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ABSTRACT

Convolutional neural networks (CNNs) have achieved state of the art performance
on recognizing and representing audio, images, videos and 3D volumes; that is,
domains where the input can be characterized by a regular graph structure. How-
ever, generalizing CNNs to irregular domains like 3D meshes is challenging. Im-
portantly, training data for 3D meshes is often limited making it difficult to train
deep models. To address this, we generalize convolutional autoencoders to mesh
surfaces using a model with relatively few parameters. We perform spectral de-
composition of meshes and apply convolutions directly in frequency space. In
addition, we use max pooling and introduce upsampling within the network to
represent meshes in a low dimensional space. We construct a complex dataset
of 20,466 high resolution meshes with extreme facial expressions and encode it
using our Convolutional Mesh Autoencoder. Despite limited training data, our
method outperforms state-of-the-art PCA models of faces with 50% lower error,
while using 75% fewer parameters.

1 INTRODUCTION

Convolutional neural networks (LeCun, 1989) have achieved state of the art performance in a large
number of problems in computer vision (Krizhevsky et al., 2012; He et al., 2016), natural language
processing (Mikolov et al., 2013) and speech processing (Graves et al., 2013). In recent years, CNNs
have also emerged as rich models for generating both images (Goodfellow et al., 2014; Oord et al.,
2016) and audio (van den Oord et al., 2016). These successes may be attributed to the multi-scale
hierarchical structure of CNNs that allows them to learn translational-invariant localized features.
Since the learned filters are shared across the global domain, the number of filter parameters is
independent of the domain size. We refer the reader to Goodfellow et al. (2016) for a comprehensive
overview of deep learning methods and the recent developments in the field.

Despite the recent success, CNNs have mostly been successful in Euclidean domains with grid-
based structured data. In particular, most applications of CNNs deal with regular data structures
such as images, videos, text and audio, while the generalization of CNNs to irregular structures
like graphs and meshes is not trivial. Extending CNNs to graph structures and meshes has only
recently drawn significant attention (Bruna et al., 2013; Defferrard et al., 2016; Bronstein et al.,
2017). Following the work of Defferrard et al. (2016) on generalizing the CNNs on graphs using
fast Chebyshev filters, we introduce a convolutional mesh autoencoder architecture for realistically
representing high-dimensional meshes of 3D human faces and heads.

The human face is highly variable in shape as it is affected by many factors such as age, gender,
ethnicity etc. The face also deforms significantly with expressions. The existing state of the art
3D face representations mostly use linear transformations (Tewari et al., 2017; Li et al., 2017; Thies
et al., 2015) or higher-order tensor generalizations (Vlasic et al., 2005; Brunton et al., 2014a). While
these linear models achieve state of the art results in terms of realistic appearance and Euclidean
reconstruction error, we show that CNNs can perform much better at capturing highly non-linear
extreme facial expressions with many fewer model parameters.

One challenge of training CNNs on 3D facial data is the limited size of current datasets. Here
we demonstrate that, since these networks have fewer parameters than traditional linear models,
they can be effectively learned with limited data. This reduction in parameters is attributed to the
locally invariant convolutional filters that can be shared on the surface of the mesh. Recent work has
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exploited thousands of 3D scans and 4D scan sequences for learning detailed models of 3D faces
(Cosker et al., 2011; Yin et al., 2006; 2008; Savran et al., 2008; Cao et al., 2014). The availability
of this data enables us to a learn rich non-linear representation of 3D face meshes that can not be
captured easily by existing linear models.

In summary, our work introduces a convolutional mesh autoencoder suitable for 3D mesh process-
ing. Our main contributions are:

• We introduce a mesh convolutional autoencoder consisting of mesh downsampling and
mesh upsampling layers with fast localized convolutional filters defined on the mesh sur-
face.

• We use the mesh autoencoder to accurately represent 3D faces in a low-dimensional latent
space performing 50% better than a PCA model that is used in state of the art methods
(Tewari et al., 2017) for face representation.

• Our autoencoder uses up to 75% fewer parameters than linear PCA models, while being
more accurate on the reconstruction error.

• We provide 20,466 frames of highly detailed and complex 3D meshes from 12 different
subjects for a range of extreme facial expressions along with our code for research purposes.
Our data and code is located at http://withheld.for.review.

