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ABSTRACT

Past works have shown that, somewhat surprisingly, over-parametrization can help
generalization in neural networks. Towards explaining this phenomenon, we adopt
a margin-based perspective. We establish: 1) for multi-layer feedforward relu
networks, the global minimizer of a weakly-regularized cross-entropy loss has
the maximum normalized margin among all networks, 2) as a result, increasing
the over-parametrization improves the normalized margin and generalization error
bounds for deep networks. In the case of two-layer networks, an infinite-width
neural network enjoys the best generalization guarantees. The typical infinite
feature methods are kernel methods; we compare the neural net margin with that of
kernel methods and construct natural instances where kernel methods have much
weaker generalization guarantees. We validate this gap between the two approaches
empirically. Finally, this infinite-neuron viewpoint is also fruitful for analyzing
optimization. We show that a perturbed gradient flow on infinite-size networks
finds a global optimizer in polynomial time.

1 INTRODUCTION

In deep learning, over-parametrization refers to the widely-adopted technique of using more parame-
ters than necessary (Krizhevsky et al., 2012; Livni et al., 2014). Both computationally and statistically,
over-parametrization is crucial for learning neural nets. Controlled experiments demonstrate that
over-parametrization eases optimization by smoothing the non-convex loss surface (Livni et al., 2014;
Sagun et al., 2017). Statistically, increasing model size without any regularization still improves
generalization even after the model interpolates the data perfectly (Neyshabur et al., 2017b). This is
surprising given the conventional wisdom on the trade-off between model capacity and generalization.

In the absence of an explicit regularizer, algorithmic regularization is likely the key contributor
to good generalization. Recent works have shown that gradient descent finds the minimum norm
solution fitting the data for problems including logistic regression, linearized neural networks, and
matrix factorization (Soudry et al., 2018; Gunasekar et al., 2018b; Li et al., 2018; Gunasekar et al.,
2018a; Ji & Telgarsky, 2018). Many of these proofs require a delicate analysis of the algorithm’s
dynamics, and some are not fully rigorous due to assumptions on the iterates. To the best of our
knowledge, it is an open question to prove analogous results for even two-layer relu networks. (For
example, the technique of Li et al. (2018) on two-layer neural nets with quadratic activations still
falls within the realm of linear algebraic tools, which apparently do not suffice for other activations.)

We propose a different route towards understanding generalization: making the regularization explicit.
The motivations are: 1) with an explicit regularizer, we can analyze generalization without fully
understanding optimization; 2) it is unknown whether gradient descent provides additional implicit
regularization beyond what `2 regularization already offers; 3) on the other hand, with a sufficiently
weak `2 regularizer, we can prove stronger results that apply to multi-layer relu networks. Additionally,
explicit regularization is perhaps more relevant because `2 regularization is typically used in practice.

Concretely, we add a norm-based regularizer to the cross entropy loss of a multi-layer feedforward
neural network with relu activations. We show that the global minimizer of the regularized objective
achieves the maximum normalized margin among all the models with the same architecture, if the
regularizer is sufficiently weak (Theorem 2.1). Informally, for models with norm 1 that perfectly
classify the data, the margin is the smallest difference across all datapoints between the classifier
score for the true label and the next best score. We are interested in normalized margin because its
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inverse bounds the generalization error (see recent work (Bartlett et al., 2017; Neyshabur et al., 2017a;
2018; Golowich et al., 2017) or Proposition 3.1). Our work explains why optimizing the training loss
can lead to parameters with a large margin and thus, better generalization error (see Corollary 3.2).
We further note that the maximum possible margin is non-decreasing in the width of the architecture,
and therefore the generalization bound of Corollary 3.2 can only improve as the size of the network
grows (see Theorem 3.3). Thus, even if the dataset is already separable, it could still be useful to
increase the width to achieve larger margin and better generalization.

At a first glance, it might seem counterintuitive that decreasing the regularizer is the right approach.
At a high level, we show that the regularizer only serves as a tiebreaker to steer the model towards
choosing the largest normalized margin. Our proofs are simple, oblivious to the optimization
procedure, and apply to any norm-based regularizer. We also show that an exact global minimum is
unnecessary: if we approximate the minimum loss within a constant factor, we obtain the max-margin
within a constant factor (Theorem 2.2).

To better understand the neural network max-margin, in Section 4 we compare the max-margin
two-layer network obtained by optimizing both layers jointly to kernel methods corresponding to
fixing random weights for the hidden layer and solving a 2-norm max-margin on the top layer.
We design a simple data distribution (Figure 1) where neural net margin is large but the kernel
margin is small. This translates to an Ω(

√
d) factor gap between the generalization error bounds for

the two approaches and demonstrates the power of neural nets compared to kernel methods. We
experimentally confirm that a gap does indeed exist.

In the setting of two-layer networks, we also study how over-parametrization helps optimization.
Prior works (Mei et al., 2018; Chizat & Bach, 2018; Sirignano & Spiliopoulos, 2018; Rotskoff
& Vanden-Eijnden, 2018) show that gradient descent on two-layer networks becomes Wasserstein
gradient flow over parameter distributions in the limit of infinite neurons. For this setting, we prove
that perturbed Wasserstein gradient flow finds a global optimizer in polynomial time.

Finally, we empirically validate several claims made in this paper. First, we confirm that neural
networks do generalize better than kernel methods. Second, we show that for two-layer networks, the
test error decreases and margin increases as the hidden layer grows, as predicted by our theory.

1.1 ADDITIONAL RELATED WORK

Zhang et al. (2016) and Neyshabur et al. (2017b) show that neural network generalization defies
conventional explanations and requires new ones. Neyshabur et al. (2014) initiate the search for the
“inductive bias” of neural networks towards solutions with good generalization. Recent papers (Hardt
et al., 2015; Brutzkus et al., 2017; Chaudhari et al., 2016) study inductive bias through training time
and sharpness of local minima. Neyshabur et al. (2015a) propose a new steepest descent algorithm in
a geometry invariant to weight rescaling and show that this improves generalization. Morcos et al.
(2018) relate generalization in deep nets to the number of “directions” in the neurons. Other papers
(Gunasekar et al., 2017; Soudry et al., 2018; Nacson et al., 2018; Gunasekar et al., 2018b; Li et al.,
2018; Gunasekar et al., 2018a) study implicit regularization towards a specific solution. Ma et al.
(2017) show that implicit regularization can help gradient descent avoid overshooting optima. Rosset
et al. (2004a;b) study logistic regression with a weak regularization and show convergence to the max
margin solution. We adopt their techniques and extend their results.

A line of work initiated by Neyshabur et al. (2015b) has focused on deriving tighter norm-based
Rademacher complexity bounds for deep neural networks (Bartlett et al., 2017; Neyshabur et al.,
2017a; Golowich et al., 2017) and new compression based generalization properties (Arora et al.,
2018b). Dziugaite & Roy (2017) manage to compute non-vacuous generalization bounds from
PAC-Bayes bounds. Neyshabur et al. (2018) investigate the Rademacher complexity of two-layer
networks and propose a bound that is decreasing with the distance to initialization. Liang & Rakhlin
(2018) and Belkin et al. (2018) study the generalization of kernel methods.

On the optimization side, Soudry & Carmon (2016) explain why over-parametrization can remove
bad local minima. Safran & Shamir (2016) show that over-parametrization can improve the quality of
the random initialization. Haeffele & Vidal (2015), Nguyen & Hein (2017), and Venturi et al. (2018)
show that for sufficiently overparametrized networks, all local minima are global, but do not show
how to find these minima via gradient descent. Du & Lee (2018) show that for two-layer networks
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with quadratic activations, all second-order stationary points are global minimizers. Arora et al.
(2018a) interpret over-parametrization as a means of implicit acceleration during optimization. Mei
et al. (2018), Chizat & Bach (2018), and Sirignano & Spiliopoulos (2018) take a distributional view
of over-parametrized networks. Chizat & Bach (2018) show that Wasserstein gradient flow converges
to global optimizers under structural assumptions. We extend this to a polynomial-time result.

1.2 NOTATION

Let R denote the set of real numbers. We will use ‖·‖ to indicate a general norm, with ‖·‖1, ‖·‖2, ‖·‖∞
denoting the `1, `2, `∞ norms on finite dimensional vectors, respectively, and ‖ · ‖F denoting the
Frobenius norm on a matrix. In general, we use ¯ on top of a symbol to denote a unit vector:
when applicable, ū , u/‖u‖, where the norm ‖ · ‖ will be clear from context. Let Sd−1 , {ū ∈
Rd : ‖ū‖2 = 1} be the unit sphere in d dimensions. Let Lp(Sd−1) be the space of functions on
Sd−1 for which the p-th power of the absolute value is Lebesgue integrable. For α ∈ Lp(Sd−1),
we overload notation and write ‖α‖p ,

(∫
Sd−1 |α(ū)|pdū

)1/p
. Additionally, for α1 ∈ L1(Sd−1)

and α2 ∈ L∞(Sd−1) or α1, α2 ∈ L2(Sd−1), we can define 〈α1, α2〉 ,
∫
Sd−1 α1(ū)α2(ū)dū < ∞.

Furthermore, we will use Vol(Sd−1) ,
∫
Sd−1 1dū. Throughout this paper, we reserve the symbol

X = [x1, . . . , xn] to denote the collection of datapoints (as a matrix), and Y = [y1, . . . , yn] to denote
labels. We use d to denote the dimension of our data. We often use Θ to denote the parameters of
a prediction function f , and f(Θ;x) to denote the prediction of f on datapoint x. We will use the
notation .,& to mean less than or greater than up to a universal constant, respectively. Unless stated
otherwise, O(·),Ω(·) denote some universal constant in upper and lower bounds, respectively. The
notation poly denotes a universal constant-degree polynomial in the arguments.

2 WEAK REGULARIZER GUARANTEES MAX MARGIN SOLUTIONS

In this section, we will show that when we add a weak regularizer to cross-entropy loss with a
positive-homogeneous prediction function, the normalized margin of the optimum converges to some
max-margin solution. As a concrete example, feedforward relu networks are positive-homogeneous.

Let l be the number of labels, so the i-th example has label yi ∈ [l]. We work with a family F of
prediction functions f(Θ; ·) : Rd → Rl that are a-positive-homogeneous in their parameters for
some a > 0: f(cΘ;x) = caf(Θ;x),∀c > 0. We additionally require that f is continuous in Θ. For
some general norm ‖ · ‖, we study the λ-regularized cross-entropy loss Lλ, defined as

Lλ(Θ) ,
n∑
i=1

− log
exp(fyi(Θ;xi))∑l
j=1 exp(fj(Θ;xi))

+ λ‖Θ‖r (2.1)

for fixed r > 0. Let Θλ ∈ arg minLλ(Θ).1 We define the normalized margin of Θλ as:

γλ , min
i

(
fyi(Θ̄λ;xi)−max

j 6=yi
fj(Θ̄λ;xi)

)
(2.2)

Define the ‖ · ‖-max normalized margin as

γ? , max
‖Θ‖≤1

[
min
i

(
fyi(Θ;xi)−max

j 6=yi
fj(Θ;xi)

)]
and let Θ? be a parameter achieving this maximum. We show that with sufficiently small regulariza-
tion level λ, the normalized margin γλ approaches the maximum margin γ?. Our theorem and proof
are inspired by the result of Rosset et al. (2004a;b), who analyze the special case when f is a linear
predictor. In contrast, our result can be applied to non-linear f as long as f is homogeneous.
Theorem 2.1. Assume the training data is separable by a network f(Θ?; ·) ∈ F with an optimal
normalized margin γ? > 0. Then, the normalized margin of the global optimum of the weakly-
regularized objective (equation 2.1) converges to γ? as the strength of the regularizer goes to zero.
Mathematically, let γλ be defined in equation 2.2. Then

γλ → γ? as λ→ 0

1We formally show that Lλ has a minimizer in Claim A.1 of Section A.
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An intuitive explanation for our result is as follows: because of the homogeneity, the loss L(Θλ)
roughly satisfies the following (for small λ, and ignoring problem parameters such as n):

Lλ(Θλ) ≈ exp(−‖Θλ‖aγλ) + λ‖Θλ‖r

Thus, the loss selects parameters with larger margin, while the regularization favors parameters with
a smaller norm. The full proof of the theorem is deferred to Section A.1.

Theorem 2.1 applies to feedforward relu networks and states that global minimizers of the weakly-
regularized loss will obtain a maximum margin among all networks of the given architecture. By
considering global minimizers, Theorem 2.1 provides a framework for directly analyzing generaliza-
tion properties of the solution without considering details of the optimization algorithm. In Section 3
we leverage this framework and existing generalization bounds (Golowich et al., 2017) to provide a
clean argument that over-parameterization can improve generalization.

We can also provide an analogue of Theorem 2.1 for the binary classification setting. For this
setting, our prediction is now a single real output and we train using logistic loss. We provide formal
definitions and results in Section A.2. Our study of the generalization properties of the max-margin
(see Section 3 and Section 4) is based in this setting.

2.1 OPTIMIZATION ACCURACY

Since Lλ is typically hard to optimize exactly for neural nets, we study how accurately we need to
optimize Lλ to obtain a margin that approximates γ? up to a constant. The following theorem shows
that it suffices to find Θ′ achieving a constant factor multiplicative approximation of Lλ(Θλ), where
λ is some sufficiently small polynomial in n, l, γ?. Though our theorem is stated for the general
multi-class setting, it also applies for binary classification. We provide the proof in Section A.3.

Theorem 2.2. In the setting of Theorem 2.1, suppose that we choose

λ = exp(−(2r/a − 1)−a/r)
(γ?)r/a

nc(l − 1)c

for sufficiently large c (that only depends on r/a). For β ≤ 2, let Θ′ denote a β-approximate
minimizer of Lλ, so Lλ(Θ′) ≤ βLλ(Θλ). Denote the normalized margin of Θ′ by γ′. Then

γ′ ≥ γ?

10 · βa/r
.

3 GENERALIZATION PROPERTIES OF A MAXIMUM MARGIN NEURAL NETWORK

In Section 2 we showed that optimizing a weakly-regularized logistic loss leads to the maximum
normalized margin. We now study the direct implications of this result on the generalization properties
of the solution. Specifically, we use existing Rademacher complexity bounds of Golowich et al.
(2017) to present a generalization bound that depends on the network architecture only through the
inverse `2-normalized margin and depth of the network (see Proposition 3.1). Next, we combine
this bound with Theorem 2.1 to conclude that parameters obtained by optimizing logistic loss with
weak `2-regularization will have a generalization bound that scales with the inverse of the maximum
possible margin and depth. Finally, we note that the maximum possible margin can only increase as
the size of the network grows, which suggests that increasing the size of the network improves the
generalization of the solution (see Theorem 3.3).

