
Using effective dimension to analyze feature transformations in deep neural
networks

Kavya Ravichandran 1 Ajay Jain 1 Alexander Rakhlin 1

Abstract

In a typical deep learning approach to a com-
puter vision task, Convolutional Neural Networks
(CNNs) are used to extract features at varying lev-
els of abstraction from an image and compress a
high dimensional input into a lower dimensional
decision space through a series of transformations.
In this paper, we investigate how a class of input
images is compressed over the course of these
transformations. In particular, we use singular
value decomposition to analyze the relevant varia-
tions in feature space. These variations are formal-
ized as the effective dimension of the embedding.
We consider how the effective dimension varies
across layers within class. We show that across
datasets and architectures, the effective dimen-
sion of a class increases before decreasing further
into the network, suggesting an initial whitening
transformation. Further, the decrease rate of the
effective dimension deeper in the network directly
correlates with training performance of the model.

1. Introduction
1.1. Background

Deep neural networks (DNNs) are a powerful class of func-
tion approximators due to their ability to learn non-linear
mappings from inputs to outputs. However, the interven-
ing transformations and resulting features are not well-
characterized, making it tough to understand the class of
functions DNNs approximate.

Previous research has explored visualization techniques for
understanding feature spaces (1) (2). While this line of
work identifies abstractive properties of neural networks, it

*Equal contribution 1Massachusetts Institute of Technol-
ogy, Cambridge, MA. Correspondence to: Kavya Ravichandran
<rkavya@mit.edu>.

Understanding and Identifying Phenomena in Deep Learning
Workshop at the 36 th International Conference on Machine Learn-
ing, Long Beach, California, 2019. Copyright 2019 by the au-
thor(s).

does not formalize how learned transformations simplify or
compress the high-dimensional input to the low-dimensional
output.

Notions of dimensionality and compression have been ex-
plored on the parameter space of neural networks. In Li et al.
(3), fully connected network and convolutional neural net-
work (CNN) weights are constrained to a low dimensional
subspace of the full parameter space. The minimum pa-
rameter subspace dimension needed to solve a given task is
termed the intrinsic dimension of the optimization landscape.
This is a compression- or pruning-related result, though only
explored for parameter spaces. Further, Antognini and Sohl-
Dickstein (4) explore low dimensional visualizations of a
parameter space over the course of training and a random
walk.

Comparatively, exploration of the dimensionality of feature
spaces on a per-layer basis has been limited. Recently,
Dittmer et al. (5) proposed a singular-value and Gaussian
width based interpretation of the action of ReLU layers,
intended to distinguish data that is correctly and incorrectly
classified in intermediate layers.

1.2. Motivation

We seek to understand how learned transformations in CNNs
hone in on relevant features, as measured by how high-
dimensional datasets are mapped into lower-dimensional
distributions during the process of inference. A network
trained for classification must map an input in high dimen-
sional image space into low dimensional class label space.
Characterizing this set of transformations would elucidate
whether and when task-specific learned networks (a) iden-
tify latent attributes of the data distribution that are most
relevant to the task and (b) remove uninformative attributes
from deep feature spaces. Formalism surrounding these
transformations could aid theoretical analysis of sample
complexity.

1.3. Contributions

We propose a notion of effective dimensionality (Section
2.3) of a feature space and investigate how the effective
dimensionality of a class of input images changes over the

Effective dimension-based analysis of deep neural networks

course of linear and nonlinear transformations found in
neural networks. In particular, we use singular value de-
composition (SVD) to analyze relevant intra- and inter-class
variances.

We show that effective dimension of a class increases before
decreasing across neural network layers, ending in increas-
ingly eccentric feature spaces that allow for sharp decision
boundaries. We analyze how the singular value spectra
of activation matrices composed of a single class changes
throughout a network experimentally.

2. Methods
In this section, we discuss the datasets and architectures
we study. We also introduce the notion of the effective
dimension of a class at a given layer.

Figure 1. Experimental procedure. On the CIFAR-10 dataset, a
subset of training images from a single class is used for inference.
Our principal results subsample 1000 images from a single class.
Activations are saved, then flattened into a matrix per layer Φ(l) =
UΣV T to compute a singular value spectrum per layer.

