
PositNN: Tapered Precision Deep Learning Inference
for the Edge

Anonymous Author(s)
Affiliation
Address
email

Abstract

The performance of neural networks, especially the currently popular form of deep1

neural networks, is often limited by the underlying hardware. Computations in2

deep neural networks are expensive, have large memory footprint, and are power3

hungry. Conventional reduced-precision numerical formats, such as fixed-point4

and floating point, cannot accurately represent deep neural network parameters5

with a nonlinear distribution and small dynamic range. Recently proposed posit6

numerical format with tapered precision represents small values more accurately7

than the other formats. In this work, we propose an ultra-low precision deep neural8

network, PositNN, that uses posits during inference. The efficacy of PositNN is9

demonstrated on a deep neural network architecture with three datasets (MNIST,10

Fashion MNIST and Cifar-10), where an 8-bit PositNN outperforms other {5-8}-bit11

low-precision neural networks and a 32-bit floating point baseline network.12

1 Introduction13

Hierarchical representation learning [1] frameworks such as deep neural networks (DNNs) have14

achieved state-of-the-art accuracy in a wide spectrum of applications, such as computer vision [2],15

medical applications [3], and natural language processing [4]. Typically, DNN inference requires16

millions of parameters and billions of floating point operations (e.g., ≈ 12.5 billion FLOPs for17

DenseNet [2] with 264 layers). DNNs are pushing towards memory bandwidth of ≈ 900GB/s18

for training and ≈ 400GB/s for inference, pushing designers to choose high-bandwidth memory.19

Implementing these high-bandwidth, memory intensive DNN operations on the edge, such as IoT20

and smart wearables, is progressively onerous due to the limited compute and memory available21

on-device [5, 6]. Applications that impose near instantaneous inference, demand decentralization22

for improved security or reduced bandwidth on servers, or customization on the edge. In several of23

these application scenarios, deploying conventional DNNs on the end device is prohibitive because24

of the data movement cost, long latencies, and increased power dissipation. Recent studies address25

this problem using new compute and memory efficient DNN architectures, parameter efficient neural26

networks [7, 8], pruning and truncation, distillation and low-precision arithmetic [9]. Amongst the27

techniques to compress neural network parameters, low-precision arithmetic has been most successful28

in reducing latency, memory requirements, and power consumption, especially for DNN inference29

[10, 9].30

Linear and nonlinear quantization are the common approaches in low-precision arithmetic [11, 9].31

However, the accuracy of inference is degraded when the DNN parameters are quantized to ultra-low32

bit-precision ≤ 8-bit [12]. To recover this accuracy degradation, the network can be retrained or the33

number of parameters can be significantly increased [11, 13]. This results in increased computational34

complexity, as DNN training requires ≈ 3× more computation compared to DNN inference [14].35

Reducing the precision of learned parameters directly to a lower precision numerical format (fixed-36

point, floating point, posit [15]) has shown to mitigate the overhead of quantization and retraining37

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.



0.6 0.4 0.2 0.0 0.2 0.4
Parameter Value

100

101

102

103

104

105

De
ns

ity

Figure 1: (a) 7-bit posit numerical value distribution; and (b) ConvNet weight distribution. Both show
heavy clustering in [-1,+1] range.

[16]. In this paper, we present ultra low precision deep neural networks using posit numerical format38

(PositNN). The advantage of this network is that the posit numbers are represented in a nonlinear39

tapered precision similar to the DNN inference parameters (shown in Fig. 1). Furthermore, we40

address the accuracy degradation of rounding by using exact dot product algorithm for multiply and41

accumulate operations. The key concept is to postpone the rounding operation to the accumulation42

phase.43

2 Posit Numerical Format44

The posit numerical format, a Type III unum, is a tapered accuracy numerical format that represents45

real numbers [15]. Numbers with a smaller exponent are represented more accurately in comparison46

to the numbers with large absolute exponents since the exponent has approximately a Gaussian47

distribution.48

The value of a posit number is represented by Equation 1, where s represents the sign, es and fs49

represent the maximum number of bits allocated for the exponent and fraction, respectively, e and f50

indicate the exponent and fraction values, respectively, and k, as computed by Equation 2, represents51

the regime value.52

x =


0, if (00...0)
NaR, if (10...0)

(−1)s × 22
es×k × 2e ×

(
1 + f

2fs

)
, otherwise

(1)