We consider depth-K neural networks with 1-Lipschitz, 1-positive-homogeneous activation φ for
K ≥ 2. Suppose that the collection of parameters Θ is given by matrices W1, . . . ,WK . The K-layer
network will compute a real-valued score

f(Θ;x) ,WKφ(WK−1φ(· · ·φ(W1x) · · · )) (3.1)

where we overload notation to let φ(·) denote the element-wise application of the activation φ. Let
mi denote the size of the i-th hidden layer, so W1 ∈ Rm1×d,W2 ∈ Rm2×m1 , · · · ,WK ∈ R1×mK−1 .
We will letM , (m1, . . . ,mK−1) denote the sequence of hidden layer sizes. We will focus on
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`2-regularized loss. The weakly-regularized logistic loss of the depth-K architecture with hidden
layer sizesM is therefore

Lλ,M(Θ) ,
1

n

n∑
i=1

log(1 + exp(−yif(Θ;xi))) + λ‖Θ‖2F (3.2)

We note that f is K-homogeneous in Θ, so the results of Section 2 apply to Lλ,M.2 Following our
conventions from Section 2, we denote the optimizer of Lλ,M by Θλ,M, the normalized margin
of Θλ,M by γλ,M, the max-margin solution by Θ?,M, and the max-margin by γ?,M. Our notation
emphasizes the architecture of the network. Since the classifier f now predicts a single real value, we
need to redefine

γλ,M , min
i
yif(Θ̄λ,M;xi)

γ?,M , max
‖Θ‖2≤1

min
i
yif(Θ;xi)

When the data is not separable by a neural network with architectureM, we define γ?,M to be zero.

Recall that X = [x1, . . . , xn] denotes the matrix with all the data points as columns, and Y =
[y1, . . . , yn] denotes the labels. We sample X and Y i.i.d. from the data generating distribution pdata,
which is supported on X × {−1,+1}. We can define the population 0-1 loss and training 0-1 loss of
the network parametrized by Θ by

L(Θ) = Pr
(x,y)∼pdata

[yf(Θ;x) ≤ 0]

Let C , supx∈X ‖x‖2 be an upper bound on the norm of a single datapoint. Proposition 3.1 shows
that the generalization error only depends on the parameters through the inverse of the margin on the
training data. We obtain Proposition 3.1 by applying Theorem 1 of Golowich et al. (2017) with the
standard technique of using margin loss to bound classification error. There exist other generalization
bounds which depend on the margin and some normalization (Neyshabur et al., 2015b; 2017a; Bartlett
et al., 2017; Neyshabur et al., 2018); we choose the bounds of Golowich et al. (2017) because they
fit well with `2 normalization. In the two-layer case K = 2, the bound below also follows from
Neyshabur et al. (2015b).

Proposition 3.1. [Straightforward consequence of Golowich et al. (2017, Theorem 1)] Suppose φ is
1-Lipschitz and 1-positive-homogeneous. For any depth-K network f(Θ; ·) separating the data with
normalized margin γ , mini yif(Θ̄;xi) > 0, with probability at least 1− δ over the draw of X,Y ,

L(Θ) .
C

γK(K−1)/2
√
n

+ ε(γ) (3.3)

where ε(γ) ,
√

log log2
4C
γ

n +
√

log(1/δ)
n . Note that ε(γ) is typically small, and thus the above bound

mainly scales with C
γK(K−1)/2

√
n

. 3

For completeness, we state the proof in Section C.1. By combining this bound with our Theorem 2.1
we can conclude that optimizing weakly-regularized logistic loss gives us generalization error bounds
that depend on the maximum possible margin of a network with the given architecture.

Corollary 3.2. In the setting of Proposition 3.1, with probability 1− δ,

lim sup
λ→0

L(Θλ,M) .
C

γ?,MK(K−1)/2
√
n

+ ε(γ?,M) (3.4)

where ε(γ) is defined as in Proposition 3.1. Above we implicitly assume γ?,M > 0, since otherwise
the right hand side of the bound is vacuous.

2Although Theorem 2.1 is written in the language of multi-class prediction where the classifier outputs l ≥ 2
scores, the results translate to single-output binary classification. See Section A.2.

3Although the 1

K(K−1)/2 factor of equation 3.3 decreases with depth K, the margin γ will also tend to
decrease as the constraint ‖Θ̄‖F ≤ 1 becomes more stringent.
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By applying Theorem 2.2 with Proposition 3.1, we can also conclude that optimizing Lλ,M within a
constant factor gives a margin, and therefore generalization bound, approximating the best possible.

One consequence of Corollary 3.2 is that optimizing weakly-regularized logistic loss results in the
best possible generalization bound out of all models with the given architecture. This indicates
that the widely used algorithm of optimizing deep networks with `2-regularized logistic loss has an
implicit bias towards solutions with good generalization.

Next, we observe that the maximum normalized margin is non-decreasing with the size of the architec-
ture. Formally, for two depth-K architecturesM = (m1, . . . ,mK−1) andM′ = (m′1, . . . ,m

′
K−1),

we sayM ≤ M′ if mi ≤ m′i ∀i = 1, . . .K − 1. Theorem 3.3 states that ifM ≤ M′, then the
max-margin over networks with architecture M′ is at least the max-margin over networks with
architectureM.
Theorem 3.3. Recall that γ?,M denotes the maximum normalized margin of a network with archi-
tectureM. IfM≤M′, we have γ?,M ≤ γ?,M′ . As a important consequence,

the generalization error bound of Corollary 3.2 forM′ is at least as good as that forM.

This theorem is simple to prove and follows because we can directly implement any network of
architectureM using one of architectureM′, ifM ≤M′. This can explain why additional over-
parameterization has been empirically observed to improve generalization in two-layer networks
(Neyshabur et al., 2017b): the margin does not decrease with a larger network size, and therefore
Corollary 3.2 gives a better generalization bound. In Section 6, we provide empirical evidence that
the test error decreases with larger network size while the margin is non-decreasing.

The phenomenon in Theorem 3.3 contrasts with standard `2-normalized linear prediction. In this
setting, adding more features increases the norm of the data, and therefore the generalization error
bounds could also increase. On the other hand, Theorem 3.3 shows that adding more neurons (which
can be viewed as learned features) can only improve the generalization of the max-margin solution.

4 NEURAL NET MAX-MARGIN VS. KERNEL METHODS

We will continue our study of the max-margin neural network via comparison against kernel methods,
a context in which margins have already been extensively studied. We show that two-layer networks
can obtain a larger margin, and therefore better generalization guarantees, than kernel methods. Our
comparison between the two methods is motivated by an equivalence between the `2 max-margin of
an infinite-width two-layer network and the `1-SVM (Zhu et al., 2004) over the lifted feature space
defined by the activation function applied to all possible hidden units (Neyshabur et al., 2014; Rosset
et al., 2007; Bengio et al., 2006). The kernel method corresponds to the `2-SVM in this same feature
space, and is equivalent to fixing random hidden layer weights and solving an `2-SVM over the top
layer. In Theorem 4.3, we construct a distribution for which the generalization upper bounds for the
`1-SVM on this feature space are smaller than those for the `2-SVM by a Ω(

√
d) factor. Our work

provides evidence that optimizing all layers of a network can be beneficial for generalization.

There have been works that compare `1 and `2-regularized solutions in the context of feature selection
and construct a feature space for which a generalization gap exists (e.g., see Ng (2004)). In contrast,
we work in the fixed feature space of relu activations, which makes our construction particularly
challenging.

We will usem to denote the width of the single hidden layer of the network. Following the convention
from Section 3, we will use γ?,m to denote the maximum possible normalized margin of a two-layer
network with hidden layer size m (note the emphasis on the size of the single hidden layer). The
depth K = 2 case of Corollary 3.2 immediately implies that optimizing weakly-regularized `2 loss
over width-m two-layer networks gives parameters whose generalization upper bounds depend on the
hidden layer size only through 1/γ?,m. Furthermore, from Theorem 3.3 it immediately follows that

γ?,1 ≤ γ?,2 ≤ · · · ≤ γ?,∞

The work of Neyshabur et al. (2014) links γ?,m to the `1 SVM over a lifted space. Formally, we
define a lifting function ϕ : Rd → L∞(Sd−1) mapping data to an infinite feature vector:

x ∈ Rd → ϕ(x) ∈ L∞(Sd−1) satisfying ϕ(x)[ū] = φ(ū>x) (4.1)
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where φ is the activation of Section 3. We look at the margin of linear functionals corresponding
to α ∈ L1(Sd−1) . The 1-norm SVM (Zhu et al., 2004) over the lifted feature ϕ(x) solves for the
maximum margin:

γ`1 ,max
α

min
i∈[n]

yi〈α,ϕ(xi)〉

subject to ‖α‖1 ≤ 1
(4.2)

where we rely on the inner product and 1-norm defined in Section 1.2. This formulation is equivalent
to a hard-margin optimization on “convex neural networks” (Bengio et al., 2006). Bach (2017) also
study optimization and generalization of convex neural networks. Using results from Rosset et al.
(2007); Neyshabur et al. (2014); Bengio et al. (2006), our Theorem 2.1 implies that optimizing weakly-
regularized logistic loss over two-layer networks is equivalent to solving equation 4.2 when the size
of the hidden layer is at least n + 1, where n is the number of training examples. Proposition 4.1
essentially restates this with the minor improvement that this equivalence4 also holds when the size
of the hidden layer is n.
Proposition 4.1. Let γ`1 be defined in equation 4.2. Then γ`1

2 = γ?,n = · · · = γ?,∞.

For completeness, we prove Proposition 4.1 in Section B, relying on the work of Tibshirani (2013)
and Rosset et al. (2004a).

Figure 1: A visualiza-
tion of 60 sampled points
from D in 3 dimensions.
Red points denote nega-
tive examples and blue
points denote positive ex-
amples.

Importantly, the `1-max margin on the lifted feature space is obtainable
by optimizing a finite neural network. We compare this to the `2 margin
attainable via kernel methods. Following the setup of equation 4.2, we
define the kernel problem over α ∈ L2(Sd−1):

γ`2 ,max
α

min
i∈[n]

yi〈α,ϕ(xi)〉

subject to
√
κ‖α‖2 ≤ 1

(4.3)

where κ , Vol(Sd−1). (We scale ‖α‖2 by
√
κ to make the lemma

statement below cleaner.) First, γ`2 can be used to obtain a standard
upper bound on the generalization error of the kernel SVM. Following
the notation of Section 3, we will let L`2-svm denote the 0-1 population
classification error for the optimizer of equation 4.3.
Lemma 4.2. In the setting of Proposition 3.1, with probability at least
1−δ, the generalization error of the standard kernel SVM with relu feature
(defined in equation 4.3) is bounded by

L`2-svm .
C

γ`2
√
dn

+ ε`2 (4.4)

where ε`2 ,

√
log max

{
log2

C√
dγ`2

,2

}
n +

√
log(1/δ)

n is typically a lower-order term.

The bound above follows from standard techniques (Bartlett & Mendelson, 2002), and we provide a
full proof in Section C.2. We construct a data distribution for which this lemma does not give a good
bound for kernel methods, but Corollary 3.2 does imply good generalization for two-layer networks.
Theorem 4.3. There exists a data distribution pdata such that the `1 SVM with relu features has a
good margin: γ`1 & 1 and with probability 1− δ over the choice of i.i.d. samples from pdata, obtains
generalization error

L`1-svm .

√
d log n

n
+ ε`1

where ε`1 ,
√

log(1/δ)
n is typically a lower order term. Meanwhile, with high probability the `2 SVM

has a small margin: γ`2 . max

{√
logn
n , 1/d

}
and therefore the generalization upper bound from

4The factor of 1
2

is due the the relation that every unit-norm parameter Θ corresponds to an α in the lifted
space with ‖α‖ = 2.
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Lemma 4.2 is at least

Ω

(
min

{
1, d

√
log n

n

})
In particular, the `2 bound is larger than the `1 bound by a Ω(

√
d) factor.

Although Theorem 4.3 compares upper bounds, our construction highlights properties of distributions
which result in better neural network generalization than kernel method generalization. Furthermore,
in Section 6 we empirically validate the gap in generalization between the two methods.

We briefly overview the construction of pdata here. The full proof is in Section D.1.

Proof sketch for Theorem 4.3. We base pdata on the distribution D of examples (x, y) described
below. Here ei is the i-th standard basis vector and we use x>ei to represent the i-coordinate of x
(since the subscript is reserved to index training examples).e

>
3 x
...

e>d x

 ∼ N (0, Id−2), and


y = +1, x>e1 = +1, x>e2 = +1 w/ prob. 1/4
y = +1, x>e1 = −1, x>e2 = −1 w/ prob. 1/4
y = −1, x>e1 = +1, x>e2 = −1 w/ prob. 1/4
y = −1, x>e1 = −1, x>e2 = +1 w/ prob. 1/4

Figure 1 shows samples from D when there are 3 dimensions. From the visualization, it is clear that
there is no linear separator for D. As Lemma D.1 shows, a relu network with four neurons can fit this
relatively complicated decision boundary. On the other hand, for kernel methods, we prove that the
symmetries in D induce cancellation in feature space. As a result, the features are less predictive of
the true label and the margin will therefore be small. We formalize this argument in Section D.1.

Gap in regression setting: We are able to prove an even larger Ω(
√
n/d) gap between neural

networks and kernel methods in the regression setting where we wish to interpolate continuous
labels. Analogously to the classification setting, optimizing a regularized squared error loss on
neural networks is equivalent to solving a minimum 1-norm regression problem (see Theorem D.5).
Furthermore, kernel methods correspond to a minimum 2-norm problem. We construct distributions
pdata where the 1-norm solution will have a generalization error bound of O(

√
d/n), whereas the 2-

norm solution will have a generalization error bound that is Ω(1) and thus vacuous. In Section D.2, we
define the 1-norm and 2-norm regression problems. In Theorem D.10 we formalize our construction.

5 PERTURBED WASSERSTEIN GRADIENT FLOW FINDS GLOBAL OPTIMIZERS IN
POLYNOMIAL TIME

In the prior section, we studied the limiting behavior of the generalization of a two-layer network as
its width goes to infinity. In this section, we will now study the limiting behavior of the optimization
algorithm, gradient descent. Prior work (Mei et al., 2018; Chizat & Bach, 2018) has shown that as
the hidden layer size grows to infinity, gradient descent for a finite neural network approaches the
Wasserstein gradient flow over distributions of hidden units (defined in equation 5.1). Chizat & Bach
(2018) assume the gradient flow converges, a non-trivial assumption since the space of distributions
is infinite-dimensional, and given the assumption prove that Wasserstein gradient flow converges to a
global optimizer in this setting, but do not specify a convergence rate. Mei et al. (2018) show global
convergence for the infinite-neuron limit of stochastic Langevin dynamics, but also do not provide a
convergence rate.