2.1. Datasets

For experiments, models are evaluated on the CIFAR-10
dataset training set (6) and Tiny ImageNet (7). CIFAR-10
consists of 10 classes of objects and animals, with 10,000
training images of size 32× 32 pixels per class. To acceler-
ate inference and SVD computation, we subsample 1,000
images from each class, using the same subsample for all ex-
periments. Images are centered and rescaled to unit variance
based on the mean and standard deviation pixel intensity.
See Figure 1 for data sampling and inference procedure. In
this work, we only consider training images, since we seek
to characterize the transformations learned on the training
data.

The computational intensity of considering large numbers
of these high-dimensional embeddings and computing statis-
tics on these matrices made CIFAR-10, a small but visually-
diverse dataset, a better choice for initial experiments than
datasets like ImageNet. However, in the interest of under-

Table 1. Accuracy of representative models on 10,000 image strat-
ified sample of the CIFAR-10 training set.

Model Dataset Sample accuracy

MLP12 CIFAR-10 77.5%
VGG-16 CIFAR-10 99.9%
VGG-19 CIFAR-10 99.1%
VGG-16 Tiny ImageNet 4.14% (11.2% @ Top 5) 2

standing whether trends we found were specific to CIFAR-
10 or whether they also occurred in other datasets, we con-
sidered Tiny ImageNet. Images were preprocessed similarly
but are also resized to match the input size of the pretrained
model available in Keras. In this case, due to computational
restrictions, 10 classes were randomly sampled from the 200
classes and 100 representative images are used per class.

2.2. Representative models: MLP and CNN

We study three trained architectures: a 12-hidden layer
multi-layer perceptron (MLP), a convolutional neural net-
work (CNN) similar in architecture to VGG-16 (8), and a
CNN similar in architecture to VGG-19 (8) 1. All these
architectures have non-increasing numbers of dimensions
through the network. The MLP has 1000 hidden units
throughout the network, such that compressive behaviors
can be studied independently of decreasing feature dimen-
sions. We train the MLP until convergence on the training
set (366 epochs) with stochastic gradient descent with Nes-
terov accelerated gradients, initial learning rate 0.01, and
learning rate decay every 20 epochs. The VGG-16 weights
for CIFAR-10 are used from (9). For VGG-16 on Tiny Ima-
geNet, we use the default implementation in Keras, which is
taken from (10). This has low performance, in line with (but
worse than) publicly-released performance on the dataset
(7). For VGG-19 on CIFAR-10, the model is trained with
similar parameters to before. For all models, data is aug-
mented via shifts, rotation, and horizontal flipping.

Table 1 presents the accuracy of these models. Classifica-
tion accuracy is relevant because lower accuracy indicates
poor class separation in the final hidden layer, implying
suboptimal geometric transformations by the network.

2.3. Analysis and Statistics

In the interest of understanding whether neural networks
compress the feature space within a class, we consider acti-
vation matrices Φ(l) where a row corresponds to the flatten-
ing of the activation matrix for each input xi into the vector
φ
(l)
i .

1The differences between our implementations and the original
were mainly in adapting the input and output shapes to the datasets.

Effective dimension-based analysis of deep neural networks

Such an activation matrix is non-square in general, de-
composable via the singular value decomposition (SVD),
Φ(l) = UΣV T . Understanding subtleties of dimensionality
(a geometric property) requires understanding how many
important singular values there are, not necessarily absolute
magnitudes. Hence, we normalize the computed singular
values by the largest singular value of the activation matrix,
yielding statistic Σ′(Φ) = 1

σmax
Σ(Φ).

Effective Dimension Based on the aforementioned crite-
ria, we propose the following metric for dimensionality of a
collection of feature vectors:

deff(Φ) = |Σ′(Φ)|2 =
1

σ2
max(Φ)

tr(Σ(ΦΦT)) (1)

where the last equality holds since the elements of Σ2 are
non-negative. This is equivalent to the trace of the covari-
ance matrix, a quantity which Liang and Rakhlin show is
important to generalization bounds (11).

By definition, deff ∈ [1,
√
dl], where dl is the length of

the feature vector and thus the number of singular values.
For a perfect classifier of L layers, deff(Φ

(L)
c) = 1 for any

class c. Similarly, deff(Φ
(l)) =

√
dl for rank-dl scaled

identity matrix Φ(l) = (αIdl ; 0)T . However, in Section 3,
we demonstrate that the upper bound

√
dl is loose in practice

because of the low-rank nature of activation matrices.