This work takes a step towards the application of CNNs to problems in graphics involving 3D
meshes. Key aspects of such problems are the limited availability of training data and the need
for realism. Our work addresses these issues and provides a new tool for 3D mesh modeling.

2 RELATED WORK

Mesh Convolutional Networks. Bronstein et al. (2017) give a comprehensive overview of gener-
alizations of CNNs on non-Euclidean domains, including meshes and graphs. Masci et al. (2015)
defined the first mesh convolutions by locally parameterizing the surface around each point using
geodesic polar coordinates, and defining convolutions on the resulting angular bins. In a follow-up
work, Boscaini et al. (2016) parametrized local intrinsic patches around each point using anisotropic
heat kernels. Monti et al. (2017) introduced d-dimensional pseudo-coordinates that defined a local
system around each point with weight functions. This method resembled the intrinsic mesh convo-
lution of Masci et al. (2015) and Boscaini et al. (2016) for specific choices of the weight functions.
In contrast, Monti et al. used Gaussian kernels with trainable mean vector and covariance matrix as
weight functions.

In other work, Verma et al. (2017) presented dynamic filtering on graphs where filter weights depend
on the input data. The work however did not focus on reducing the dimensionality of graphs or
meshes. Yi et al. (2017) also presented a spectral CNN for labeling nodes which did not involve
any dimensionality reduction of the meshes. Sinha et al. (2016) and Maron et al. (2017) embedded
mesh surfaces into planar images to apply conventional CNNs. Sinha et al. used a robust spherical
parametrization to project the surface onto an octahedron, which is then cut and unfolded to form a
squared image. Maron et al. (2017) introduced a conformal mapping from the mesh surface into a
flat torus.

Although, the above methods presented generalizations of convolutions on meshes, they do not
use a structure to reduce the meshes to a low dimensional space. The proposed mesh autoen-
coder efficiently handles these problems by combining the mesh convolutions with efficient mesh-
downsampling and mesh-upsampling operators.

Graph Convolutional Networks. Bruna et al. (2013) proposed the first generalization of CNNs on
graphs by exploiting the connection of the graph Laplacian and the Fourier basis (see Section 3 for
more details). This lead to spectral filters that generalize graph convolutions. Boscaini et al. (2015)
extended this using a windowed Fourier transform to localize in frequency space. Henaff et al.
(2015) built upon the work of Bruna et al. by adding a procedure to estimate the structure of the
graph. To reduce the computational complexity of the spectral graph convolutions, Defferrard et al.
(2016) approximated the spectral filters by truncated Chebyshev poynomials which avoids explicitly
computing the Laplacian eigenvectors, and introduced an efficient pooling operator for graphs. Kipf
& Welling (2016) simplified this using only first-order Chebyshev polynomials.
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However, these graph CNNs are not directly applied to 3D meshes. Our mesh autoencoder is most
similar to Defferrard et al. (2016) with truncated Chebyshev polynomials along with the efficient
graph pooling. In addition, we define mesh upsampling layer to obtain a complete mesh autoencoder
structure and use our model for representation of highly complex 3D faces obtained state of the art
results in realistic modeling of 3D faces.

Learning Face Representations. Blanz & Vetter (1999) introduced the first generic representation
for 3D faces based on principal component analysis (PCA) to describe facial shape and texture
variations. We also refer the reader to Brunton et al. (2014b) for a comprehensive overview of 3D
face representations.

Representing facial expressions with linear spaces has given state-of-the-art results till date. The
linear expression basis vectors are either computed using PCA (e.g. Amberg et al., 2008; Breidt
et al., 2011; Li et al., 2017; Tewari et al., 2017; Yang et al., 2011), or are manually defined using
linear blendshapes (e.g. Thies et al., 2015; Li et al., 2010; Bouaziz et al., 2013). Multilinear models
(Vlasic et al., 2005), i.e. higher-order generalizations of PCA are also used to model facial identity
and expression variations. In such methods, the model parameters globally influence the shape, i.e.
each parameter affects all the vertices of the face mesh. To capture localized facial details, Neumann
et al. (2013) and Ferrari et al. (2015) used sparse linear models. Brunton et al. (2014a) used a
hierarchical multiscale approach by computing localized multilinear models on wavelet coefficients.