We show that a perturbed version of Wasserstein gradient flow converges in polynomial time. The
informal take-away of this section is that a perturbed version of gradient descent converges in
polynomial time on infinite-size neural networks (for the right notion of infinite-size.)

Formally, we optimize the following functional over distributions ρ on Rd+1:

L[ρ] , R

(∫
Φdρ

)
+

∫
V dρ

8
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where Φ : Rd+1 → Rk, R : Rk → R, and V : Rd+1 → R. In this work, we consider 2-homogeneous
Φ and V . We will additionally require that R is convex and nonnegative and V is positive on the unit
sphere. Finally, we need standard regularity assumptions on R,Φ, and V :
Assumption 5.1 (Regularity conditions on Φ, R, V ). Φ and V are differentiable as well as upper
bounded and Lipschitz on the unit sphere. R is Lipschitz and its Hessian has bounded operator norm.

We provide more details on the specific parameters (for boundedness, Lipschitzness, etc.) in Sec-
tion E.1. We note that relu networks satisfy every condition but differentiability of Φ.5 We can fit a
neural network under our framework as follows:
Example 5.2 (Logistic loss for neural networks). We interpret ρ as a distribution over the parameters
of the network. Let k , n and Φi(θ) , wφ(u>xi) for θ = (w, u). In this case,

∫
Φdρ is a

distributional neural network that computes an output for each of the n training examples (like a
standard neural network, it also computes a weighted sum over hidden units). We can compute the
distributional version of the regularized logistic loss in equation 3.2 by setting V (θ) , λ‖θ‖22 and
R(a1, . . . , an) ,

∑n
i=1 log(1 + exp(−yiai)).

We will define L′[ρ] : Rd+1 → R with L′[ρ](θ) , 〈R′(
∫

Φdρ),Φ(θ)〉 + V (θ) and v[ρ](θ) ,
−∇θL′[ρ](θ). Informally, L′[ρ] is the gradient of L with respect to ρ, and v is the induced velocity
field. For the standard Wasserstein gradient flow dynamics, ρt evolves according to

d

dt
ρt = −∇ · (v[ρt]ρt) (5.1)

where ∇· denotes the divergence of a vector field. For neural networks, these dynamics formally
define continuous-time gradient descent when the hidden layer has infinite size (see Theorem 2.6
of Chizat & Bach (2018), for instance).

We propose the following modification of the Wasserstein gradient flow dynamics:
d

dt
ρt = −σρt + σUd −∇ · (v[ρt]ρt) (5.2)

where Ud is the uniform distribution on Sd. In our perturbed dynamics, we add very small uniform
noise over Ud, which ensures that at all time-steps, there is sufficient mass in a descent direction for
the algorithm to decrease the objective. For infinite-size neural networks, one can informally interpret
this as re-initializing a very small fraction of the neurons at every step of gradient descent. We prove
convergence to a global optimizer in time polynomial in 1/ε, d, and the regularity parameters.
Theorem 5.3 (Theorem E.4 with regularity parameters omitted). Suppose that Φ and V are 2-
homogeneous and the regularity conditions of Assumption 5.1 are satisfied. Also assume that from
starting distribution ρ0, a solution to the dynamics in equation 5.2 exists. Define L? , infρ L[ρ].
Let ε > 0 be a desired error threshold and choose σ , exp(−d log(1/ε)poly(k, L[ρ0]− L?)) and
tε , d2

ε4 poly(log(1/ε), k, L[ρ0]− L?), where the regularity parameters for Φ, V , and R are hidden
in the poly(·). Then, perturbed Wasserstein gradient flow converges to an ε-approximate global
minimum in tε time:

min
0≤t≤tε

L[ρt]− L? ≤ ε.

We provide a theorem statement that includes regularity parameters in Section E.1. We prove the
theorem in Section E.2.

As a technical detail, Theorem 5.3 requires that a solution to the dynamics exists. We can remove this
assumption by analyzing a discrete-time version of equation 5.2:

ρt+1 , ρt + η(−σρt + σUd −∇ · (v[ρt]ρt))

and additionally assuming Φ and V have Lipschitz gradients. In this setting, a polynomial time
convergence result also holds. We state the result in Section E.3.

An implication of our Theorem 5.3 is that for infinite networks, we can optimize the weakly-
regularized logistic loss in time polynomial in the problem parameters and λ−1. By Theorem 2.2, we
only require λ−1 = poly(n) to approximate the maximum margin within a constant factor. Thus, for
infinite networks, we can approximate the max margin within a constant factor in polynomial time.

5The relu activation is non-differentiable at 0 and hence the gradient flow is not well-defined. Chizat & Bach
(2018) acknowledge this same difficulty with relu.
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Figure 2: Comparing neural networks and kernel methods. Left: Classification. Right: Regression.

Figure 3: Dependence of margin and test error on hidden layer size. Left: Synthetic. Right: MNIST.

6 SIMULATIONS

We first compare the generalization of neural networks and kernel methods for classification and
regression. In Figure 2 we plot the generalization error and predicted generalization upper bounds6 of
a trained neural network against a `2 kernel method with relu features as we vary n. Our data comes
from a synthetic distribution generated by a neural network with 6 hidden units; we provide a detailed
setup in Section F.1. For classification we plot 0-1 error, whereas for regression we plot squared error.
The variance in the neural network generalization bound for classification likely occured because
we did not tune learning rate and training time, so the optimization failed to find the best margin.
The plots show that two-layer networks clearly outperform kernel methods in test error as n grows.
However, there seems to be looseness in the bounds: the kernel generalization bound appears to stay
constant with n (as predicted by our theory for regression), but the test error decreases.

We also plot the dependence of the test error and margin on the hidden layer size in Figure 3 for
synthetic data generated from a ground truth network with 10 hidden units and also MNIST. The plots
indicate that test error is decreasing in hidden layer size while margin is increasing, as Theorem 3.3
predicts. We provide more details on the experimental setup in Section F.2.

In Section F.3, we verify the convergence of a simple neural network to the max-margin solution as
regularization decreases. In Section F.4, we train modified WideResNet architectures on CIFAR10
and CIFAR100. Although ResNet is not homogeneous, we still report improvements in generalization
from annealing the weight decay during training, versus staying at a fixed decay rate.

7 CONCLUSION

We have made the case that maximizing margin is one of the inductive biases of relu networks
obtained from optimizing weakly-regularized cross-entropy loss. Our framework allows us to
directly analyze generalization properties of the network without considering the optimization
algorithm used to obtain it. Using this perspective, we provide a simple explanation for why
over-parametrization can improve generalization. It is a fascinating question for future work to
characterize other generalization properties of the max-margin solution. On the optimization side, we
make progress towards understanding over-parametrized gradient descent by analyzing infinite-size
neural networks. A natural direction for future work is to apply our theory to optimize the margin of
finite-sized neural networks.

6We compute the leading term that is linear in the norm or inverse margin from the bounds in Proposition 3.1
and Lemmas 4.2, D.8, and D.9.
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A MISSING PROOFS IN SECTION 2

We first show that Lλ does indeed have a global minimizer.
Claim A.1. In the setting of Theorems 2.1 and A.3, arg minΘ Lλ(Θ) exists.

Proof. We will argue in the setting of Theorem 2.1 where Lλ is the multi-class cross entropy
loss, because the logistic loss case is analogous. We first note that Lλ is continuous in Θ be-
cause f is continuous in Θ and the term inside the logarithm is always positive. Next, define
b , infΘ Lλ(Θ) > 0. Then we note that for ‖Θ‖ > (b/λ)1/r , M , we must have Lλ(Θ) > b.
It follows that inf‖Θ‖≤M Lλ(Θ) = infΘ Lλ(Θ). However, there must be a value Θλ which at-
tains inf‖Θ‖≤M Lλ(Θ), because {Θ : ‖Θ‖ ≤ M} is a compact set and Lλ is continuous. Thus,
infΘ Lλ(Θ) is attained by some Θλ.
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A.1 MISSING PROOFS FOR MULTI-CLASS SETTING

Towards proving Theorem 2.1, we first show as we decrease λ, the norm of the solution ‖Θλ‖ grows.

Lemma A.2. In the setting of Theorem 2.1, as λ→ 0, we have ‖Θλ‖ → ∞.

To prove Theorem 2.1, we rely on the exponential scaling of the cross entropy: Lλ can be lower
bounded roughly by exp(−‖Θλ‖γλ), but also has an upper bound that scales with exp(−‖Θλ‖γ?).
By Lemma A.2, we can take large ‖Θλ‖ so the gap γ?−γλ vanishes. This proof technique is inspired
by that of Rosset et al. (2004a).

Proof of Theorem 2.1. For any M > 0 and Θ with γΘ , mini
(
f(Θ̄;xi)−maxj 6=yi f(Θ̄;xi)

)
,

Lλ(MΘ) =
1

n

n∑
i=1

− log
exp(Mafyi(Θ;xi))∑l
j=1 exp(Mafj(Θ;xi))

+ λMr‖Θ‖r (by the homogeneity of f )

=
1

n

n∑
i=1

− log
1

1 +
∑
j 6=yi exp(Ma(fj(Θ;xi)− fyi(Θ;xi)))

+ λMr‖Θ‖r (A.1)

≤ log(1 + (l − 1) exp(−MaγΘ)) + λMr‖Θ‖r (A.2)

We can also apply
∑
j 6=yi exp(Ma(fj(Θ;xi) − fyi(Θ;xi))) ≥ max exp(Ma(fj(Θ;xi) −

fyi(Θ;xi))) = exp γΘ in order to lower bound equation A.1 and obtain

Lλ(MΘ) ≥ 1

n
log(1 + exp(−MaγΘ)) + λMr‖Θ‖r (A.3)

Applying equation A.2 with M = ‖Θλ‖ and Θ = Θ?, noting that ‖Θ?‖ ≤ 1, we have:

Lλ(Θ?‖Θλ‖) ≤ log(1 + (l − 1) exp(−‖Θλ‖aγ?)) + λ‖Θλ‖r (A.4)

Next we lower bound Lλ(Θλ) by applying equation A.3,

Lλ(Θλ) ≥ 1

n
log(1 + exp(−‖Θλ‖aγλ)) + λ‖Θλ‖r (A.5)

Combining equation A.4 and equation A.5 with the fact that Lλ(Θλ) ≤ Lλ(Θ?‖Θλ‖) (by the global
optimality of Θλ), we have

∀λ > 0, n log(1 + (l − 1) exp(−‖Θλ‖aγ?)) ≥ log(1 + exp(−‖Θλ‖aγλ))

Recall that by Lemma A.2, as λ → 0, we have ‖Θλ‖ → ∞. There-
fore, exp(−‖Θλ‖aγ?), exp(−‖Θλ‖aγλ) → 0. Thus, we can apply Taylor expan-
sion to the equation above with respect to exp(−‖Θλ‖aγ?) and exp(−‖Θλ‖aγλ). If
max{exp(−‖Θλ‖aγ?), exp(−‖Θλ‖aγλ)} < 1, then we obtain

n(l − 1) exp(−‖Θλ‖aγ?) ≥ exp(−‖Θλ‖aγλ)−O(max{exp(−‖Θλ‖aγ?)2, exp(−‖Θλ‖aγλ)2})

We claim this implies that γ? ≤ lim infλ→0 γλ. If not, we have lim infλ→0 γλ < γ? , which implies
that the equation above is violated with sufficiently large ‖Θλ‖ (‖Θλ‖ � log(2(`− 1)n)1/a would
suffice). By Lemma A.2, ‖Θλ‖ → ∞ as λ→ 0 and therefore we get a contradiction.

Finally, we have γλ ≤ γ? by definition of γ?. Hence, limλ→0 γλ exists and equals γ?.

Now we fill in the proof of Lemma A.2.

Proof of Lemma A.2. For the sake of contradiction, we assume that ∃C > 0 such that for any λ0 > 0,
there exists 0 < λ < λ0 with ‖Θλ‖ ≤ C. We will determine the choice of λ0 later and pick λ such that
‖Θλ‖ ≤ C. Then the logits (the prediction fj(Θ, xi) before softmax) are bounded in absolute value
by some constant (that depends on C), and therefore the loss function − log

exp(fyi (Θ;xi))∑l
j=1 exp(fj(Θ;xi))

for

every example is bounded from below by some constant D > 0 (depending on C but not λ.)
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Let M = λ−1/(r+1), we have that

0 < D ≤ Lλ(Θλ) ≤ Lλ(MΘ?) (by the optimality of Θλ)

≤ − log
1

1 + (l − 1) exp(−Maγ?)
+ λMr (by equation A.2)

= log(1 + (l − 1) exp(−λ−a/(r+1)γ?)) + λ1/(r+1)

≤ log(1 + (l − 1) exp(−λ−a/(r+1)
0 γ?)) + λ

1/(r+1)
0

Taking a sufficiently small λ0, we obtain a contradiction and complete the proof.

A.2 FULL BINARY CLASSIFICATION SETTING

For completeness, we state and prove our max-margin results for the setting where we fit binary labels
yi ∈ {−1,+1} (as opposed to indices in [l]) and redefining f(Θ; ·) to assign a single real-valued
score (as opposed to a score for each label). This lets us work with the simpler λ-regularized logistic
loss:

Lλ(Θ) ,
1

n

n∑
i=1

log(1 + exp(−yif(Θ;xi))) + λ‖Θ‖r

As before, let Θλ ∈ arg minLλ(Θ), and define the normalized margin γλ by γλ , mini yif(Θ̄λ;xi).
Define the maximum possible normalized margin

γ? , max
‖Θ‖≤1

min
i
yif(Θ;xi) (A.6)

Theorem A.3. Assume γ? > 0 in the binary classification setting with logistic loss. Then as λ→ 0,
γλ → γ?.

The proof follows via simple reduction to the multi-class case.

Proof of Theorem A.3. We prove this theorem via reduction to the multi-class case with l = 2.
Construct f̃ : Rd → R2 with f̃1(Θ;xi) = − 1

2f(Θ;xi) and f̃2(Θ;xi) = 1
2f(Θ;xi). Define new

labels ỹi = 1 if yi = −1 and ỹi = 2 if yi = 1. Now note that f̃ỹi(Θ;xi)−f̃j 6=ỹi(Θ;xi) = yif(Θ;xi),
so the multi-class margin for Θ under f̃ is the same as binary margin for Θ under f . Furthermore,
defining

L̃λ(Θ) ,
1

n

n∑
i=1

− log
exp(f̃ỹi(Θ;xi))∑2
j=1 exp(f̃j(Θ;xi))

+ λ‖Θ‖r

we get that L̃λ(Θ) = Lλ(Θ), and in particular, L̃λ and Lλ have the same set of minimizers. Therefore
we can apply Theorem 2.1 for the multi-class setting and conclude γλ → γ? in the binary classification
setting.