The regime bit field is encoded based on the runlength m of identical bits (r...r) terminated by53

either a regime terminating bit r or the end of the n-bit value. Note that there is no requirement to54

distinguish between negative and positive zero since only a single bit pattern (00...0) represents zero.55

Furthermore, instead of defining a NaN for exceptional values and infinity by various bit patterns,56

a single bit pattern (10...0), "Not-a-Real" (NaR), represents exception values and infinity. More57

details about the posit number format can be found in [15].58

k =

{
−m, if r = 0

m+ 1, if r = 1
(2)

3 PositNN Architecture59

The PositNN architecture is shown in Fig. 2 wherein each feature Fi of the convolutional layers60

is extracted by Fi = Bi +
∑C×R×S

i=0 Ai ×Wi where Bi indicates the bias term, Wi is the weights61

matrix, Ai represents the activation, and (C,R, S) are filter parameters: the number of filter channels,62

the filter height, and the number of filter weights, respectively. The extracted features are used for63

classification, computed by Y = Bi +
∑N

i=0Ai ×Wi where Y and N represents the number of64

nodes and the number of outputs in each fully connected layer, respectively. Based on these equations,65

the fundamental computation in the convolutional and fully connected layers is the MAC operation.66

In this work, as shown in Fig. 2, the MAC operations of the convolutional and fully connected layers67

in the DNN are customized. Specifically, the MAC operation, which is commonly performed by the68

inexact fused-multiply accumulation algorithm, is calculated by using the Exact Dot Product (EDP)69

algorithm where the rounding operation within MAC operations is postponed until every product has70

been accumulated, which minimizes the MAC arithmetic error.71

2



To perform the EDP, firstly, the 32-bit high-precision floating point weights and activations are72

quantized to the ≤ 8-bit low-precision posit weights and activations. To manage the overflow and73

underflow during conversion, the high-precision values that lie outside posit dynamic range are74

clipped (clip(x)) to either the format’s maximum or minimum. The unexceptional values during75

conversion are rounded to the nearest number (φ(·)) that can be represented in the desired posit76

number system. To compute the products, the posit weights and activations are multiplied in a77

posit format without rounding or truncation at the end of multiplications to preserve precision. To78

avoid rounding during accumulation, the products are stored in a wide register with a width of79

Qr = 2es+2 × (n− 2) + 2 + dlog2(Nop)e. The products are then converted to fixed-point format80

FX(mk,nk), where mk = 2es+1 × (n− 2) + 2 + dlog2(Nop)e and nk = 2es+1 × (n− 2) . Finally,81

the Nop fixed-point products are accumulated, and the result is converted back to the posit format.82

clip(x)clip(x)

→

Quantization 
and Clipping

: float32 x : posit ϕ(x)
fixed 
float 

x ϕ(x)

Q
uantize 

and C
lip

Layer 1

Q
uantize 

and C
lip

Layer 2 

Convolutional 
Layer 

Fully-Connected 
Layer 

Exact Dot Product

Qr

Q
uantize 

and C
lip

C
lassification

Data

Figure 2: The proposed tapered precision PositNN architecture.

4 Experimental Results83

The accuracy of PositNN for the two benchmark tasks on 32-bit floating point and for {5-8}-bit low84

precision formats are shown in Table 1 and 2. All the networks are implemented using Keras [17]85

and TensorFlow [18]. Universal library [19] is used for posit and floating point number exact dot86

product operation. PositNN with 8-bit (es = 2) precision outperformed {5-8}-bit floating point,87

fixed point and 32-bit floating point numerical format. Furthermore, when comparing 5-bit precision88

networks, PositNN demonstrates 6.67% improvement over 5-bit floating-point on MNIST dataset.89

We hypothesize that PositNN has better accuracy at lower-bit precisions, as the non-linear distribution90

of posit numbers is similar to the DNN inference parameters unlike in fixed or float. This holds true,91

especially in the range [−4, 4], where most of the DNN inference parameters take place. For 1%92

accuracy degradation in PositNN (5-bit), we estimate that there is 84.4% reduction in memory storage93

for the respective inference parameters when compared to a 32-bit floating point numerical format.94

Table 1: Specifications of the benchmark tasks and performance on a baseline 32-bit floating point
network. Each inference set consists of 10,000 samples.