Brunton et al. (2014a) also used a hierarchical multi-scale representation, but their method does not
use shared parameters across the entire domain. Jackson et al. (2017) use a volumetric face repre-
sentation in their CNN-based framework. In contrast to existing face representation methods, our
mesh autoencoder uses convolutional layers to represent faces with significantly fewer parameters.
Since, it is defined completely on the mesh space, we do not have memory constraints which effect
volumetric convolutional methods for representing 3D models.

3 MESH OPERATORS

We define a face mesh as a set of vertices and edges F = (V, A), with |V| = n vertices that lie in
3D Euclidean space, V ∈ Rn×3. The sparse adjacency matrix A ∈ {0, 1}n×n represents the edge
connections, where Aij = 1 denotes an edge connecting vertices i and j, and Aij = 0 otherwise.
The non-normalized graph Laplacian is defined as L = D − A (Chung, 1997), with the diagonal
matrix D that represents the degree of each vertex in V as Dii =

∑
j Aij .

The Laplacian can be diagonalized by the Fourier basis U ∈ Rn×n (as L is a real symmetric matrix)
as L = UΛUT , where the columns of U = [u0, u1, ..., un−1] are the orthogonal eigenvectors of
L, and Λ = diag([λ0, λ1, ..., λn−1]) ∈ Rn×n is a diagonal matrix with the associated real, non-
negative eigenvalues. The graph Fourier transform (Chung, 1997) of the mesh vertices x ∈ Rn×3 is
then defined as xω = UTx, and the inverse Fourier transform as x = Uxω , respectively.

Fast spectral convolutions. The convolution operator ∗ can be defined in Fourier space as a
Hadamard product, x ∗ y = U((UTx) � (UT y)). This is computationally expensive with large
number of vertices. The problem is addressed by formulating mesh filtering with a kernel gθ using
a recursive Chebyshev polynomial (Hammond et al., 2011; Defferrard et al., 2016). The filter gθ is
parametrized as a Chebyshev polynomial of order K given by

gθ(L) =

K−1∑
k=0

θkTk(L̃), (1)

where L̃ = 2L/λmax − In is the scaled Laplacian, the parameter θ ∈ RK is a vector of Chebyshev
coefficients, and Tk ∈ Rn×n is the Chebyshev polynomial of order k that can be computed recur-
sively as Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and T1 = x. The spectral convolution can
then be defined as (Defferrard et al., 2016)

yj =

Fin∑
i=1

gθi,j (L)xi ∈ Rn (2)
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Layer Input Size Output Size
Convolution 8192× 3 8192× 16
Downsampling 8192× 16 2048× 16
Convolution 2048× 16 2048× 16
Downsampling 2048× 16 512× 16
Convolution 512× 16 512× 16
Downsampling 512× 16 128× 16
Convolution 128× 16 128× 32
Downsampling 128× 32 32× 32
Fully Connected 32× 32 8

Table 1: Encoder architecture

Layer Input Size Output Size
Fully Connected 8 32× 32
Upsampling 32× 32 128× 32
Convolution 128× 32 128× 32
Upsampling 128× 32 512× 32
Convolution 512× 32 512× 16
Upsampling 512× 16 2048× 16
Convolution 2048× 16 2048× 16
Max Pool 2048× 16 8192× 16
Convolution 8192× 16 8192× 3

Table 2: Decoder architecture

that computes the jth feature of y ∈ Rn×Fout . The input x ∈ Rn×Fin has Fin features. The input
face mesh has Fin = 3 features corresponding to its 3D vertex positions. Each convolutional layer
has Fin × Fout vectors of Chebyshev coefficients θi,j ∈ RK as trainable parameters.

Mesh Sampling The mesh sampling operators define the downscaling and upscaling of the mesh
features in a neural net. We perform the in-network downsampling of a mesh with m vertices using
transform matrices Qd ∈ {0, 1}n×m, and upsampling using Qu ∈ Rm×n where m > n.

The downsampling is obtained by contracting vertex pairs iteratively that maintains surface error
approximations using quadric matrices (Garland & Heckbert, 1997). The vertices after downsam-
pling are a subset of the original mesh vertices Vd ⊂ V . Each weight Qd(p, q) ∈ {0, 1} denotes if
q-th vertex is kept during downsampling Qd(p, q) = 1, or discarded where Qd(p, q) = 0 ∀p. Since
a loss-less downsampling and upsampling is not feasable for general surfaces, the upsampling ma-
trix is built during downsampling. Vertices kept during downsampling are kept during upsampling
Qu(q, p) = 1 iff Qd(p, q) = 1.

