
Workshop track - ICLR 2018

LEVERAGING CONSTRAINT LOGIC PROGRAMMING
FOR NEURAL GUIDED PROGRAM SYNTHESIS

Lisa Zhang1,2, Gregory Rosenblatt4, Ethan Fetaya1,2, Renjie Liao1,2,3, William E. Byrd4,
Raquel Urtasun1,2,3 & Richard Zemel1,2

1University of Toronto, 2Vector Institute, 3Uber ATG, 4University of Alabama at Birmingham
1{lczhang,ethanf,rjliao,urtasun,zemel}@cs.toronto.edu
4{gregr,webyrd}@uab.edu

ABSTRACT

We present a method for solving Programming by Example (PBE) problems that
tightly integrates a neural network with a constraint logic programming system
called miniKanren. Internally, miniKanren searches for a program that satisfies
the recursive constraints imposed by the provided examples. Our Recurrent Neu-
ral Network (RNN) model uses these constraints as input to score candidate pro-
grams. We show evidence that using our method to guide miniKanren’s search is
a promising approach to solving PBE problems.

1 INTRODUCTION

Programming by Example (PBE) is the problem of synthesizing a program specified in terms of
input/output examples. State-of-the-art approaches use symbolic techniques developed by the pro-
gramming languages community (Feser et al., 2015; Albarghouthi et al., 2013; Osera & Zdancewic,
2015), but success in PBE has been limited to small programs in restricted domain specific lan-
guages (DSL). These approaches are difficult to scale due to the exponential search space. Recent
approaches by the machine learning community attempt to avoid or alleviate the scaling problem.
These approaches include differentiable programming (Neelakantan et al., 2016; Reed & de Freitas,
2016), directly synthesizing a program as a sequence or tree (Devlin et al., 2017; Parisotto et al.,
2017), and guiding a symbolic search using a neural model (Kalyan et al., 2018; Balog et al., 2017).

We take the latter approach, but take the integration with a symbolic system even further: we use
its internal representations as input. The symbolic system used is called miniKanren1 (Byrd &
Friedman, 2006), chosen for its potential to synthesize recursive programs in dynamically typed
languages (Byrd et al., 2017). Internally, miniKanren searches for a program that satisfies the re-
cursive constraints (usually called “goals”) imposed by the input/output examples. Our model uses
these constraints to score candidate programs and guide miniKanren’s search.

Our method is promising for several reasons. First, while symbolic systems have performed better,
neural guidance can help navigate exponentially large search spaces, leveraging progress made in
both communities. Second, symbolic systems exploit the compositionality of synthesis problems:
miniKanren’s constraints select portions of the input/output examples relevant to a subproblem.
This is akin to having a symbolic attention mechanism. Lastly, it is difficult for neural techniques to
synthesize programs larger than those seen in training (Parisotto et al., 2017). Guiding a search and
using constraints both alleviate this problem. We present some evidence that our approach is able to
generalize to programs larger than those seen in training.

2 MODEL

Our approach, along with integration with miniKanren, is summarized in Figure 1.

Constraint Representation The symbolic system miniKanren is a constraint logic programming
language, equipped with a relational interpreter evalo of the target DSL. In our case we use a

1The name “Kanren” comes from the Japanese word for “relation”.

1



Workshop track - ICLR 2018

Figure 1: Steps for synthesizing a program that repeats a symbol three times using a subset of Lisp:
(a) miniKanren builds constraints representing the search space for the PBE problem; candidate pro-
grams contain unknowns, whose values are restricted by constraints; the constraint (evalo P I
O) is satisfied when an expression Pwith input I is evaluated to output O; the constraint (lookupo
N E V) is satisfied when data E contains datum V at position N; in the second candidate, the evalo
constraints decompose the output into two portions to be synthesized independently; (b) we use an
RNN operating on the constraints to score candidates; each constraint is embedded and scored sep-
arately, then pooled per candidate; the softmax probability scores determine which candidate to
expand; (c) miniKanren expands the chosen candidate (cons D E), so that different completions
of unknown D are added to the set of candidates; (d) this process of scoring, choosing, and expand-
ing candidates is repeated until a candidate with no unknowns satisfies all constraints imposed by
the input/output examples.