A.3 MISSING PROOF FOR OPTIMIZATION ACCURACY

Proof of Theorem 2.2. Choose B ,
(

1
γ? log (l−1)(γ?)r/a

λ

)1/a

. We can upper bound Lλ(Θ′) by
computing

Lλ(Θ′) ≤ βLλ(Θλ) ≤ βLλ(BΘ?)

≤ β log(1 + (l − 1) exp(−Baγ?)) + βλBr (by equation A.2)
≤ β(l − 1) exp(−Baγ?) + βλBr (using log(1 + x) ≤ x)

≤ β λ

(γ?)r/a
+ βλ

(
1

γ?
log

(l − 1)(γ?)r/a

λ

)r/a
≤ β λ

(γ?)r/a

(
1 +

(
log

(l − 1)(γ?)r/a

λ

)r/a)
, L(UB)
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Furthermore, it holds that ‖Θ′‖r ≤ L(UB)

λ . Now we note that

Lλ(Θ′) ≤ L(UB) ≤ 2β
λ

(γ?)r/a

(
log

(l − 1)(γ?)r/a

λ

)r/a
≤ 1

2n

for sufficiently large c depending only on a/r. Now using the fact that log(x) ≥ x
1+x ∀x ≥ −1,

we additionally have the lower bound Lλ(Θ′) ≥ 1
n log(1 + exp(−γ′‖Θ′‖a)) ≥ 1

n
exp(−γ′‖Θ′‖a)

1+exp(−γ′‖Θ′‖a) .

Since L(UB) ≤ 1, we can rearrange to get

γ′ ≥
− log nLλ(Θ′)

1−nLλ(Θ′)

‖Θ′‖a
≥
− log nL(UB)

1−nL(UB)

‖Θ′‖a
≥ − log(2nL(UB))

‖Θ′‖a

The middle inequality followed because x
1−x is increasing in x for 0 ≤ x < 1, and the last because

L(UB) ≤ 1
2n . Since − log 2nL(UB) > 0 we can also apply the bound ‖Θ′‖r ≤ L(UB)

λ to get

γ′ ≥ −λ
a/r log 2nL(UB)

(L(UB))a/r

=

− log

(
2nβ λ

(γ?)r/a

(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a))
βa/r

γ?

(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a)a/r (by definition of L(UB))

≥ γ?

βa/r


log( (γ?)r/a

2βnλ )(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a)a/r
︸ ︷︷ ︸

♣

−
log

(
1 +

(
log (l−1)(γ?)r/a

λ

)r/a)
(

1 +
(

log (l−1)(γ?)r/a

λ

)r/a)a/r
︸ ︷︷ ︸

♥


We will first bound ♣. First note that

log( (γ?)r/a

2βnλ )

log (l−1)(γ?)r/a

λ

=
log (γ?)r/a

λ − log 2βn

log (γ?)r/a

λ + log(l − 1)
≥

log (γ?)r/a

λ − log 2βn(l − 1)

log (γ?)r/a

λ

≥ c− 3

c
(A.7)

where the last inequality follows from the fact that (γ?)r/a

λ ≥ nc(l − 1)c and β ≤ 2. Next, using the

fact that log (γ?)r/a

λ ≥ 1
(2r/a−1)a/r

, we note that(
1 +

(
log

(l − 1)(γ?)r/a

λ

)−r/a)a/r
≤

(
1 +

(
1

(2r/a − 1)a/r

)−r/a)a/r
≤ 2 (A.8)

Combining equation A.7 and equation A.8, we can conclude that

♣ =
log( (γ?)r/a

2βnλ )

log (l−1)(γ?)r/a

λ

(
1 +

(
log

(l − 1)(γ?)r/a

λ

)−r/a)−a/r
≥ c− 3

2c

Finally, we note that if 1 +
(

log (l−1)(γ?)r/a

λ

)r/a
is a sufficiently large constant that depends only on

a/r (which can be achieved by choosing c sufficiently large), it will follow that ♥ ≤ 1
10 . Thus, if

c ≥ 5, we can combine our bounds on ♣ and ♥ to get that

γ′ ≥ γ?

10βa/r
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B MISSING PROOF OF PROPOSITION 4.1

Proposition 4.1 follows simply from applying Corollary 1 of Neyshabur et al. (2014) to a hard-margin
SVM problem. For completeness, we provide another proof here. The proof of Proposition 4.1 will
consist of two steps: first, show that equation 4.2 has an optimal solution with sparsity n, and second,
show that sparse solutions to equation 4.2 can be mapped to a neural network with the same margin,
and vice versa. The following lemma and proof are based on Lemma 14 of Tibshirani (2013).

Lemma B.1. Let supp(α) , {ū : |α(ū)| > 0}. There exists an optimal solution α? to equation 4.2
with |supp(α?)| ≤ n.

For the proof of this lemma, we find it convenient to work with a minimum norm formulation which
we show is equivalent to equation 4.2:

min
α
‖α‖1

subject to yi〈α,ϕ(xi)〉 ≥ 1 ∀i
(B.1)

Claim B.2. Let S ⊂ L1(Sd−1) be the set of optimizers for equation 4.2, and let S′ ⊂ L1(Sd−1) be
the set of optimizers for equation B.1. If equation B.1 is feasible, for any α ∈ S, α

γ`1
∈ S′, and for

any α′ ∈ S′, α′

‖α′‖1 ∈ S.

Proof. Let opt′ denote the optimal objective for equation B.1. We note that α′

‖α′‖1 is
feasible for equation 4.2 with objective 1

opt′ , and therefore γ`1 ≥ 1
opt′ . Furthermore,

1
2γ`1

yi
∫
ū∈Sd−1 α(ū)φ(ū>xi)dū ≥ 1 ∀i, and so α

γ`1
is feasible for equation B.1 with objective

1
γ`1

. Therefore, opt′ ≤ 1
γ`1

. As a result, it must hold that opt′ = 1
γ`1

, which means that α′

‖α′‖1 is
optimal for equation 4.2, and α

γ`1
is optimal for equation B.1, as desired.

First, note that if equation B.1 is not feasible, then γ`1 = 0 and equation 4.2 has a trivial sparse
solution, the all zeros function. Thus, it suffices to show that an optimal solution to equation B.1
exists that is n-sparse, since by Lemma B.2 equation B.1 and equation 4.2 have equivalent solutions
up to a scaling. We begin by taking the dual of equation B.1.
Claim B.3. The dual of equation B.1 has form

max
λ∈Rn

λ>~1

subject to

∣∣∣∣∣
n∑
i=1

λiyiφ(ū>xi)

∣∣∣∣∣ ≤ 1 ∀ū ∈ Sd−1

λi ≥ 0

For any primal optimal solution α? and dual optimal solution λ?, it must hold that
n∑
i=1

λ?i yiφ(ū>xi) = sign(α?(ū)) ⇐⇒ α?(ū) 6= 0 (B.2)

Proof. The dual form can be solved for by computation. By strong duality, equation B.2 must follow
from the KKT conditions.

Now define the mapping v : Sd−1 → Rn with vi(ū) , yiφ(ū>xi). We will show a general result
about linearly dependent v(ū) for ū ∈ supp(α?), after which we can reduce directly to the proof of
Tibshirani (2013).
Claim B.4. Let α? be any optimal solution. Suppose that there exists S ⊆ supp(α?) such that
{v(ū) : ū ∈ S} forms a linearly dependent set, i.e.∑

ū∈S
cūv(ū) = ~0 (B.3)

for coefficients c. Then
∑
ū∈S cū sign(α?(ū)) = 0.
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Proof. Let λ? be any dual optimal solution, then λ?>v(ū) = sign(α?(ū)) ∀ū ∈ supp(α?) by Claim
B.3. Thus, we apply λ?> to both sides of equation B.3 to get the desired statement.

Proof of Lemma B.1. The rest of the proof follows Lemma 14 in Tibshirani (2013). The lemma
argues that if the conclusion of Claim B.4 holds and an optimal solution α? has S ⊆ supp(α?)
with {v(ū) : ū ∈ S} linearly dependent, we can construct a new α′ with ‖α′‖1 = ‖α?‖1 and
supp(α′) ⊂ supp(α?) (where the inclusion is strict). Thus, if we consider an optimal α? with
minimal support, it must follow that {v(ū) : ū ∈ supp(α?)} is a linearly independent set, and
therefore |supp(α?)| ≤ n.

We can now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. For ease of notation, we will parametrize a two-layer network with m units
by top layer weights w1, . . . , wm ∈ R and bottom layer weights u1, . . . , um ∈ Rd. As before, we
use Θ to refer to the collection of parameters, so the network computes the real-valued function

f(Θ;x) =

m∑
j=1

wjφ(u>j x)

Note that we simply renamed the variables from the parametrization of equation 3.1.

We first apply Lemma B.1 to conclude that equation 4.2 admits a n-sparse optimal solution α?.
Because of sparsity, we can now abuse notation and treat α? as a real-valued function such that∑
ū∈supp(α?) |α?(ū)| ≤ 1. We construct Θ corresponding to a two-layer network with m ≥ n hidden

units and normalized margin at least γ`12 . For clarity, we let W correspond to the top layer weights
and U correspond to the bottom layer weights. For every ū ∈ supp(α), we let Θ have a corresponding

hidden unit j with (wj , uj) =

(
sign(α?(ū))

√
|α?(ū)|

2 ,
√
|α?(ū)|

2 ū

)
, and set the remaining hidden

units to ~0. This is possible because m ≥ n. Now

f(Θ;x) =

m∑
j=1

wjφ(u>j x) =
1

2

∑
ū∈supp(α?)

α?(ū)φ(ū>x)

Furthermore,

‖Θ‖22 =

m∑
j=1

w2
j + ‖uj‖22 =

∑
ū∈supp(α)

|α?(ū)|
2

+
|α?(ū)|

2
‖ū‖22 =

∑
ū∈supp(α)

|α?(ū)| ≤ 1

Thus it follows that Θ has normalized margin at least γ`1/2, so γ?,m ≥ γ`1/2.

To conclude, we show that γ?,m ≤ γ`1/2. Let Θ?,m denote the parameters obtaining optimal m-unit
margin γ?,m with hidden units (w?,mj , u?,mj ) for j ∈ [m]. We can construct α to put a scaled delta
mass of 2w?,mj ‖u?,mj ‖2 on ū?,mj for j ∈ [m]. It follows that

‖α‖1 =

m∑
j=1

2|w?,mj |‖u?,mj ‖2 ≤
m∑
j=1

w?,mj
2

+ ‖u?,mj ‖22 = ‖Θ?,m‖22 ≤ 1

Furthermore, ∫
Sd−1

α(ū)φ(ū>x) = 2

m∑
j=1

w?,mj ‖u?,mj ‖2φ((ū?,mj )>x)

= 2

m∑
j=1

w?,mj φ(u?,mj
>
x) = 2f(Θ?,m;x)

Thus, α is a feasible solution to equation 4.2 with objective value at least 2γ?,m. Therefore, γ`1 ≥
2γ?,m, so γ?,m = γ`1/2.
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C RADEMACHER COMPLEXITY AND GENERALIZATION ERROR

We prove the generalization error bounds stated in Proposition 3.1 and Lemma 4.2 via Rademacher
complexity and margin theory.

Assume that our data X,Y are drawn i.i.d. from ground truth distribution pdata supported on X × Y .
For some hypothesis classF of real-valued functions, we define the empirical Rademacher complexity
R̂(F) as follows:

R̂(F) ,
1

n
Eεi

[
sup
f∈F

n∑
i=1

εif(xi)

]
where εi are independent Rademacher random variables.

For a classifier f , following the notation of Section 3 we will use L(f) , Pr(x,y)∼pdata
(yf(x) ≤ 0)

to denote the population 0-1 loss of the classifier f . The following classical theorem (Koltchinskii
et al., 2002), (Kakade et al., 2009) bounds generalization error in terms of the Rademacher complexity
and margin loss.
Theorem C.1 (Theorem 2 of Kakade et al. (2009)). Let (xi, yi)

n
i=1 be drawn iid from pdata. We

work in the binary classification setting, so Y = {−1, 1}. Assume that for all f ∈ F , we have
supx∈X f(x) ≤ C. Then with probability at least 1− δ over the random draws of the data, for every
γ > 0 and f ∈ F ,

L(f) ≤ 1

n

n∑
i=1

1(yif(xi) < γ) +
4R̂(F)

γ
+

√
log log2

4C
γ

n
+

√
log(1/δ)

2n

C.1 PROOF OF PROPOSITION 3.1

We will prove Proposition 3.1 by applying the Rademacher complexity bounds of Golowich et al.
(2017) with Theorem C.1.

First, we show the following lemma bounding the generalization of neural networks whose weight
matrices have bounded Frobenius norms.
Lemma C.2. Define the hypothesis class FK over depth-K neural networks by

FK =

{
f(Θ; ·) : ‖Wj‖F ≤

1√
K
∀j
}

Let C , supx∈X ‖x‖2. Recall that L(Θ) denotes the 0-1 population loss L(f(Θ; ·)). Then
for any f(Θ; ·) ∈ FK classifying the training data correctly with unnormalized margin γΘ ,
mini yif(Θ;xi) > 0, with probability at least 1− δ,

L(Θ) .
C

γΘK(K−1)/2
√
n

+

√
log log2

4C
γΘ

n
+

√
log(1/δ)

n
(C.1)

Note the dependence on the unnormalized margin rather than the normalized margin.

Proof. We first claim that supf(Θ;·)∈FK supx∈X f(Θ;x) ≤ C. To see this, for any f(Θ; ·) ∈ FK ,

f(Θ;x) = WKφ(· · ·φ(W1x) · · · )
≤ ‖WK‖F ‖φ(WK−1φ(· · ·φ(W1x) · · · )‖2
≤ ‖WK‖F ‖WK−1φ(· · ·φ(W1x) · · · )‖2

(since φ is 1-Lipschitz and φ(0) = 0, so φ performs a contraction)
< ‖x‖2 ≤ C (repeatedly applying this argument and using ‖Wj‖F < 1)

Furthermore, by Theorem 1 of Golowich et al. (2017), R̂(FK) has upper bound

R̂(FK) .
C

K(K−1)/2
√
n
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Thus, we can apply Theorem C.1 to conclude that for all f(Θ; ·) ∈ FK and all γ > 0, with probability
1− δ,

L(Θ) .
1

n

n∑
i=1

1(yif(Θ;xi) < γ) +
C

γK(K−1)/2
√
n

+

√
log log2

4C
γ

n
+

√
log(1/δ)

n

In particular, by definition choosing γ = γΘ makes the first term on the LHS vanish and gives the
statement of the lemma.