Vertices vq ∈ V discarded during downsampling where Qd(p, q) = 0 ∀p, are mapped into the
downsampled mesh surface. This is done by projecting vq into the closest triangle (i, j, k) in the
downsampled mesh, denoted by ṽp, and computing the Barycentric coordinates as ṽp = wivi +
wjvj + wkvk (vi, vj , vk ∈ Vd ). The weights are then updated in Qu as Qu(q, i) = wi, Qu(q, j) =
wj , and Qu(q, k) = wk, and Qu(q, l) = 0 otherwise.

Figure 1: The effect of downsampling (red arrows) and upsampling (green arrows) on 3D face
meshes. The reconstructed face after upsampling maintains the overall structure but most of the
finer details are lost.

4 MESH AUTOENCODER

Now that we have defined the basic operations needed for our neural network in Section 3, we can
construct the architecture of the convolutional mesh autoencoder. The structure of the encoder is
shown in Table 1. The encoder consists of 4 Chebyshev convolutional filters withK = 6 Chebyshev
polynomials. Each of the convolutions is followed by a biased ReLU (Glorot et al., 2011). The
downsampling layers are interleaved between convolution layers. Each of the downsampling layers
reduce the number of mesh vertices by 4 times. The encoder transforms the face mesh from Rn×3

to an 8 dimensional latent vector using a fully connected layer at the end.

4



Under review as a conference paper at ICLR 2018

The structure of the decoder is shown in Table 2. The decoder similarly consists of a fully connected
layer that transforms the latent vector from R8 to R32×32 that can be further upsampled to reconstruct
the mesh. Following the decoder’s fully connected layer, 4 convolutional layers with interleaved
upsampling layers generated a 3D mesh in R8192×3. Each of the convolutions is followed by a
biased ReLU similar to the encoder network. Each upsampling layer increases the numbers of
vertices by 4x. The Figure 2 shows the complete structure of our mesh autoencoder.

Figure 2: The architecture of the Convolutional Mesh Autoencoder. The red and green arrows
indicate downsampling and upsampling layers respectively. The output space of each of the layers
in denoted under it. Faces in intermediate layers are only for visualization.

Training. We train our autoencoder for 300 epochs with a learning rate of 8e-3 with a learning rate
decay of 0.99 every epoch. We use stochastic gradient descent with a momentum of 0.9 to optimize
the L1 loss between predicted mesh vertices and the ground truth samples. We use a regularization
on the weights of the network using weight decay of 5e-4. The convolutions use Chebyshev filtering
with K = 6.

5 EXPERIMENTS

Facial Expression Dataset. Our dataset consists of 12 classes of extreme expressions from 12
different subjects. These expressions are highly complex and uncorrelated with each other. The
expressions in our dataset are – bareteeth, cheeks in, eyebrow, high smile, lips back, lips up, mouth
down, mouth extreme, mouth middle, mouth side and mouth up. The number of frames of each
sequence is shown in Table 3.

The data is captured at 60fps with a multi-camera active stereo system (3dMD LLC, Atlanta) with
six stereo camera pairs, five speckle projectors, and six color cameras. Our dataset contains 20,466
3D Meshes, each with about 120,000 vertices. The data is pre-processed using a sequential mesh
registration method (Li et al., 2017) to reduce the data dimensionality to 5023 vertices. We pre-
process the data by adding fake vertices to increase the number of vertices to 8192. This enables
pooling and upsampling of the mesh across the layers with a constant factor.

Implementation details We use Tensorflow (Abadi et al., 2016) for our network implementation.
We use Scikit-learn (Pedregosa et al., 2011) for computing PCA coefficients. Training each network
takes about 8 hours on a single Nvidia Tesla P100 GPU. Each of the models is trained for 300 epochs
with a batch size of 16.

Sequence bareteeth cheeks in eyebrow high smile lips back lips up
# Frames 1946 1396 2283 1878 1694 1511

Sequence mouth down mouth extreme mouth middle mouth open mouth side mouth up
# Frames 2363 793 1997 674 1778 2153

Table 3: Length of different expression sequences
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Figure 3: Qualitative results for mesh reconstruction on test set of interpolation experiment.