Task Dataset Network Layers1 # Parameters # EDP OPs2 # Memory Top-1 Accuracy
Digit classification MNIST Convnet 2 Conv, 2 FC and 1 PL 1.40 M 58.7 k 5.84 MB 99.32%
Image classification Fashion MNIST Convnet 2 Conv, 3 FC, 2 PL and 1 BN 1.88 M 69.8 k 7.77 MB 92.54%
Image classification CIFAR-10 Convnet 7 Conv, 1 FC, 3 PL 0.95 M 312.6 k 6.23 MB 76%
1 Conv: 2D convolutional layer; FC: fully-connected layer; PL: max/Average pooling layer; BN: batch normalization layer.
2 The number of EDP operations for a single sample.

Table 2: PositNN accuracy on two datasets with {5-8}-bit precision compared to fixed and float
(Respective best results are when posit has es ∈ {0, 1, 2} and floating point we ∈ {3, 4}).

Posit Float Fixed
Datasets 8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit 8-bit 7-bit 6-bit 5-bit
MNIST 99.35% 99.33% 99.16% 98.94% 99.34% 99.25% 98.82% 92.27% 99.18% 97.14% 97.08% 96.96%

Fashion MNIST 92.70% 92.60% 91.64% 88.92% 92.63% 91.77% 84.21% 68.21% 89.59% 88.63% 85.31% 83.46%
Cifar-101 76% 76%% 70%% 48% 75% 76% 51% 13% 19% 17% 14% 15%

1 100 randomly selected samples.

3



References95

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.96

deeplearningbook.org.97

[2] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional98

networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,99

vol. 1, p. 3, 2017.100

[3] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun,101

“Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542,102

no. 7639, pp. 115–118, 2017.103

[4] M. Johnson, M. Schuster, Q. V. Le, M. Krikun, Y. Wu, Z. Chen, N. Thorat, F. Viégas, M. Wat-104

tenberg, G. Corrado, et al., “Google’s multilingual neural machine translation system: Enabling105

zero-shot translation,” Transactions of the Association for Computational Linguistics, vol. 5,106

pp. 339–351, 2017.107

[5] M. Verhelst and B. Moons, “Embedded deep neural network processing: Algorithmic and108

processor techniques bring deep learning to iot and edge devices,” IEEE Solid-State Circuits109

Magazine, vol. 9, no. 4, pp. 55–65, 2017.110

[6] X. Xu, Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi, “Scaling for edge inference111

of deep neural networks,” Nature Electronics, vol. 1, no. 4, p. 216, 2018.112

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and113

H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,”114

arXiv preprint arXiv:1704.04861, 2017.115

[8] M. Ren, A. Pokrovsky, B. Yang, and R. Urtasun, “Sbnet: Sparse blocks network for fast116

inference,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,117

pp. 8711–8720, 2018.118

[9] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,119

“Quantization and training of neural networks for efficient integer-arithmetic-only inference,” in120

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.121

[10] S. Hashemi, N. Anthony, H. Tann, R. Bahar, and S. Reda, “Understanding the impact of122

precision quantization on the accuracy and energy of neural networks,” in Proceedings of the123

Conference on Design, Automation & Test in Europe, pp. 1478–1483, European Design and124

Automation Association, 2017.125

[11] A. Mishra and D. Marr, “Wrpn & apprentice: Methods for training and inference using low-126

precision numerics,” arXiv preprint arXiv:1803.00227, 2018.127

[12] A. Mishra and D. Marr, “Apprentice: Using knowledge distillation techniques to improve128

low-precision network accuracy,” arXiv preprint arXiv:1711.05852, 2017.129

[13] Z. He, B. Gong, and D. Fan, “Optimize deep convolutional neural network with ternarized130

weights and high accuracy,” arXiv preprint arXiv:1807.07948, 2018.131

[14] F. Iandola, “Exploring the design space of deep convolutional neural networks at large scale,”132

arXiv preprint arXiv:1612.06519, 2016.133

[15] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit arithmetic,”134

Supercomputing Frontiers and Innovations, vol. 4, no. 2, pp. 71–86, 2017.135

[16] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A framework for empirical study136

of resource-efficient inference in convolutional neural networks,” IEEE Transactions on Neural137

Networks and Learning Systems, 2018.138

[17] F. Chollet et al., “Keras.” https://github.com/keras-team/keras, 2015.139

4

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/keras-team/keras


[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,140

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-141

fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,142

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-143

sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,144

“TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. Software avail-145

able from tensorflow.org.146

[19] T. Omtzigt et al., “Universal: a c++ template library for universal number arithmetic.” https:147

//github.com/stillwater-sc/universal, 2015.148

5

https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal
https://github.com/stillwater-sc/universal

	Introduction
	Posit Numerical Format
	PositNN Architecture
	Experimental Results

