 17.42 11.59 5.83 CoMB
STS14-Headlines 750 791 3.89 4.01 SIF
STS14-Images 750 10.18 6.20 3.98 SIF
STS14-WordNet 750 8.87 4.83 4.05 SIF
STS14-Twitter 750 12.25 4.85 7.40 (equal)
STS15-Forum 375 17.77 429 13.49 CoMB
STS15-Students 750 10.70 5.33 5.37 CoMB
STS15-Belief 375 16.53 6.27 10.26 SIF
STS15-Headlines 750 8.00 3.71 4.29 SIF
STS15-Images 750 10.66 6.07 4.59 CoMB

Table 12: Analysis of sentence lengths in each of the datasets from STS12, STS13, STS14, and STS15.
Along with the average sentence lengths, we also measure average word overlap in the sentence
pair and thus the average effective sentence length (i.e., after excluding the overlapping/common
words in the sentence pair). For reference, we also show which out of CoMB or SIF performs better.
On STS14-Twitter, the difference in performance isn’t significant and we thus write ‘equal’ in the
corresponding cell.

Observations.

e We notice that on datasets with longer effective sentence lengths, CoMB performs better
than SIF on average. There might be other factors at play here, but if one had to pick on the
axis of effective sentence length, CoMB leads over SIF

e The above statement also aligns well with the observation I from the qualitative analysis
(c.f. Section [B.2.T), that having more details can help in refining the particular meaning or
sense implied by CoMB. (Effective sentence length can serve as a good proxy for indicating
the amount of details.)

e It also seems to explain why both methods don’t perform well (see Table [6) on STS13-
FNWN, which has on average the maximum effective sentence length (of 20.4).

e To an extent, it also points towards the effect of corpora. For instance, in a corpus such as
WordNet, which has a low average sentence length and with examples typically concerned
about word definitions (see Table , SIF seems to be better of the methods. On the other
hand, CoMB seems to be better for News (Table[TT]), Image captions (Table[I3)) or Forum.

14Effective sentence length averaged across datasets where CoMB is better is 7.48. Contrast this to an average
effective sentence length of 5.03 across datasets where SIF is better.
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B.5 ADDITIONAL QUALITATIVE ANALYSIS

B.5.1 TAsSK: STS15, DATASET: IMAGES

We consider the sentence pairs from Images dataset in STS15 task (Agirre et al., [ 2015)), as presented
in Table[I3] As a reminder, CoMB outperforms SIF on this dataset with a Pearson correlation (x100)
of 63.1 versus 51.7, as mentioned in Table[7]. The main observations are:

Ground-Truth  Ground-Truth  CoMB SIF
Sentence 1 Sentence 2
Score Ranking Ranking Ranking

1 | the man and two young boys jump ona a man and two boys are bouncing on a 4.8 68 74 640
trampoline . trampoline .

2 | aboy waves around a sparkler . ayoung boy is twisting a sparkler around 4.4 126 195 624

in the air .

3 | adog jumps in midair to catch a frisbee .  the brown dog jumps for a pink frisbee . 4 184 161 481

4 | achild is walking from one picnic table the boy hops from one picnic table to the 32 287 401 737
to another . other in the park .

5 | three boys are running on the beach play- two young boys and one young man run 32 306 260 421
ing a game . on a beach with water behind them .

6 | aboy swinging on a swing . the girl is on a swing . 24 380 410 622

7 | aman is swinging on a rope above the aman in warm clothes swinging on mon- 1.6 492 259 606
water . key bars at night .

8 | askier wearing blue snow pants is flying  a skier stands on his hands in the snow 14 514 264 605
through the air near a jump . in front of a movie camera .

9 | two black and white dogs are playing two children and a black dog are playing 1 570 185 372
together outside . out in the snow .

10 | three dogs running in the dirt . the yellow dog is running on the dirt road 1 524 303 531

11 | alittle girl and a little boy hold hands on  a little girl in a paisley dress runs across 0.4 629 683 354
a shiny slide . a sandy playground .

12 | a little girl walks on a boardwalk with a man going over a jump on his bike with 0 696 310 591
blue domes in the background . a river in the background .

Table 13: Examples of some indicative sentence pairs, from Images dataset in STS15, with ground-
truth scores and ranking as obtained via (best variants of) CoMB and SIF. The total number of
sentences is 750 and the ranking is done in descending order of similarity. The method which ranks
an example closer to the ground-truth rank is better and is highlighted in blue. CoMB ranking is the
one produced when representing sentences via CoMB and then using CMD to compare them. SIF
ranking is when sentences are represented via SIF and then employing cosine similarity.

Observation A. Example 1 to 5 indicate pairs of sentences which are essentially equivalent in
meaning, but with varying degrees of equivalence. Here, we can see that CoMB with CMD is able
to rank the similarity between these pairs quite well in comparison to SIF, even when their way of
describing is different. For instance, example 2 : “a boy waves around a sparkler” & “a young boy
is twisting a sparkler around in the air”. This points towards the benefit of having multiple senses or
contexts encoded through the distributional estimate in CoMB.