Mean Error Median Error # Parameters
PCA 2.694 ± 2.330 2.002 120,552
Mesh Autoencoder 1.578 ± 1.546 1.110 33,856

Table 4: Performance comparison with different error metrics on interpolation experiment. Mean
error is of the form [µ ± σ] with mean Euclidean distance µ and standard deviation σ. The median
error and number of parameters in each model are also shown. All errors are in millimeters (mm).

5.1 INTERPOLATION EXPERIMENT

We evaluate the performance of our model based on its ability to interpolate the training data and
extrapolate outside its space. We compare the performance of our model with a PCA model. We
consistently use an 8-dimensional latent space to encode the face mesh using both the PCA model
and the Mesh Autoencoder. Thus, the encoded latent vectors lie in R8. Meanwhile, the number of
parameters in our model is much smaller than PCA model (Table 4).

In order to evaluate the interpolation capability of the autoencoder, we split the dataset in training
and test samples in the ratio of 1:9. The test samples are obtained by picking consecutive frames of
length 10 uniformly at random across the sequences. We train our autoencoder for 300 epochs and
evaluate it on the test set. We use mean Euclidean distance for comparison with the PCA method.
The mean Euclidean distance of N test mesh samples with n vertices each is given by

µ =
1

nN

N∑
i=1

n∑
j=1

||xij − x̂ij ||2 (3)

where xij , x̂ij ∈ R3 are j-th vertex predictions and ground truths respectively corresponding to
i-th sample. Table 4 shows the mean Euclidean distance along with standard deviation in the form
[µ ± σ]. The median error is also shown in the table. We show a performance improvement, as
high as 50% over PCA models for capturing these highly non linear facial expressions. At the same
time, the number of parameters in the CNN is about 75% fewer than the PCA model as shown in
Table 4. Visual inspection of our qualitative results in Figure 3 show that our reconstructions are
more realistic and are effective in capturing extreme facial expressions. We also show the histogram
of cumulative errors in Figure 4a. We observe that Mesh Autoencoder has about 76.9% of the
vertices within an Euclidean error of 2 mm, as compared to 51.7% for the PCA model.
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(a) (b)

Figure 4: Cumulative Euclidean error between PCA model and Mesh Autoencoder for Interpola-
tion(a) and Extrapolation(b) experiments.

5.2 EXTRAPOLATION EXPERIMENT

To measure generalization of our model, we compare the performance of our model with a PCA
model and FLAME (Li et al., 2017). For comparison, we train the expression and jaw model of
FLAME with our dataset. The FLAME reconstructions are obtained with with latent vector size of
16 with 8 components each for encoding identity and expression. The latent vectors encoded using
PCA model and Mesh autoencoder have a size of 8.

We evaluate the generalization capability of the Mesh Autoencoder by attempting to reconstruct
the expressions that are completely unseen by our model. We split our dataset by completely ex-
cluding one expression set from all the subjects of the dataset. We test our Mesh Autoencoder on
the excluded expression as the test set. We compare the performance of our model with PCA and
FLAME using the same mean Euclidean distance. We perform 12 cross validation experiments, one
for each expression as shown in Table 5. For each experiment, we run our training procedure ten
times initializing the weights at random. We pick the best performing network for comparison.

We compare the results using mean Euclidean distance and median error metric in Table 5. Our
method performs better than PCA model and FLAME (Li et al., 2017) on all expression sequences.
We show the qualitative results in Figure 5. Our model performs much better on these extreme
expressions. We show the cumulative euclidean error histogram in Figure 4b. For a 2 mm accuracy,
Mesh Autoencoder captures 84.9% of the vertices while the PCA model captures 73.6% of it.

5.3 ABLATION EXPERIMENTS

The FLAME model Li et al. (2017) uses several PCA-models to represent expression, jaw motion,
face identity etc. We evaluate the performance of mesh autoencoders by replacing the expression
model of FLAME by our autoencoder. We compare the reconstruction errors with the original
FLAME model. We run our experiment by varying the size of the latent vector for encoding. We
show the comparisons in Table 6.