The effective dimension of a matrix captures the number of
significant directions of variation between its rows. Srebro
and Shraibman use the trace of the singular matrix as a mea-
sure of the complexity of a matrix, e.g. in matrix completion
tasks (12). While the notion of measuring complexity of
a feature embedding using the profile of the spectrum is
a natural one, our work is, to our knowledge, the first to
formalize it and use it to study transformations carried out
by neural networks.

In order to understand the effective dimensionality of the
data within a class, we computed the singular values of the
activation matrix at each of the layers and evaluated the
effective dimension. The final plots present the average over
all classes. Plots of the singular values directly are presented
in the Appendix.

3. Results
3.1. Effective dimension increases prior to decreasing

Within a class, the effective dimension of the inputs in-
creases prior to decreasing for all tested architectures (VGG-
16, VGG-19, MLP12) and datasets (CIFAR-10 and Tiny
ImageNet) (Figures 2, 3, 4, 5). Concretely, this means that
the number of directions of variation that are important

2Note that Tiny ImageNet has 200 classes, so top 1 accuracy
above 0.5% is better than random guessing.

increases prior to decreasing. As the number of impor-
tant directions of variation increase, input data points are
spherized. Then, as the number of important directions of
variation decrease, the data are more eccentric and so more
elliptical. We posit potential explanations in Section 4.1.

3.2. Performance of model and rate of dropoff appear
to be correlated

In high-performing models (VGG-16 on CIFAR-10 and
VGG-19 on CIFAR-10, Figures 2, 3), we see a sharp in-
crease in effective dimension followed by a sharp decrease.
In the MLP12 model with lower performance, the decay
in deff(Φ

(l)) with respect to l is more gradual, and in the
VGG-16 model tested on Tiny ImageNet, this dropoff is
very noisy and slow. This suggests a correlation between
performance and effective dimension dropoff, regarding
which we speculate in Section 4.2. Indeed, the effective
dimension of the final post-softmax activation matrix is
smallest for the well performing models according to the
tight lower bound deff ≥ 1 for perfect classifiers presented
in Section 2.3 (empirically 1.09 in VGG-16 on CIFAR-10).

4. Discussion
In this section, we analyze and discuss the implications of
our findings. Further, we propose complementary analyses
that would bolster our findings.

4.1. Geometric Interpretation

Geometrically, early DNN layers increase the “spherical-
ness” of the data, following which extraneous dimensions
are compressed. The early network sphericalization could
correspond to the first several layers abstracting features
common across classes. Indeed, work in feature visualiza-
tion (1) finds that early layers extract features corresponding
to local filters for patterns common across image classes,
such as gradient and edge detectors. Later layers project into
spaces where these features are highlighted; subsequently,
as points separate by class, there remain fewer degrees of
variation within each class. In models with poorer perfor-
mance in classification, the model likely prunes uninforma-
tive directions of variation more poorly.

4.2. Apparent correlation between performance and
dropoff and Implications

The trend in VGG-16 trained on ImageNet and tested on
Tiny ImageNet is less drastic than the trend in the other
three models. We posit this is due to poorer performance by
that model, since poor grouping within class and separation
between classes would lead to less-dramatic compressions
in effective dimension. The 11% performance in our ex-
periments is better than random guessing, suggesting that

Effective dimension-based analysis of deep neural networks

Figure 2. This model had close to 100% training accuracy, and
a sharp increase followed by decrease in effective dimension is
seen. Layer 0 is the input.

Figure 3. This model has close to 90% training accuracy; the sharp
increase followed by decrease in effective dimension is comparable
to that seen in Figure 2. Layer 0 is the input.

Figure 4. This MLP model had around 77% training accuracy; we
see a similar increase but a slower decline in effective dimension.
We posit that this is related to training accuracy.

Figure 5. This VGG-16 model was trained/tested on ImageNet. Poor
performance (11% top 5) appears to be related to the poor dropoff
in the later layers. This is further discussed in Section 4.2.

the model does learn some valuable features but does not
learn the best weights and therefore has not pared away
unimportant dimensions.

It appears (preliminarily) that a sharp decline in effective di-
mensionality further in the network corresponds with higher
accuracy. This seems plausible given that removing extra-
neous degrees of variation ought to correspond with better
decision boundaries in classification. In practice, if this
correlation is strengthened, we could factor this into an ad-
ditional loss term that would incentivize compression of
embeddings into lower effective dimension.