Proof of Proposition 3.1. Given parameters Θ = (W1, . . . ,WK), we first construct parameters
Θ̃ = (W̃1, . . . , W̃K) such that f(Θ̄; ·) and f(Θ̃; ·) compute the same function, and ‖W̃1‖2F =

‖W̃2‖2F = · · · = ‖W̃K‖2F ≤ 1
K . To do this, we set

W̃j =
(
∏K
k=1 ‖Wk‖F )1/k

‖Wj‖F ‖Θ‖F
Wj

By construction

‖W̃j‖2F =
(
∏K
k=1 ‖Wk‖2F )1/k

‖Θ‖2F

=
(
∏K
k=1 ‖Wk‖2F )1/k∑K
k=1 ‖Wk‖2F

≤ 1

k
(by the AM-GM inequality)

Furthermore, we also have

f(Θ̃;x) = W̃Kφ(· · ·φ(W̃1x) · · · )

=

K∏
j=1

(
∏K
k=1 ‖Wk‖F )1/k

‖Wj‖F ‖Θ‖F
WKφ(· · ·φ(W1x) · · · ) (by the homogeneity of φ)

=
1

‖Θ‖KF
f(Θ;x)

= f

(
Θ

‖Θ‖F
;x

)
(since f is K-homogeneous in Θ)

= f(Θ̄;x)

Now we note that by construction, L(Θ) = L(Θ̃). Now f(Θ̃; ·) must also classify the training data
perfectly, has unnormalized margin γ, and furthermore f(Θ̃; ·) ∈ FK . As a result, Lemma C.2 allows
us to conclude the desired statement.

To conclude Corollary 3.2, we apply the above on Θλ,M and use Theorem A.3.

C.2 PROOF OF KERNEL GENERALIZATION BOUNDS

Let F2,φ
B denote the class of `2-bounded linear functionals in lifted feature space: F2,φ

B , {x 7→
〈α,ϕ(x)〉 : α ∈ L2(Sd−1), ‖α‖2 ≤ B}. We abuse notation and write α ∈ F2,φ

B to indicate a linear
functional from F2,φ

B . As before, we will use L(α) to indicate the 0-1 population loss of the classifier
x 7→ 〈α,ϕ(x)〉 and let C , supx∈X ‖x‖2 be an upper bound on the norm of the data. We focus on
analyzing the Rademacher complexity R̂(F2,φ

B ), mirroring derivations done in the past (Bartlett &
Mendelson, 2002). We include our derivations here for completeness.

Lemma C.3. R̂(F2,φ
B ) ≤ 1

nB
√∑n

i=1 ‖ϕ(xi)‖22.
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Proof. We write

R̂(F2,φ
B ) =

1

n
Eεi

[
sup

α∈F2,φ
B

〈α,
n∑
i=1

εiϕ(xi)〉

]

≤ 1

n
Eεi

[
sup

α∈F2,φ
B

‖α‖2

∥∥∥∥∥
n∑
i=1

εiϕ(xi)

∥∥∥∥∥
2

]

≤ 1

n
B · Eεi

[∥∥∥∥∥
n∑
i=1

εiϕ(xi)

∥∥∥∥∥
2

]

≤ 1

n
B

√√√√√Eεi

∥∥∥∥∥
n∑
i=1

εiϕ(xi)

∥∥∥∥∥
2

2

 (via Jensen’s inequality)

≤ 1

n
B

√√√√√Eεi

 n∑
i=1

n∑
j=1

εiεj〈ϕ(xi), ϕ(xi)〉


≤ 1

n
B

√√√√ n∑
i=1

‖ϕ(xi)‖22 (terms where i 6= j cancel out)

As an example, we can apply this bound to relu features:

Corollary C.4. Suppose that φ is the relu activation. Let κ , Vol(Sd−1). Then R̂(F2,φ
B ) .

B‖X‖F
√
κ

n
√
d
≤ BC

√
κ√

dn
.

Proof. We first show that ‖ϕ(xi)‖22 = Θ
(
κ
d‖xi‖

2
2

)
. We can compute

‖ϕ(xi)‖22 = Vol(Sd−1)Eū∼Sd−1 [relu(ū>xi)
2]

=
κ

d
Eū∼Sd−1 [relu(

√
dū>xi)

2]

=
κ

d

1

M2
Eu∼N (0,Id×d)[relu(uTxi)

2] (M2 is the second moment of N (0, 1))

= Θ
(κ
d
‖xi‖22

)
(C.2)

where the last line uses the computation provided in Lemma A.1 by Du et al. (2017). Now we plug
this into Lemma C.3 to get the desired bound.

We will now prove Lemma 4.2.

Proof of Lemma 4.2. From equation C.2, we first obtain supx∈X ‖ϕ(x)‖2 . C
√

κ
d . Denote the

optimizer for equation 4.3 by α`2 . Note that
√
κα`2 ∈ F

2,φ
1 , and furthermore L(α`2) = L(

√
κα`2).

Since
√
κα`2 has unnormalized margin

√
κγ`2 , we apply Theorem C.1 on margin

√
κγ`2 and

hypothesis class F2,φ
1 to get with probability 1− δ,

L`2-svm = L(
√
κα`2) ≤ 4R̂(F2,φ

1 )√
κγ`2

+

√
log log2

4 supx∈X ‖ϕ(x)‖2√
κγ`2

n
+

√
log(1/δ)

2n

.
C

γ`2
√
dn

+

√√√√ log max
{

log2
C√
dγ`2

, 2
}

n
+

√
log(1/δ)

n

(applying Corollary C.4)
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D MISSING PROOFS FOR COMPARISON TO KERNEL METHODS

D.1 CLASSIFICATION

In this section we will complete a proof of Theorem 4.3. Recall the construction of the distribution D
provided in Section 4. We first provide a classifier of this data with small `1 norm.

Lemma D.1. In the setting of Theorem 4.3, we have that

γ`1 ≥
√

2

4
.

Proof. Consider the network f(x) = 1
4

(
(x>(e1 +e2)/

√
2)+ +(x>(−e1−e2)/

√
2)+− (x>(−e1 +

e2)/
√

2)+ − (x>(e1 − e2)/
√

2)+

)
. The attained margin γ =

√
2

4 , so γ`1 ≥
√

2
4 .

Now we will upper bound the margin attainable by the `2 SVM.

Lemma D.2 (Margin upper bound tool). In the setting of Theorem 4.3, we have

γ`2 ≤
1√
κ
·

∥∥∥∥∥ 1

n

n∑
i=1

ϕ(xi)yi

∥∥∥∥∥
2

Proof. By the definition of γ`2 , we have that for any α with
√
κ‖α‖2 ≤ 1, we have

γ`2 ≤ max√
κ‖α‖2≤1

1

n

n∑
i=1

〈α, yiϕ(xi)〉

Setting α = 1√
κ

1
n

∑n
i=1 ϕ(xi)yi/‖ 1

n

∑n
i=1 ϕ(xi)yi‖2 completes the proof. (Attentive readers may

realize that this is equivalent to setting the dual variable of the convex program 4.3 to all 1’s
function.)

Lemma D.3. In the setting of Theorem 4.3, let (xi, yi)
n
i=1 be n i.i.d samples and corresponding

labels from D. Let ϕ be defined in equation 4.1 with φ = relu. With high probability (at least
1− dn−10), we have ∥∥∥∥∥ 1

n

n∑
i=1

ϕ(xi)yi

∥∥∥∥∥
2

.
√
κ/n log n+

√
κ/d

Proof. Let Wi = ϕ(xi)yi. We will bound several quantities regarding Wi’s. In the rest of the proof,
we will condition on the event E that ∀i, ‖xi‖22 . d log n. Note that E is a high probability event
and conditioned on E, xi’s are still independent. We omit the condition on E in the rest of the proof
for simplicity.

We first show that assuming the following three inequalities that the conclusion of the Lemma follows.

1. ∀i, ‖Wi‖22 . κ log n .

2. σ2 , Var[
∑
iWi] ,

∑n
i=1 E[‖Wi − EWi‖22] . nκ log n

3. ‖E [
∑
Wi] ‖2 .

√
κn/d.

By bullets 1, 2, and Bernstein inequality, we have that with probability at least 1− dn−10 over the
randomness of the data (X,Y ),∥∥∥∥∥

n∑
i=1

Wi − E

[
n∑
i=1

Wi

]∥∥∥∥∥
2

.
√
κ log1.5 n+

√
nκ log2 n .

√
nκ log2 n

22
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By bullet 3 and equation above, we complete the proof with triangle inequality:∥∥∥∥∥
n∑
i=1

Wi

∥∥∥∥∥
2

≤

∥∥∥∥∥E
[

n∑
i=1

Wi

]∥∥∥∥∥
2

+

√
nκ log2 n .

√
nκ log2 n+

√
κn/d

Therefore, it suffices to prove bullets 1, 2 and 3. Note that 2 is a direct corollary of 1 so we will only
prove 1 and 3. We start with 3:

By the definition of the `2 norm in L2(Sd−1) and the independence of (xi, yi)’s, we can rewrite∥∥∥∥∥E
[

n∑
i=1

Wi

]∥∥∥∥∥
2

2

= κ · n2 E
ū∼Sd−1

[
E

(x,y)∼D
ϕ(x)[ū] · y

]2

(D.1)

Let ū = (ū1, . . . , ūd) and ū−2 = (ū3, . . . , ūd) ∈ Rd−2, and define τ , ‖ū−2‖2. Let x−2 =
(x>e3, . . . , x

>ed). Note that ϕ(x)[ū]y = y[ū1 · x>e1 + ū2 · x>e2 + ū>−2x−2] and ū>−2x−2 has
distribution ‖ū−2‖2 · N (0, 1) = τ · N (0, 1). Let z = ū>−2x−2/τ , and therefore z has standard
normal distribution. With this change of the variables, by the definition of the distribution D, we have

E
(x,y)∼D

ϕ(x)[ū] · y =
1

4
E

z∼N(0,1)
[(ū1 + ū2 + τz)+] +

1

4
E

z∼N(0,1)
[(−ū1 − ū2 + τz)+]

− 1

4
E

z∼N(0,1)
[(ū1 − ū2 + τz)+]− 1

4
E

z∼N(0,1)
[(+ū1 − ū2 + τz)+]

By claim D.4, and the 1-homogeneity of relu, we can simplify the above equation to

E
(x,y)∼D

ϕ(x)[ū] · y =
1

4
τ ·
(
2c1 +O(min{|ū1 + ū2|/τ, |ū1 + ū2|2/τ2})

−τ
4

(
2c1 −O(min{|ū1 − ū2|/τ, |ū1 − ū2|2/τ2})

))
. min{|ū1|+ |ū2|, (|ū1|+ |ū2|)2/τ}

It follows that

E
ū∼Sd−1

[
E

(x,y)∼D
ϕ(x)[ū] · y

]2

. Eū
[
min{(|ū1|+ |ū2|)2, (|ū1|+ |ū2|)4/‖ū−2‖22}

]
. Eū

[
(|ū1|+ |ū2|)2 · 1[‖ū−2‖2 ≤ 1/2]

]
+ Eū

[
(|ū1|+ |ū2|)4/‖ū−2‖22 · 1[‖ū−2‖2 ≥ 1/2]

]
. exp(−

√
d) + Eū

[
(|ū1|+ |ū2|)4

]
. 1/d2 (D.2)

Combining equation D.1 and equation D.2 we complete the proof of bullet 3. Next we prove
bullet 1. Note that ϕ(x)[ū]y is bounded by |ū1| + |ū2| + ‖ū>−2x−2‖2. Therefore, conditioned on
‖xi‖2 . d log n

‖Wi‖22 ≤ E
ū∼Sd−1

[
(|ū1|+ |ū2|+ ‖ū>−2x−2‖2)2

]
. E
ū∼Sd−1

[
|ū1|2

]
+ E
ū∼Sd−1

[
|ū2|2

]
+ E
ū∼Sd−1

[
‖ū>−2x−2‖22

]
. 1/d+ ‖x−2‖22/d . log n

Hence we complete the proof.

Claim D.4. Let Z ∼ N (0, 1) and a ∈ R. Then, there exists a universal constant c1 and c2 such that

|E [(a+ Z)+ + (−a+ Z)+]− 2c1| ≤ c2 min{|a|, a2}.

Proof. Without loss of generality we can assume a ≥ 0. Then,
E [(a+ Z)+ + (−a+ Z)+] = E [(a+ Z)1[Z ≥ −a]] + E [(Z − a)1[Z ≥ a]]

= E [a · 1[Z ≥ −a]] + E [Z · 1[Z ≥ −a]]− E [a · 1[Z ≥ a]] + E [Z · 1[Z ≥ a]]

= E [a1[−a ≤ Z ≤ a]] + 2E [Z · 1[Z ≥ a]] (by E [Z · 1[−a ≤ Z ≤ a]] = 0)
= E [a1[−a ≤ Z ≤ a]] + 2E [Z · 1[Z ≥ 0]]− 2E [Z · 1[a ≥ Z ≥ 0]]

= 2c1 +O(min{a, a2})
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where the last equality uses the fact that c1 , E [Z · 1[Z ≥ 0]] and E [a1[−a ≤ Z ≤ a]] ≤
aE [1[−a ≤ Z ≤ a]] . amin{1, a}.

Now we will prove Theorem 4.3.

Proof of Theorem 4.3. To circumvent the technical issue of bounded support in Proposition 3.1 and
Lemma 4.2, we construct pdata to be a slightly modified version of D: perform rejection sampling
of (x, y) ∼ D until we obtain a sample with ‖x‖22 . d log n. Since this occurs with very high
probability, the high probability result of Lemma D.3 still translates to pdata. Now apply Lemma D.2
to conclude that γ`2 . logn√

n
+ 1

d . Furthermore, Lemma D.1 allows us to conclude that γ`1 & 1.

We can therefore apply Proposition 3.1, and conclude that with probability 1− δ,

L`1-svm .

√
d log n

n
+

√
log log(d log n)

n
+

√
log(1/δ)

n

Furthermore, plugging γ`2 into the bound of Lemma 4.2 gives us

min

{
1, d

√
log n

n

}
+

√
log log(dn)

n
+

√
log(1/δ)

n

D.2 REGRESSION

We will first define the 1-norm and 2-norm regression problems. The regression equivalent of
equation 4.2 for α ∈ L1(Sd−1) is as follows:

α`1 ∈ arg min
α

‖α‖1

subject to 〈α,ϕ(xi)〉 = yi
(D.3)

Next we define the regression version of equation 4.3:

α`2 ∈ arg min
α

‖α‖2

subject to 〈α,ϕ(xi)〉 = yi
(D.4)

where α ∈ L2(Sd−1).

We will briefly motivate our study of the regression setting by connecting the minimum 1-norm solu-
tion to neural networks. To compare, in the classification setting, optimizing the weakly regularized
loss over neural networks is equivalent to solving the `1 SVM. In the regression setting, solving the
weakly regularized squared error loss is equivalent is equivalent to finding the minimum 1-norm
solution that fits the datapoints exactly.
Theorem D.5. Let f(Θ; ·) be some two-layer neural network with m ≥ n hidden units parametrized
by Θ, as in Section 4. Define the λ-regularized squared error loss

Lλ,m(Θ) ,
1

n

n∑
i=1

(f(Θ;xi)− yi)2 + λ‖Θ‖22

with Θλ,m ∈ arg minΘ Lλ,m(Θ). Suppose that equation D.3 is feasible with optimal solution α`1 .
Then as λ→ 0, Lλ,m(Θλ,m)→ 0 and ‖Θλ,m‖22 → 2‖α`1‖1.