Observation B.  Next, in the examples 7 to 10, which consist of sentence pairs that are not
equivalent but have commonalities (about the topic). Here, SIF ranks the sentences closer to the
ground-truth ranking while CoMB interprets these pairs as being more common in meaning than
given by ground-truth. This could be the consequence of comparing the various senses or contexts
implied by the sentence pairs via CMD. Take for instance, example 10, “three dogs running in the
dirt” & “the yellow dog is running on the dirt road”. Since these sentences are about the similar
topic (and the major difference is in their subject), this can result in CMD considering them more
similar than cosine distance.

Observation C. For sentences which are completely dissimilar as per ground-truth, let’s look at
example 11 and 12. Consider 11, which is “a little girl and a little boy hold hands on a shiny slide”
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& “a little girl in a paisley dress runs across a sandy playground”, the sentences meaning totally
different things and CoMB seems to be better at ranking than SIF. But, consider example 12: “a
little girl walks on a boardwalk with blue domes in the background” & “a man going over a jump on
his bike with a river in the background”. One common themeE] can be thought as “a person moving
with something blue in the background”, which can result in CoMB ranking the sentence as more
similar. SIF also ranks it higher (at 591) than ground-truth (696), but is more closer than CoMB

which ranks it at 310.

B.5.2 TAsSK: STS14, DATASET: WORDNET

Lastly, we discuss the examples and observations derived from the qualitative analysis on WordNet
dataset from STS14 (Agirre et al., |2014). This dataset is comprised of sentences which are the
definitions of words/phrases, and sentence length is typically smaller than the datasets discussed
before. For reference, SIF (76.4) does better than CoMB (67.2) in terms of average Pearson correlation
(x100), as mentioned in Table [6]

Ground-Truth  Ground-Truth  CoMB SIF

Sentence 1 Sentence 2
Score Ranking Ranking Ranking
1 | combine so as to form a more complex combine so as to form a whole ; mix . 4.6 127 142 335
product .
2 | (cause to) sully the good name and rep-  charge falsely or with malicious intent ; 44 176 235 534
utation of . attack the good name and reputation of
someone .
3 | aperson or thing in the role of being a  a person or thing that takes or can take 42 248 270 535
replacement for something else the place of another .
4 | create something in the mind . form a mental image of something that 3.6 340 443 683
is not present or that is not the case .
5 | the act of surrendering an asset the act of losing or surrendering some- 3 405 445 639
thing as a penalty for a mistake or fault
or failure to perform etc .
6 | (attempt to ) convince to enroll , join or  register formally as a participant or mem- 2.8 406 423 507
participate ber .
7 | return to a prior state . return to an original state . 44 219 384 231
8 | give away something that is not needed .  give up what is not strictly needed . 42 261 709 383
9 | aperson who is a member of the senate .  a person who is a member of a partner- 0.4 553 260 429
ship .
10 | the context or setting in which something  the act of starting something . 0 717 485 707
takes place .
11 | a spatial terminus or farthest boundary a relation that provides the foundation 0 620 500 623
of something . for something .
12 | the act of beginning something new . the act of rejecting something . 0 670 677 539

Table 14: Examples of some indicative sentence pairs, from WordNet dataset in STS14, with ground-
truth scores and ranking as obtained via (best variants of) CoMB and SIF. The total number of
sentences is 750 and the ranking is done in descending order of similarity. The method which ranks
an example closer to the ground-truth rank is better and is highlighted in blue. CoMB ranking is the
one produced when representing sentences via CoMB and then using CMD to compare them. SIF
ranking is when sentences are represented via SIF and then employing cosine similarity.

Observation D. Consider examples 1 to 6 as shown in Table which fall in the category of
equivalent sentences but in varying degrees. The sentence pairs essentially indicate different ways of
characterizing equivalent things. Here, CoMB is able to rank the similarity between sentences in a
better manner than SIF. Specifically, see example 2: “( cause to ) sully the good name and reputation
of” & “charge falsely or with malicious intent ; attack the good name and reputation of someone”. It
seems that SIF is not able to properly handle the additional definition present in sentence 2 and ranks
this pair much lower in similarity at 534 versus 235 for CoMB. This is also in line with observation 1
about added details in the Section[B.2.1]

'SOf course, this is upto subjective interpretation.
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Observation E.  In the examples 7 to 9, where CoMB doesn’t do well in comparison to SIF, mainly
have a slight difference in the object of the sentence. For instance, in example 9: “a person who is a
member of the senate” & “a person who is a member of a partnership”. So based on the kind of
substituted word, looking at its various contexts via the distributional estimate can make it more or
less similar than desired. In such cases, using the “point” meanings of the objects seems to fare better.
This also aligns with the observations 2 and 4 in the Section

C QUALITATIVE ANALYSIS OF HYPERNYMY DETECTION

Here, our objective is to qualitatively analyse the particular examples where our method of using
Context Mover’s Distance (CMD) along with embeddings from Henderson|(2017) performs better or
worse than just using these entailment embeddings alone.