5.4 DISCUSSION

While our convolutional Mesh Autoencoder leads to a representation that generalizes better for
unseen 3D faces than PCA with much fewer parameters, our model has several limitations. Our
network is restricted to learning face representation for a fixed topology, i.e., all our data samples
needs to have the same adjacency matrix, A. The mesh sampling layers are also based on this fixed
adjacency matrixA, which defines only the edge connections. The adjacency matrix does not take in
to account the vertex positions thus affecting the performance of our sampling operations. In future,
we would like to incorporate this information into our learning framework.
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Figure 5: Qualitative results on test set of extrapolation experiments. The expression of the test set
was completely excluded from all subjects.

Mesh Autoencoder PCA FLAME (Li et al., 2017)
Sequence Mean Error Median Mean Error Median Mean Error Median
bareteeth 1.376±1.536 0.856 1.957±1.888 1.335 2.002±1.456 1.606
cheeks in 1.288±1.501 0.794 1.854±1.906 1.179 2.011±1.468 1.609
eyebrow 1.053±1.088 0.706 1.609±1.535 1.090 1.862±1.342 1.516
high smile 1.205±1.252 0.772 1.841±1.831 1.246 1.960±1.370 1.625
lips back 1.193±1.476 0.708 1.842±1.947 1.198 2.047±1.485 1.639
lips up 1.081±1.192 0.656 1.788±1.764 1.216 1.983±1.427 1.616
mouth down 1.050±1.183 0.654 1.618±1.594 1.105 2.029±1.454 1.651
mouth extreme 1.336±1.820 0.738 2.011±2.405 1.224 2.028±1.464 1.613
mouth middle 1.017±1.192 0.610 1.697±1.715 1.133 2.043±1.496 1.620
mouth open 0.961±1.127 0.583 1.612±1.728 1.060 1.894±1.422 1.544
mouth side 1.264±1.611 0.730 1.894±2.274 1.132 2.090±1.510 1.659
mouth up 1.097±1.212 0.683 1.710±1.680 1.159 2.067±1.485 1.680

Table 5: Quantitative evaluation of Extrapolation experiment. The training set consists of the rest
of the expressions. Mean error is of the form [µ± σ] with mean Euclidean distance µ and standard
deviation σ. The median error and number of frames in each expression sequnece is also shown. All
errors are in millimeters (mm).

The amount of data for high resolution faces is very limited. We believe that generating more of such
data with high variability between faces would improve the performance of Mesh Autoencoders for
3D face representations. The data scarcity also limits our ability to learn models that can be trained
for superior performance at higher dimensional latent space. The data scarcity also produces noise
in some reconstructions.

6 CONCLUSION

We have introduced a generalization of convolutional autoencoders to mesh surfaces with mesh
downsampling and upsampling layers combined with fast localized convolutional filters in spectral
space. The locally invariant filters that are shared across the surface of the mesh significantly reduce
the number of filter parameters in the network. While the autoencoder is applicable to any class of
mesh objects, we evaluated its quality on a dataset of realistic extreme facial expressions. The local
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FLAME++ FLAME Li et al. (2017)
#dim of z Mean Error Median Mean Error Median
2 0.610±0.851 0.317 0.668±0.876 0.371
4 0.509±0.746 0.235 0.589±0.803 0.305
6 0.464±0.711 0.196 0.525±0.743 0.252
8 0.432±0.681 0.169 0.477±0.691 0.217
10 0.421±0.664 0.162 0.439±0.655 0.193
12 0.388±0.630 0.139 0.403±0.604 0.172
14 0.371±0.605 0.128 0.371±0.567 0.152
16 0.372±0.611 0.125 0.351±0.543 0.139

Table 6: Comparison of FLAME and FLAME++. FLAME++ is obtained by replacing expression
model of FLAME with our mesh autoencoder. All errors are in millimeters (mm).

convolutional filters capture a lot of surface details that are generally missed in linear models like
PCA while using 75% fewer parameters. Our Mesh Autoencoder outperforms the linear PCA model
by 50% on interpolation experiments and generalizes better on completely unseen facial expressions.

Face models are used in a large number of applications in computer animations, visual avatars and
interactions. In recent years, a lot of focus has been given to capturing highly detailed static and
dynamic facial expressions. This work introduces a direction in modeling these high dimensional
face meshes that can be useful in a range of computer graphics applications.
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