Proof. We can see that equation D.3 will have a n-sparse solution α? using the same reasoning
as the proof of Lemma B.1. Furthermore, following the proof of Proposition 4.1, the function
x 7→ 〈α?, ϕ(x)〉 is implementable by a neural network Θ?,m with ‖Θ?,m‖22 = 2‖α?‖1 = 2‖α`1‖1.
Following the same reasoning as before, we can also conclude that Θ?,m is an optimal solution for:

min
Θ
‖Θ‖22

subject to f(Θ;xi) = yi
(D.5)
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Now we note that λ‖Θλ,m‖22 ≤ Lλ,m(Θλ,m) ≤ Lλ,m(Θ?,m) = λ‖Θ?,m‖22, so as λ→ 0, and also
‖Θλ,m‖2 ≤ ‖Θ?,m‖2. Now assume for the sake of contradiction that ∃B with ‖Θλ,m‖2 ≤ B <
‖Θ?,m‖2 for arbitrarily small λ. We define

r? ,min
Θ

1

n

n∑
i=1

(f(Θ;xi)− yi)2

subject to ‖Θ‖2 ≤ B

Note that r? > 0 since Θ?,m is optimal for equation D.5. However, Lλ,m ≥ r? for arbitrarily small
λ, a contradiction. Thus, limλ→0 ‖Θ?,m‖22 = ‖Θ?,m‖22.

We proceed to provide similar generalization bounds as the classification setting. This time, our
bounds depend on the norms of the solution rather than the margin. Let fφ(α; ·) , x 7→ 〈α,ϕ(x)〉
(for ϕ(x) defined in equation 4.1). Following the convention in Section C.2, define hypothesis class
F1,φ
B , {fφ(α; ·) : α ∈ L1(Sd−1), ‖α‖1 ≤ B} of linear functionals bounded by B in 1-norm. As

before, define F2,φ
B and let R̂(F) denote the empirical Rademacher complexity of hypothesis class

F .

We will first derive a Rademacher complexity bound for F1,φ
B .

Claim D.6. R̂(F1,φ
B ) ≤ 1

nBEεi
[
‖
∑n
i=1 εiϕ(xi)‖∞

]
.

Proof. We write

R̂(F1,φ
B ) =

1

n
Eεi

[
sup

α∈F1,φ
B

〈α,
n∑
i=1

εiϕ(xi)〉

]

≤ 1

n
Eεi

[
sup

α∈F1,φ
B

‖α‖1

∥∥∥∥∥
n∑
i=1

εiϕ(xi)

∥∥∥∥∥
∞

]

≤ 1

n
B · Eεi

[∥∥∥∥∥
n∑
i=1

εiϕ(xi)

∥∥∥∥∥
∞

]

We will now complete the bound on R̂(F1,φ
B ) for Lipschitz activations φ with φ(0) = 0.

Claim D.7. Suppose that our activation φ is M -Lipschitz and φ(0) = 0.Then

R̂(F1,φ
B ) ≤

3BM
√∑n

i=1 ‖xi‖22
n

Proof. We will show that

Eεi

[∥∥∥∥∥
n∑
i=1

εiϕ(xi)

∥∥∥∥∥
∞

]
≤ 3M

√√√√ n∑
i=1

‖xi‖22

from which the statement of the lemma follows via Claim D.6. Fix any ū′ ∈ Sd−1. Then we get the
decomposition

Eεi

[
sup

ū∈Sd−1

∣∣∣∣∣
n∑
i=1

εiφ(ū>xi)

∣∣∣∣∣
]
≤ Eεi

[∣∣∣∣∣
n∑
i=1

εiφ(ū′>xi)

∣∣∣∣∣
]

+

Eεi

[
sup

ū∈Sd−1

∣∣∣∣∣
n∑
i=1

εiφ(ū>xi)

∣∣∣∣∣− inf
ū∈Sd−1

∣∣∣∣∣
n∑
i=1

εiφ(ū>xi)

∣∣∣∣∣
] (D.6)
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We can bound the first term as

Eεi

[∣∣∣∣∣
n∑
i=1

εiφ(ū′>xi)

∣∣∣∣∣
]
≤

√√√√√Eεi

( n∑
i=1

εiφ(ū′>xi)

)2


≤

√√√√ n∑
i=1

φ(ū′>xi)2

≤M

√√√√ n∑
i=1

(ū′>xi)2 (since φ is Lipschitz and φ(0) = 0)

≤M

√√√√ n∑
i=1

‖xi‖22 (D.7)

We note that the second term of equation D.6 can be bounded by

Eεi

[
sup

ū∈Sd−1

∣∣∣∣∣
n∑
i=1

εiφ(ū>xi)

∣∣∣∣∣− inf
ū∈Sd−1

∣∣∣∣∣
n∑
i=1

εiφ(ū>xi)

∣∣∣∣∣
]

≤ Eεi

[
sup

ū∈Sd−1

n∑
i=1

εiφ(ū>xi)− inf
ū∈Sd−1

n∑
i=1

εiφ(ū>xi)

]
This follows from the general fact that the difference between the supremum and infimum of the
absolute value of a quantity is bounded by the difference between the supremum and the infimum.
Furthermore, by symmetry of the Rademacher random variables,

Eεi

[
sup

ū∈Sd−1

n∑
i=1

εiφ(ū>xi)− inf
ū∈Sd−1

n∑
i=1

εiφ(ū>xi)

]
≤ 2Eεi

[
sup

ū∈Sd−1

n∑
i=1

εiφ(ū>xi)

]
(D.8)

This simply gives an empirical Rademacher complexity of the hypothesis class F , {x 7→ φ(ū>x) :
ū ∈ Sd−1} scaled by n. By the Lipschitz contraction property of Rademacher complexity, using the
fact that φ is M -Lipschitz, we can therefore bound equation D.8 by

2Eεi

[
sup

ū∈Sd−1

n∑
i=1

εiφ(ū>xi)

]
≤ 2M

√√√√ n∑
i=1

‖xi‖22 (D.9)

Plugging equation D.7 and equation D.9 back into equation D.6 gives the desired bound.

The following is a generalization bound based on the 1-norm:

Lemma D.8. Let l(·; y) : R→ [−c, c] be a bounded M -Lipschitz loss function. Assume that φ is a
1-Lipschitz activation with φ(0) = 0. Let (xi, yi)

n
i=1 be drawn i.i.d from pdata. Then with probability

at least 1− δ over the dataset, every α ∈ L1(Sd−1) satisfies

E(x,y)∼pdata
[l(fφ(α;x); y)] ≤

1

n

n∑
i=1

l(fφ(α;xi); yi) + 12M
max{1, ‖α‖1‖X‖F }

n
+ c

√
log(1/δ) + log(max{1, 2‖α‖1‖X‖F })

2n

Proof. Our starting point is Theorem 1 of Kakade et al. (2009), which states that with probability
1− δ, for any fixed hypothesis class F and f ∈ F ,

E(x,y)∼pdata
[l(f(x); y)] ≤ 1

n

n∑
i=1

l(f(xi); yi) + 2MR̂(F) + c

√
log(1/δ)

n
(D.10)

26



Under review as a conference paper at ICLR 2019

We define Bj , 2j

‖X‖F for j ≥ 0. We note that by Claim D.7, R̂(F1,φ
Bj

) ≤ 3 2j

n . and apply the above

on F1,φ
Bj

using δj , δ
2j+1 . Then using a union bound, with probability 1−

∑∞
j=0 δj = 1− δ, for all

j ≥ 0 and fφ(α; ·) ∈ F1,φ
Bj

E(x,y)∼pdata
[l(fφ(α;x); y)] ≤ 1

n

n∑
i=1

l(fφ(α;xi); yi) + 2MR̂(F1,φ
Bj

) + c

√
log(1/δj)

n

≤ 1

n

n∑
i=1

l(fφ(α;xi); yi) + 6M
2j

n
+ c

√
log(1/δ) + log(2j+1)

n

Now for every α with ‖α‖1 < 1
‖X‖F , we use the inequality for F1,φ

B0
, and for every other α, we

apply the inequality corresponding to F1,φ
Bj+1

, where 2j ≤ ‖α‖1‖X‖F ≤ 2j+1. This gives the desired
statement.

We can also provide the same generalization error bound for the 2-norm and relu features:
Lemma D.9. In the setting of Lemma D.8, choose φ to be the relu activation. Then with probability
1− δ, every α ∈ L2(Sd−1) satisfies

E(x,y)∼pdata
[l(fφ(α;x); y)] .

1

n

n∑
i=1

l(fφ(α;xi); yi) +M

√
κmax{1, ‖α‖2‖X‖F }

n
√
d

+ c

√
log(1/δ) + log(max{1, ‖α‖2‖X‖F })

2n

Proof. We proceed the same way as in the proof of Lemma D.8. We define Bj as before, and this
time have R̂(F2,φ

Bj
) .

√
κ2j

n
√
d

from Corollary C.4. Thus, again union bounding over all j, equation

equation D.10 gives with probability 1− δ, for all j ≥ 0 and fφ(α; ·) ∈ F2,φ
Bj

E(x,y)∼pdata
[l(fφ(α;x); y)] .

1

n

n∑
i=1

l(fφ(α;xi); yi) +M

√
κ2j

n
√
d

+ c

√
log(1/δ) + log(2j+1)

n

Now we assign the α to different j as before to obtain the statement in the lemma.

Note that if l is some bounded loss such that l(y; y) = 0 (for example, truncated squared error), for
α`1 and α`2 the loss terms over the datapoints (in the bounds of Lemmas D.8 and D.9) vanish. For
loss l, define

L`1-reg , Ex,y∼pdata
[l(fφ(α`1 ;x); y)]

L`2-reg , Ex,y∼pdata
[l(fφ(α`2 ;x); y)]

Next, we will define the kernel matrix K with Kij = 〈ϕ(xi), ϕ(xj)〉. Now we are ready to state and
prove the formal theorem describing the gap between the 1-norm solution and 2-norm solution.
Theorem D.10. Recall the definitions of α`1 and α`2 in equation D.3 and equation D.4. For any
activation φ with the property that K is full rank for any X with no repeated datapoints, there exists
a distribution pdata such that with probability 1,

‖α`1‖1 ≤ 1

On the other hand,

E(xi,yi)ni=1∼iidpdata
[‖α`2‖22] =

n

κ

For i.i.d samples from this choice of pdata, if l is bounded (l(·; y) : R → [−1, 1]), 0 on correct
predictions (l(y; y) = 0), and 1-Lipschitz, then with probability 1− δ,

L`1-reg .

√
d

n
+

√
log(1/δ) + log n

n

Meanwhile, in the case that ‖α`2‖22 ≥ n
κ , the upper bound on L`2-reg from Lemma D.9 is Ω(1) and in

particular does not decrease with n.
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We will first show that for any dataset X , there is a distribution over Y such that the expectation of
‖α`2‖2 is large. When it is clear from context, y will denote the vector corresponding to Y .

Lemma D.11. There is a distribution A over L1(Sd−1) such that for any dataset X with yi ,
〈ϕ(xi), β〉 for β ∼ A,

Eβ [‖α`2‖22] ≥ n

κ

and with probability 1,

‖α`1‖1 ≤ 1

We note the order of the quantifiers in Lemma D.11: the distribution A must not depend on the
dataset X . We first provide a simple closed-form expression for ‖α`2‖22.
Claim D.12. If K is full rank, then ‖α`2‖22 = y>K−1y.

Proof. This follows by taking the dual of equation D.4.

Proof of Lemma D.11. We sample β ∼ A as follows: first sample ū ∼ Sd−1 uniformly. Then set β to
have a delta mass of 1 at ū and be 0 everywhere else. Define the vector vū , [φ(ū>x1) · · ·φ(ū>xn)];
then it follows that we set our labels y to vū. It is immediately clear that ‖α`1‖1 ≤ ‖β‖1 ≤ 1.

To lower bound Eβ [‖α`2‖22], from Claim D.12 we get

Eβ∼A[‖α`2‖22] = Eū∼Sd−1 [v>ūK
−1vū]

= Eū∼Sd−1 [traceK−1(vūv
>
ū )]

= trace(K−1Eū∼Sd−1 [vūv
>
ū ]

=
1

κ
trace(K−1K) (by definition of K)

=
n

κ

Proof of Theorem D.10. We note that since the distribution A of Lemma D.11 does not depend on
the dataset X , it must follow that

E(xi)ni=1∼iidN (0,Id×d)

[
Eβ∼A[‖α`2‖22]

]
=
n

κ

Eβ∼A
[
E(xi)ni=1∼iidN (0,Id×d)[‖α`2‖22]

]
=
n

κ

Thus, there exists β? such that if we sample X i.i.d. from the standard normal and set yi =
〈ϕ(xi), β

?〉, the expectation of ‖α`2‖22 is at least nκ . We choose pdata corresponding to this β?, with
x sampled from the standard normal. Now it is clear that pdata will satisfy the norm conditions of
Theorem D.10.

For the generalization bounds, with high probability ‖X‖F = Θ(
√
nd) as x is sampled from the

standard normal distribution. Thus, Lemma D.8 immediately gives the desired generalization error
bounds for L`1-reg. On the other hand, if ‖α`2‖2 ≥

√
n
κ , then the bound of Lemma D.9 is at least

√
κ‖α`2‖2‖X‖F

n
√
d

≥ Ω(1)

E MISSING PROOFS IN SECTION 5

E.1 DETAILED SETUP

We first write our regularity assumptions on Φ, R, and V in more detail:
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Assumption E.1 (Regularity conditions on Φ, R, V ). R is convex, nonnegative, Lipschitz, and
smooth: ∃MR, CR such that ‖∇2R‖op ≤ CR, and ‖∇R‖2 ≤MR.

Assumption E.2. Φ is differentiable, bounded and Lipschitz on the sphere: ∃BΦ,MΦ such that
‖Φ(θ̄)‖ ≤ BΦ ∀θ̄ ∈ Sd, and |Φi(θ̄)− Φi(θ̄

′)| ≤MΦ‖θ̄ − θ̄′‖2 ∀θ̄, θ̄′ ∈ Sd.

Assumption E.3. V is Lipschitz and upper and lower bounded on the sphere: ∃bV , BV ,MV such
that 0 < bV ≤ V (θ̄) ≤ BV ∀θ̄ ∈ Sd, and ‖∇V (θ̄)‖2 ≤MV ∀θ̄ ∈ Sd.