C.1 EVALUATION PROCEDURE

Comparing by rank. Again as in the qualitative analysis with sentence similarity, it doesn’t make
much sense to compare the raw distance/similarity values between two words as their spread across
word pairs can be quite different. We thus compare the ranks assigned to each word pair by both the
methods.

Ground-truth details. In contrast to graded ground-truth scores in the previous analysis, here we
just have a binary ground truth: ‘True’ if the hyponym-hypernym relation exists and ‘False’ when it
doesn’t. We consider the BIBLESS dataset (Kiela et al., 2015])) for this analysis, which has a total
of 1668 examples. Out of these, 33 word pairs are not in the vocabulary (see Table [5)), so we ignore
them for this analysis. Amongst the 1635 examples left, 814 are ‘True’ and 821 are ‘False’. A perfect
method should rank the examples labeled as “True’ from 1 to 814 and the ‘False’ examples from 815
to 1635. Of course, achieving this is quite hard, but the better of the methods should rank as many
examples in the desired ranges.

Example selection criteria. We look at the examples where the difference in ranks as per the two
methods is the largest. Also, for a few words, we also look at how each method ranks when present
as a hypernym and a hyponym. If the difference in ranks is defined as, CMD rank - Henderson Rank,
we present the top pairs where this difference is most positive and most negative.

C.2 RESULTS

For reference on the BIBLESS dataset, CMD performs better than Henderson embeddings quantita-
tively (c.f. Table[2)). Let’s take a look at some word pairs to get a better understanding.

C.2.1 MAXIMUM POSITIVE DIFFERENCE IN RANKS

These are essentially examples where CMD considers the entailment relation as ‘False’ while the
Henderson embeddings predict it as ‘True’, and both are most certain about their decisions. Table
shows these pairs, along with ranks assigned by the two methods and the ground-truth label for
reference.

Some quick observations: many of the word pairs which the Henderson method gets wrong are
co-hyponym pairs, such as: (‘banjo’, ‘flute’), (‘guitar’, ‘trumpet’), (‘turnip, ‘radish’). Additionally,
(‘bass’, ‘cello’ ), (‘creature’, ‘gorilla’), etc., are examples where the method has to assess not just if
the relation exists, but also take into account the directionality between the pair, which the Henderson
method seems unable to do.

C.2.2 MAXIMUM NEGATIVE DIFFERENCE IN RANKS

Now the other way around, these are examples where CMD considers the entailment relation as ‘True’
while the Henderson embeddings predict it as ‘False’, and both are most certain about their decisions.
Table [T6] shows these pairs. The examples where CMD performs poorly like, (‘box’, ‘mortality”),
(‘pistol’, ‘“initiative’) seem to be unrelated and we speculate that matching the various contexts or
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Hypernym candidate Hypernym candidate Ground Truth CMD rank Henderson rank Better Method

bass
banjo
guitar
trumpet
gill
topside
trumpet
washer
gun
cauliflower
hawk
garlic
coyote
lizard
turnip
creature
rabbit
ship
giraffe
coyote

cello

flute
trumpet
violin
goldfish
battleship
piano
dishwasher
pistol
rainbow
woodpecker
spice

beast

beast
radish
gorilla
squirrel
battleship
beast
elephant

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE

1346
1312
1249
1351
1202
1508
1289
1339
1270
1197
1265
1248
1096
1231
1060
1558
1260
1577
1220
1017

56
108
52
165
21
345
126
234
166
136
210
204
57
201
39
543
249
571
220
28

CMD
CMD
CMD
CMD
CMD
CMD
CMD
CMD
CMD
CMD
CMD
Henderson
Henderson
Henderson
CMD
CMD
CMD
CMD
Henderson
CMD

Table 15: The top word pairs with maximum positive difference in ranks (CMD rank - Henderson

rank). The rank is given out of 1635.

senses of the distributional estimate causes this behavior. One possibility to deal with this can be to
take into account the similarity between word pairs in the ground metric. Overall, CMD does a good
job at handling these pairs in comparison to the Henderson method.

Hyponym candidate Hypernym candidate Ground Truth CMD rank Henderson rank Better Method

box

radio
television
elephant
pistol
library
radio
bowl
oven

bear
stove

saw
television
library
battleship
pistol
battleship
bowl

pub

bowl

mortality
device
system
hospital
initiative
construction
system
artifact
device
creature
device

tool
equipment
site

bus

device
vehicle
container
construction
object

FALSE
TRUE
TRUE

FALSE

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

FALSE
TRUE
TRUE
TRUE
TRUE
TRUE

116
110
5
52
40
71
6
223
88
324
167
461
104
87
292
70
77
333
19
261

1534
1483
1354
1355
1316
1335
1266
1448
1279
1513
1356
1620
1244
1217
1418
1187
1175
1431
1116
1334

Henderson
CMD
CMD

Henderson

Henderson
CMD
CMD
CMD
CMD
CMD
CMD
CMD
CMD
CMD

Henderson
CMD
CMD
CMD
CMD
CMD

Table 16: The top word pairs with maximum negative difference in ranks (CMD rank - Henderson

rank). The rank is given out of 1635.
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