4.3. Complementary Analyses

An interesting qualitative analysis of separation of classes
throughout layers of the network would entail computing
a t-distributed stochastic neighbors embedding (t-SNE) of
the vector activations at each layer for all the classes and
considering how they change over the course of the network.

This would provide qualitative insight regarding where sep-
aration begins and might provide evidence for or against
the hypothesis that the first several layers act primarily as
feature extractors while the last several layers act to project
these features into spaces where they can be separated.

Currently, we are analyzing effective dimension in layers
of the network during training to further understand how
performance correlates with the rise and dropoff of effective
dimension.

5. Conclusions
In studied examples, neural networks initially spherize em-
beddings and then collapse dimensionality. The compres-
sion of the dimensionality of feature spaces via transfor-
mations on inputs is more dramatic in better-performing
networks.

Effective dimension-based analysis of deep neural networks

References
[1] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and

Pascal Vincent. Visualizing higher-layer features of a
deep network. 2009.

[2] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Tor-
ralba. Interpretable Basis Decomposition for Visual
Explanation. page 16.

[3] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Ja-
son Yosinski. Measuring the intrinsic dimension of ob-
jective landscapes. arXiv preprint arXiv:1804.08838,
2018.

[4] Joseph Antognini and Jascha Sohl-Dickstein. Pca of
high dimensional random walks with comparison to
neural network training. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 10328–10337. Curran
Associates, Inc., 2018.

[5] Sören Dittmer, Emily J King, and Peter Maass.
Singular values for relu layers. arXiv preprint
arXiv:1812.02566, 2018.

[6] Alex Krizhevsky. Learning multiple layers of features
from tiny images. Technical report, Citeseer, 2009.

[7] Tiny imagenet visual recognition challenge. https:
//tiny-imagenet.herokuapp.com/.

[8] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[9] Yonatan Geifman. cifar-vgg. https://github.
com/geifmany/cifar-vgg, 2018.

[10] Very deep CNNS for large-scale visual recognition.

[11] Tengyuan Liang and Alexander Rakhlin. Just interpo-
late: Kernel ”ridgeless” regression can generalize.

[12] Nathan Srebro and Adi Shraibman. Rank, trace-norm
and max-norm. In Peter Auer and Ron Meir, edi-
tors, Learning Theory, volume 3559, pages 545–560.
Springer Berlin Heidelberg.

6. Appendix
6.1. The sensitivity of trace-norm to scale

A Schatten norm such as the nuclear norm (trace-norm) is
sensitive to the scale of the activation matrix Φ(l) ∈ Rn×dl
for intermediate layer 1 < l < L as it can be rescaled
arbitrarily by scaling the weights of the parametric classifier

without changing the classifier’s decision boundaries. For
instance, in a deep linear network (DLN), if feature φ(l)

is scaled by factor α, the spectral norm of α ∗ Φ(l) is α ∗
σmax(Φ(l)). This is also true in a ReLU network with α > 0.
Such a scaling is achieved while preserving φ(l+1):

φ(l+1) = W (l+1)W (l)φ(l−1) = α−1W (l+1)αW
(l)
k φ(l−1)

(2)

While Srebro et al. (12) directly apply the trace-norm to
bound the complexity of a completed matrix, we apply
spectral normalization in Equation 1 to correct for this scale
sensitivity. Hence, a small effective dimension corresponds
to an eccentric feature space regardless of magnitude.

6.2. Individual singular values show breakdown of
effective dimension

When considering the second, third, tenth, and one-
hundredth singular values, we see the same initial trends as
in the overall effective dimension. Later in the network, the
smaller singular values strictly decay in high-performing net-
works, while the earlier ones sometimes increase or stagnate.
The decay of the effective dimension, then, is dominated by
the strict decay in later layers of the σi for large i.

Figure 6. VGG-16 CIFAR-10 singular values

https://tiny-imagenet.herokuapp.com/
https://tiny-imagenet.herokuapp.com/
https://github.com/geifmany/cifar-vgg
https://github.com/geifmany/cifar-vgg

Effective dimension-based analysis of deep neural networks

Figure 7. VGG-19 CIFAR-10 singular values

Figure 8. MLP12 CIFAR-10 singular values

Figure 9. VGG-16 Tiny ImageNet shows much more
noise/variation, likely corroborating with poor performance.