We state the version of Theorem 5.3 that collects these parameters:

Theorem E.4 (Theorem 5.3 with problem parameters). Suppose that Φ and V are 2-homogeneous
and Assumptions E.1, E.2, and E.3 hold. Fix a desired error threshold ε > 0. Suppose that from a
starting distribution ρ0, a solution to the dynamics in equation 5.2 exists. Choose

σ , exp(−d log(1/ε)poly(k,MV ,MR,MΦ, bV , BV , CR, BΦ, L[ρ0]− L?))

tε ,
d2

ε4
poly(log(1/ε), k,MV ,MR,MΦ, bV , BV , CR, BΦ, L[ρ0]− L?)

Then it must hold that min0≤t≤tε L[ρt]− infρ L[ρ] ≤ 2ε.

E.2 PROOF OF THEOREM E.4

Throughout the proof, it will be useful to keep track of Wt ,
√

Eθ∼ρt [‖θ‖22], the second moment of
ρt. We first introduce a general lemma on integrals over vector field divergences.

Lemma E.5. For any h1 : Rd+1 → R, h2 : Rd+1 → Rd+1 and distribution ρ with ρ(θ) → 0 as
‖θ‖ → ∞, ∫

h1(θ)∇ · (h2(θ)ρ(θ))dθ = −Eθ∼ρ[〈∇h1(θ), h2(θ)〉]

Proof. The proof follows from integration by parts.

We note that ρt will satisfy the boundedness condition of Lemma E.5 during the course of our
algorithm - ρ0 starts with this property, and Lemma E.9 proves that ρt will continue to have this
property. We therefore freely apply Lemma E.5 in the remaining proofs. We first bound the absolute
value of L′[ρt] over the sphere by BL ,MRBΦ +BV .

Lemma E.6. For any θ̄ ∈ Sd−1, t ≥ 0, |L′[ρt](θ̄)| ≤, BL.

Proof. We compute

|L′[ρt](θ̄)| =
∣∣∣∣〈∇R(∫ Φdρ

)
,Φ(θ̄)

〉
+ V (θ̄)

∣∣∣∣
≤
∥∥∥∥∇R(∫ Φdρ

)∥∥∥∥
2

‖Φ(θ̄)‖2 + V (θ̄) ≤MRBΦ +BV

Now we analyze the decrease in L[ρt].

Lemma E.7. Under the perturbed Wasserstein gradient flow

d

dt
L[ρt] = −σEθ∼ρt [L′[ρt](θ)] + σEθ̄∼Ud [L′[ρt](θ̄)]− Eθ∼ρt [‖v[ρt](θ)‖22]
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Proof. Applying the chain rule, we can compute

d

dt
L[ρt] =

〈
∇R

(∫
Φdρt

)
,
d

dt

∫
Φdρt

〉
+
d

dt

∫
V dρt

=
d

dt
Eθ∼ρt [L′[ρt](θ)]

=

∫
L′[ρt](θ)ρ

′
t(θ)dθ

= −σ
∫
L′[ρt]dρt + σ

∫
L′[ρt]dU

d −
∫
L′[ρt](θ)∇ · (v[ρt](θ)ρt(θ))dθ

= −σEθ∼ρt [L′[ρt](θ)] + σEθ̄∼Ud [L′[ρt](θ̄)]− Eθ∼ρt [‖v[ρt](θ)‖22],

where we use Lemma E.5 with h1 = L′[ρt] and h2 = v[ρt].

Now we show that the decrease in objective value is approximately the average velocity of all
parameters under ρt plus some additional noise on the scale of σ. At the end, we choose σ small
enough so that the noise terms essentially do not matter.

Corollary E.8. We can bound d
dtL[ρt] by

d

dt
L[ρt] ≤ σBL(W 2

t + 1)− Eθ∼ρt [‖v[ρt](θ)‖22] (E.1)

Proof. By homogeneity, and Lemma E.6, Eθ∼ρt [L′[ρt](θ)] = Eθ∼ρt [L′[ρt](θ̄)‖θ‖22] ≤ BLW 2
t . We

also get Eθ̄∼Ud [L′[ρt](θ̄)] ≤ BL since Ud is only supported on Sd. Combining these with Lemma
E.7 gives the desired statement.

Now we show that if we run the dynamics for a short time, the second moment of ρt will grow slowly,
again at a rate that is roughly the scale of the noise σ.

Lemma E.9. For all 0 ≤ t′ ≤ t, W 2
t′ ≤

L[ρ0]+σtBL
bV −tσBL .

Proof. Let t∗ , arg maxt′∈[0,t]W
2
t′ . Integrating both sides of equation E.1, and rearranging, we get

0 ≤
∫ t∗

0

Eθ∼ρs [‖v[ρs](θ)‖22]ds ≤ L[ρ0]− L[ρt] + σBL

∫ t∗

0

(W 2
s + 1)ds

≤ L[ρ0]− L[ρt∗ ] + t∗σBL(W 2
t∗ + 1)

Now since R is nonnegative, we apply L[ρt∗ ] ≥ Eθ∼ρt∗ [V (θ)] ≥ Eθ∼ρt∗ [V (θ̄)‖θ‖22] ≥ bVW 2
t∗ . We

now plug this in and rearrange to get W 2
t′ ≤W 2

t∗ ≤
L[ρ0]+t∗σBL
bV −t∗σBL ≤

L[ρ0]+tσBL
bV −tσBL ∀0 ≤ t

′ ≤ t.

Now let W 2
ε , L[ρ0]+σtεBL

bv−tεσBL . By Lemma E.9, ∀0 ≤ t ≤ tε, W 2
t ≤W 2

ε .

The next statement allows us to argue that our dynamics will never increase the objective by too
much.

Lemma E.10. For any t1, t2 with 0 ≤ t1 ≤ t2 ≤ tε, L[ρt2 ]− L[ρt1 ] ≤ σ(t2 − t1)BL(W 2
ε + 1).

Proof. From Corollary E.8, ∀t ∈ [t1, t2] we have

d

dt
L[ρt] ≤ σBL(W 2

ε + 1)

Integrating from t1 to t2 gives the desired result.

The following lemma bounds the change in expectation of a 2-homogeneous function over ρt. At a
high level, we lower bound the decrease in our loss as a function of the change in this expectation.

30



Under review as a conference paper at ICLR 2019

Lemma E.11. Let h : Rd+1 → R that is 2-homogeneous, with ‖∇h(θ̄)‖ ≤ M ∀θ̄ ∈ Sd and
|h(θ̄)| ≤ B ∀θ̄ ∈ Sd. Then ∀0 ≤ t ≤ tε, we have∣∣∣∣ ddt

∫
hdρ

∣∣∣∣ ≤ σB(W 2
ε + 1) +MW

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

(E.2)

Proof. Let Q(t) ,
∫
hdρt. We can compute:

Q′(t) =

∫
h(θ)

dρt
dt

(θ)dθ

=

∫
h(θ)(−σρt(θ)−∇ · (v[ρt](θ)ρt(θ)))dθ + σ

∫
hdUd

= −σ
∫
h(θ̄)‖θ‖22ρt(θ)dθ + σ

∫
hdUd −

∫
h(θ)∇ · (v[ρt](θ)ρt(θ))dθ (E.3)

Note that the first two terms are bounded by σB(W 2
ε + 1) by the assumptions for the lemma. For the

third term, we have from Lemma E.5:∣∣∣ ∫ h(θ)∇ · (v[ρt](θ)ρt(θ))dθ
∣∣∣ = |Eθ∼ρt [〈∇h(θ), v[ρt](θ)〉]|

≤
√
Eθ∼ρt [‖∇h(θ)‖22]Eθ∼ρt [‖v[ρt](θ)‖22] (by Cauchy-Schwarz)

≤
√
Eθ∼ρt [‖∇h(θ̄)‖22‖θ‖22]Eθ∼ρt [‖v[ρt](θ)‖22] (by homogeneity of∇h)

≤MWε

√
Eθ∼ρt [‖v[ρt](θ)‖22] (since h is Lipschitz on the sphere)

≤MWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

(by Corollary E.8)

Plugging this into equation E.3, we get that

|Q′(t)| ≤ σB(W 2
ε + 1) +MWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

We apply this result to bound the change in L′[ρt] over time in terms of the change of the objective
value. For clarity, we write the bound in terms of c1 that is some polynomial in the problem constants.

Lemma E.12. Define Q(t) ,
∫

Φdρt. For every θ̄ ∈ Sd and 0 ≤ t ≤ t + l ≤ tε, ∃c1 ,
poly(k,CR, BΦ,MΦ, BL) such that

|L′[ρt](θ̄)− L′[ρt+l](θ̄)| ≤ CRBΦ

∫ t+l

t

‖Q′(t)‖1 (E.4)

≤ σlc1(W 2
ε + 1) + c1Wε

√
l(L[ρt]− L[ρt+l] + σlc1(W 2

ε + 1))1/2 (E.5)

Proof. Recall that L′[ρt](θ̄) = 〈∇R(
∫

Φdρt),Φ(θ̄)〉+ V (θ̄). Differentiating with respect to t,

d

dt
L′[ρt](θ̄) =

〈
d

dt
∇R

(∫
Φdρt

)
,Φ(θ̄)

〉
= Φ(θ̄)>∇2R(Q(t))Q′(t)

≤ CRBΦ‖Q′(t)‖2
≤ CRBΦ‖Q′(t)‖1 (E.6)
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Integrating and applying the same reasoning to −L′[ρt] gives us equation E.4. Now we apply Lemma
E.11 to get

‖Q′(t)‖1 =

k∑
i=1

∣∣∣∣ ddt
∫

Φidρt

∣∣∣∣
≤

k∑
i=1

[
σBΦ(W 2

ε + 1) +MΦWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2
]

≤ kσBΦ(W 2
ε + 1) + kMΦWε

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

We plug this into equation E.6 and then integrate both sides to obtain

CRBΦ

∫ t+l

t

‖Q′(t)‖1

≤ kσlCRB2
Φ(W 2

ε + 1) + kCRBΦMΦWε

∫ t+l

t

(
− d

dt
L[ρt] + σBL(W 2

ε + 1)

)1/2

≤ kσlCRB2
Φ(W 2

ε + 1) + kCRBΦMΦWε

√
l(L[ρt]− L[ρt+l] + σlBL(W 2

ε + 1))1/2

Using c1 , max{kCRB2
Φ, kCRBΦMΦ, BL} gives the statement in the lemma.

Now we also show that L′ is Lipschitz on the unit ball. For clarity, we let c2 ,
√
kMRMΦ +MV .

Lemma E.13. For all θ̄, θ̄′ ∈ Sd,

|L′[ρ](θ̄)− L′[ρ](θ̄′)| ≤ c2‖θ̄ − θ̄′‖2 (E.7)

Proof. Using the definition of L′ and triangle inequality,

|L′[ρ](θ̄)− L′[ρ](θ̄′)| ≤
∥∥∥∥∇R(∫ Φdρ

)∥∥∥∥
2

‖Φ(θ̄)− Φ(θ̄′)‖2 + |V (θ̄)− V (θ̄′)|

≤ (
√
kMRMΦ +MV )‖θ̄ − θ̄′‖2 (by definition of MΦ,MR,MV )

Now the remainder of the proof will proceed as follows: we show that if ρt is far from optimality,
either the expected velocity of θ under ρt will be large in which case the loss decreases from
Corollary E.8, or there will exist θ̄ such that L′[ρt](θ̄) � 0. We will first show that in the latter
case, the σUd noise term will grow mass exponentially fast in a descent direction until we make
progress. Define K−τt , {θ̄ ∈ Sd : L′[ρt](θ̄) ≤ −τ}, the −τ -sublevel set of L′[ρt], and let
m(S) , Eθ∼Ud [1(θ ∈ S)] be the normalized spherical area of the set S.

Lemma E.14. If K−τt is nonempty, for 0 ≤ δ ≤ τ , logm(K−τ+δ
t ) ≥ −2d log c2

δ .

Proof. Let θ̄ ∈ K−τt . From Lemma E.13, L′[ρ](θ̄′) ≤ −τ + δ for all θ̄′ with ‖θ̄′ − θ̄‖2 ≤ δ
c2

. Thus,
we have

m(K−τ+δ
t ) ≥ Eθ̄′∼Ud

[
1[‖θ̄′ − θ̄‖2 ≤

δ

c2
]

]
Now the statement follows by Lemma 2.3 of (Ball, 1997).

Now we show that if a descent direction exists, the added noise will find it and our function value will
decrease. We start with a general lemma about the magnitude of the gradient of a 2-homogeneous
function in the radial direction.
Lemma E.15. Let h : Rd+1 → R be a 2-homogeneous function. Then for any θ ∈ Rd+1,
θ̄>∇h(θ) = 2‖θ‖2h(θ̄).
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Proof. We have h(θ + αθ̄) = (‖θ‖2 + α)2h(θ̄). Differentiating both sides with respect to α and
evaluating the derivative at 0, we get θ̄>∇h(θ) = 2‖θ‖2h(θ̄), as desired.

We state the lemma claiming that our objective will decrease if L′[ρt](θ̄)� 0 for some θ̄ ∈ Sd.

Lemma E.16. Choose

l ≥
log(W 2

ε /σ) + 2d log 2c2
τ

τ − σ
+ 1

If K−τt∗ is nonempty for some t∗ satisfying t∗ + l ≤ tε, then after l steps, we will have

L[ρt∗+l] ≤ L[ρt∗ ]−
(τ/4− σlc1(W 2

ε + 1))2

lc21W
2
ε

+ σlc1(W 2
ε + 1) (E.8)

We will first show that a descent direction in L′[ρt] will remain for the next l time steps. In the
notation of Lemma E.12, define z(s) , CRBΦ

∫ t∗+s
t∗

‖Q′(t)‖1dt. Note that from Lemma E.12, for
all θ̄ ∈ Sd we have |L′[ρt∗+s](θ̄)− L′[ρt∗ ](θ̄)| ≤ z(s). Thus, the following holds:

Claim E.17. For all s ≤ l, K−τ+z(s)
t∗+s is nonempty.

Proof. By assumption, ∃θ̄ with θ̄ ∈ K−τt∗ . Then L′[ρt∗+s](θ̄) ≤ L′[ρt∗ ](θ̄) + z(s) ≤ −τ + z(s), so
K
−τ+z(s)
t∗+s is nonempty.

Let Ts , K
−τ/2+z(s)
t∗+s for 0 ≤ s ≤ l. We now argue that this set Ts does not shrink as t increases.

Claim E.18. For all s′ > s, Ts′ ⊇ Ts.

Proof. From equation E.6 and the definition of z(s), |L′[ρt+s′ ](θ̄)− L′[ρt+s](θ̄)| ≤ z(s′)− z(s). It
follows that for θ̄ ∈ Ts

L′[ρt+s′ ](θ̄) ≤ L′[ρt+s](θ̄) + z(s′)− z(s)
≤ −τ/2 + z(s)− z(s) + z(s′) (by definition of Ts)

≤ −τ/2 + z(s′)

which means that θ̄ ∈ Ts′ .

Now we show that the weight of the particles in Ts grows very fast if z(k) is small.

Claim E.19. Suppose that z(l) ≤ τ/4. Let T̃s = {θ ∈ Rd+1 : θ̄ ∈ Ts}. Define N(s) ,∫
T̃s
‖θ‖2dρt∗+s and β , exp(−2d log 2c2

τ ). Then N ′(s) ≥ (τ − σ)N(s) + σβ.

Proof. From the assumption z(l) ≤ τ
4 , it holds that Ts ⊆ K

−τ/4
t∗+s ∀s ≤ k. Since Ts is defined as a

sublevel set, v[ρt∗+s](θ̄) points inwards on the boundary of Ts for all θ̄ ∈ Ts, and by 1-homogeneity
of the gradient, the same must hold for all u ∈ T̃s.

Now consider any particle θ ∈ T̃s. We have that θ flows to θ + v[ρt∗+s](θ)ds at time t∗ + s +
ds. Furthermore, since the gradient points inwards from the boundary, it also follows that u +
v[ρt∗+s](θ)ds ∈ T̃s. Now we compute∫

T̃s

‖θ‖22dρt∗+s+ds = (1− σds)
∫
T̃s

‖θ + v[ρt∗+s](θ)ds‖22dρt∗+s + σds

∫
T̃s

1dUd

≥ (1− σds)
∫
T̃s

(‖θ‖22 + 2θ>v[ρt∗+s](θ)ds)dρt∗+s + σm(K
−τ/2+z(s)
t∗+s )ds

(E.9)
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Now we apply Lemma E.15, using the 2-homogeneity of F ′ and the fact that L′[ρt∗+s](θ̄) ≤
−τ/4 ∀θ ∈ T̃s

‖θ‖22 + 2θ>v[ρt∗+s](θ)ds = ‖θ‖22 − 4‖θ‖22L′[ρt∗+s](θ̄)ds
≥ ‖θ‖22(1 + τds) (E.10)

Furthermore, since K−τ+z(s)
t∗+s is nonempty by Claim E.17, we can apply Lemma E.14 and obtain

m(K
−τ/2+z(s)
t∗+s ) ≥ β (E.11)

Plugging equation E.10 and equation E.11 back into equation E.9, we get∫
T̃s

‖u‖22dρt∗+s+ds ≥ (1− σds)(1 + 2τds)N(s) + σβds

Since we also have that T̃s+ds ⊇ T̃s, it follows that

N(s+ ds) =

∫
T̃s+ds

‖u‖22dρt∗+s+ds ≥ (1− σds)(1 + τds)N(s) + σβds

and so N ′(s) ≥ (τ − σ)N(s) + σβ.

Now we are ready to prove Lemma E.16.

Proof of Lemma E.16. If z(l) = CRBΦ

∫ t+l
t
‖Q′(t)‖1 ≥ τ

4 , then by rearranging the conclusion of
Lemma E.12 we immediately get equation E.8.

Suppose for the sake of contradiction that z(l) ≤ τ/4. From Claim E.19, it follows that N(1) ≥ σβ,

andN(l) ≥ exp((τ−σ)(l−1))N(1). Thus, in log(W 2
ε /σ)+2d log

2c2
τ

τ−σ +1 time,Wt∗+l ≥ N(l) ≥W 2
ε ,

a contradiction. Therefore, it must be true that z(l) ≥ τ/4.

The following lemma will be useful in showing that the objective will decrease fast when ρt is very
suboptimal.
Lemma E.20. For any time t with 0 ≤ t ≤ tε, we have

d

dt
L[ρt] ≤ σBL(W 2

ε + 1)− Eθ∼ρt [L′[ρt](θ)]2

W 2
ε

(E.12)

Proof. We can first compute

Eθ∼ρt [L′[ρt](θ)] = Eθ∼ρt [L′[ρt](θ̄)‖θ‖22]

=
1

2
Eθ∼ρt [‖θ‖2θ̄>v[ρt](θ)] (via Lemma E.15)

≤ 1

2

√
Eθ∼ρt [‖θ‖22]Eθ∼ρt [‖v[ρt](θ)‖22] (by Cauchy-Schwarz)

≤ 1

2
Wε

√
Eθ∼ρt [‖v[ρt](θ)‖22]

Rearranging gives Eθ∼ρt [‖v[ρt](θ)‖22] ≥ Eθ∼ρt [L
′[ρt](θ)]

2

W 2
ε

, and plugging this into equation E.1 gives
the desired result.

Proof of Theorem E.4. Let L? denote the infimum infρ L[ρ], and let ρ? be an ε-approximate global
minimizer of L: L[ρ?] ≤ L? + ε. (We define ρ? because a true minimizer of L might not exist.) Let
W ? , Eθ∼ρ? [‖θ‖22]. We first note that since bVW ?2 ≤ L[ρ?] ≤ L[ρ0], W ?2 ≤ L[ρ0]/bV ≤W 2

ε .

Now we bound the suboptimality of ρt: since L is convex in ρ,

L[ρ?] ≥ L[ρt] + Eθ∼ρ? [L′[ρt](θ)]− Eθ∼ρt [L′[ρt](θ)]
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Rearranging gives
L[ρt]− L[ρ?] ≤ Eθ∼ρt [L′[ρt](θ)]− Eθ∼ρ? [L′[ρt](θ)]

≤ Eθ∼ρt [L′[ρt](θ)]−W ?2 min

{
min
θ̄∈Sd−1

L′[ρt](θ̄), 0

}
(E.13)

Now let l , W 2
ε

ε−2W 2
ε σ

(
2 log

W 2
ε

σ + 2d log
4W 2

ε c2
ε

)
, which satisfies Lemma E.16 with the value of τ

later specified. Suppose that there is a t with 0 ≤ t ≤ tε − 2l and ∀t′ ∈ [t, t+ 2l], L[ρt′ ]− L? ≥ 2ε.
Then L[ρt′ ]− L[ρ?] ≥ ε. We will argue that the objective decreases when we are ε suboptimal:

L[ρt]− L[ρt+2l] ≥ (E.14)

min

{
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− 3σlc1(W 2
ε + 1), l

ε2

4W 2
ε

− 2σlBL(W 2
ε + 1)

}
(E.15)

Using equation E.13 and Wε ≥W ?, we first note that

ε ≤ Eθ∼ρt′ [L
′[ρt′ ](θ)]−Wε

2 min

{
min
θ̄∈Sd−1

L′[ρt′ ](θ̄), 0

}
∀t′ ∈ [t, t+ l]

Thus, either minθ̄∈Sd L
′[ρt′ ](θ̄) ≤ − ε

2W?2 ≤ − ε
2W 2

ε
, or Eθ∼ρt′ [L

′[ρt′ ](θ)] ≥ ε
2 . If ∃t′ ∈ [t, t + l]

such that the former holds, then the τ , ε
2W 2

ε
sub-level set K−τt′ is non-empty. Applying Lemma

E.16 gives

L[ρt′ ]− L[ρt′+l] ≥
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− σlc1(W 2
ε + 1)

Furthermore, from Lemma E.10, L[ρt+2l] − L[ρt′+l] ≤ σlc1(W 2
ε + 1) and L[ρt′ ] − L[ρt] ≤

σlBL(W 2
ε + 1), and so combining gives

L[ρt]− L[ρt+2k] ≥ (ε/8W 2
ε − lσc1(W 2

ε + 1))2

c21W
2
ε l

− 3σlc1(W 2
ε + 1) (E.16)

In the second case Eθ∼ρt′ [L
′[ρt′ ](θ)] ≥ ε

2 , ∀t
′ ∈ [t, t+ l]. Therefore, we can integrate equation E.12

from t to t+ l in order to get

L[ρt]− L[ρt+l] ≥ l
ε2

4W 2
ε

− σlBL(W 2
ε + 1)

Therefore, applying Lemma E.10 again gives

L[ρt]− L[ρt+2l] ≥ l
ε2

4W 2
ε

− 2σlBL(W 2
ε + 1) (E.17)

Thus equation E.15 follows.

Now recall that we choose
σ , exp(−d log(1/ε)poly(k,MV ,MR,MΦ, bV , BV , CR, BΦ, L[ρ0]− L[ρ?]))

For the simplicity, in the remaining computation, we will use O(·) notation to hide polynomials in
the problem parameters besides d, ε. We simply write σ = exp(−c3d log(1/ε)). Recall our choice
tε , O(d

2

ε4 log2(1/ε)). It suffices to show that our objective would have sufficiently decreased in
tε steps. We first note that with c3 sufficiently large, W 2

ε = O(L[ρ0]/bv) = O(1). Simplifying our
expression for l, we get that l = O(dε log 1

ε ), so long as σW 2
ε = o(ε), which holds for sufficiently

large c3. Now let

δ1 ,
(ε/8W 2

ε − lσc1(W 2
ε + 1))2

c21W
2
ε l

− 3σlc1(W 2
ε + 1)

δ2 , l
ε2

4W 2
ε

− 2σlBL(W 2
ε + 1)

Again, for sufficiently large c3, the terms with σ become negligible, and δ1 = O( ε
2

l ) = O( ε3

d log(1/ε) ).
Likewise, δ2 = O(dε log(1/ε)).

Thus, if by time t we have not encountered 2ε-optimal ρt, then we will decrease the objective by
O( ε3

d log(1/ε) ) in O(dε log 1
ε ) time. Therefore, a total of O(d

2

ε4 log2(1/ε)) time is sufficient to obtain ε
accuracy.
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E.3 DISCRETE-TIME OPTIMIZATION

To circumvent the technical issue of existence of a solution to the continuous-time dynamics, we also
note that polynomial time convergence holds for discrete-time updates.

Theorem E.21. Along with Assumptions E.1, E.2, E.3 additionally assume that ∇Φi and ∇V are
CΦ and CV -Lipschitz, respectively. Let ρt evolve according to the following discrete-time update:

ρt+1 , ρt + η(−σρt + σUd −∇ · (v[ρt]ρt))

There exists a choice of

σ , exp(−d log(1/ε)poly(k,MV ,MR, bV , BV , CR, BΦ, CΦ, CV , L[ρ0]− L[ρ?]))

η , poly(k,MV ,MR, bV , BV , CR, BΦ, CΦ, CV , L[ρ0]− L[ρ?])

tε ,
d2

ε4
poly(k,MV ,MR, bV , BV , CR, BΦ, CΦ, CV , L[ρ0]− L[ρ?])

such that min0≤t≤tε L[ρt]− L? ≤ ε.

The proof follows from a standard conversion of the continuous-time proof of Theorem E.4 to discrete
time, and we omit it here for simplicity.

F ADDITIONAL MATERIAL ON EXPERIMENTS

F.1 DETAILED SETUP FOR FIGURE 2 EXPERIMENT

Our ground truth comes from a random neural network with 6 hidden units, and during training we
use a network with as many hidden units as examples. For classification, we used rejection sampling
to obtain datapoints with unnormalized margin of at least 0.1 on the ground truth network. We use a
fixed dimension of d = 20. For all experiments, we train the network for 20000 steps with λ = 10−8

and average over 100 trials for each plot point.

F.2 DETAILED SETUP FOR FIGURE 3 EXPERIMENT

The left side of Figure 3 shows the experimental results for synthetic data generated from a ground
truth network with 10 hidden units, input dimension d = 20, and a ground truth unnormalized margin
of at least 0.01. We train for 80000 steps with learning rate 0.1 and λ = 10−5, using two-layer
networks with 2i hidden units for i ranging from 4 to 10. We perform 20 trials per hidden layer size
and plot the average over trials where the training error hit 0. (At a hidden layer size of 27 or greater,
all trials fit the training data perfectly.) The right side of Figure 3 demonstrates the same experiment,
but performed on MNIST with hidden layer sizes of 2i for i ranging from 6 to 15. We train for 600
epochs using a learning rate of 0.01 and λ = 10−6 and use a single trial per plot point. For MNIST,
all trials fit the training data perfectly. The MNIST experiments are more noisy because we run one
trial per plot point for MNIST, but the same trend of decreasing test error and increasing margin still
holds.

F.3 VERIFYING CONVERGENCE TO THE MAX-MARGIN

We verify the normalized margin convergence on a two-layer networks with one-dimensional input.
A single hidden unit computes the following: x 7→ ajrelu(wjx+ bj). We add ‖ · ‖22-regularization to
a,w, and b and compare the resulting normalized margin to that of an approximate solution of the `1
SVM problem with features relu(wxi + b) for w2 + b2 = 1. Writing this feature vector is intractable,
so we solve an approximate version by choosing 1000 evenly spaced values of (w, b). Our theory
predicts that with decreasing regularization, the margin of the neural network converges to the `1
SVM objective. In Figure 4, we plot this margin convergence and visualize the final networks and
ground truth labels. The network margin approaches the ideal one as λ→ 0, and the visualization
shows that the network and `1 SVM functions are extremely similar.
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Figure 4: Neural network with input dimension 1. Left: Normalized margin as we decrease λ. Right:
Visualization of the normalized functions computed by the neural network and `1 SVM solution for
λ ≈ 10−14.

Method CIFAR10 CIFAR100
Weight decay annealing 5.86 26.22

Fixed weight decay 6.01 27.00

Table 1: Test error on CIFAR10 and CIFAR100 for initial λ = 0.0005.

F.4 EXPERIMENTS ON CIFAR10 AND CIFAR100

We train a modified WideResNet architecture (Zagoruyko & Komodakis, 2016) on CIFAR10 and
CIFAR100. Our theory does not entirely apply because the identity mapping prevents ResNet
architectures from being homogeneous, but our experiments show that reducing weight decay can still
help generalization error in this setting. Because batchnorm can cause the regularizer to have different
effects (van Laarhoven, 2017), we remove batchnorm layers and train a 16 layer deep WideResNet.
We again compare a network trained with weight decayed annealing to one trained without annealing.
We used a fixed learning rate schedule that starts at 0.1 and decreases by a factor of 0.2 at epochs 60,
120, and 160. For CIFAR10, we use an initial weight decay of 0.0002 and decrease the weight decay
by 0.2 at epoch 60, and then by 0.5 at epochs 90, 120, 140, 160. For CIFAR100, we initialize weight
decay at 0.0005 and decrease it by 0.2 at epochs 60, 120, and 160. We tried different parameters for
the initial weight decay and chose the ones that worked best for the model without annealing. We
also tried using small weight decays at initialization, but these models failed to generalize well – we
believe this is due to an optimization issue where the algorithm fails to find a true global minimum of
the regularized loss. We believe that annealing the weight decay directs the optimization algorithm
closer towards the global minima for small λ.

Table 1 shows the test error achieved by models with and without annealing. We see that the simple
change of annealing weight decay can decrease the test error for this architecture.
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