dialect of Lisp (Abelson et al., 1996). Here, evalo defines a set of recursive constraints (recur-
sive because the constraints may contain other invocations of evalo) imposed by the input/output
examples. We omit a detailed summary of background work not directly relevant to the machine
learning portion of the work, and refer readers to Byrd et al. (2017).

Search The search for a target program is divided into steps. At each step, a candidate incom-
plete program is chosen and expanded. The default search process used by miniKanren is a biased
interleaving search: the search alternates between partial programs, but is biased towards partial
programs with more constraints already satisfied. In Byrd et al. (2017), authors present heuristics
that improve the search.

Recurrent Neural Network Model We use an RNN with bi-directional Long Short-Term Mem-
ory (LSTM) units (Hochreiter & Schmidhuber, 1997) to score candidates. We learn separate RNN
weights for each constraint type (evalo, lookupo, etc). At each step, we embed each constraint
using the corresponding LSTM. The embeddings are individually scored using a single scoring func-
tion, then the scores are pooled using a combination of mean-pooling and sum-pooling. We softmax
over the scores for each candidate program, then make a discrete choice to predict the optimal can-
didate to expand. In the rest of this work, we refer to our model as RNN-Guided search.

Training We use a small subset of Lisp as our target DSL. This subset consists of cons, car,
cdr, along with several constants and function application. We programmatically generate2 target
programs of varying sizes, along with five corresponding input/output pairs. The target program is
available during training, and there is a unique optimal candidate that should be selected at each
step. We use cross-entropy loss on the softmax probabilities computed across all possible candidate

2We run the relational interpreter evalo “backwards” to generate arbitrary programs using miniKanren.

2



Workshop track - ICLR 2018

programs. We use curriculum learning, beginning with problems with shorter target programs and
thus fewer synthesis steps, then gradually allowing larger ones. To reduce training time, we use
prioritized experience replay (Schaul et al., 2016) and sample mini-batches from a replay buffer.
We use scheduled sampling (Bengio et al., 2015) with a linear schedule, to increase exploration and
reduce teacher-forcing as training progresses. Lastly, we choose to expand two candidates per step
during training, as it helps reduce cascading errors at test time.

3 EXPERIMENTS

List construction in Lisp We focus on nested list construction as a natural starting point towards
expressive computation. We test on 100 problems held out from training, and report the percentage
of problems solved within 200 steps. The maximum time the RNN-Guided search used was 11
minutes, so we limit the naive (biased interleaving without heuristics) and heuristic searches to 30
minutes.3 Results are shown in Table 1A.

Generalization and Comparison In a second set of experiments, we use the same model weights
as above to demonstrate generalizability. We synthesize three families of programs of varying com-
plexity: Repeat(N) which repeats a tokenN times, DropLast(N) which drops the last element
in an N element list, and BringToFront(N) which brings the last element to the front in an N
element list. As a measure of how synthesis difficulty increases with N , Repeat(N) takes 4+3N
steps, DropLast(N) takes 1

2N
2+ 5

2N +1 steps, and BringToFront(N) takes 1
2N

2+ 7
2N +4

steps. The largest training program takes optimally 22 steps to synthesize. The number of optimal
steps in synthesis correlates linearly with program size.

We compare against state-of-the-art systems λ2, Escher, and Myth. All three use type information,
so we could not compare against them fairly in Table 1A4. For Repeat(N), DropLast(N) and
BringToFront(N), typed systems should have an advantage. Further, λ2 assumes advanced
language constructs like fold that other methods do not, and Escher requires an “oracle” to provide
outputs for additional inputs. We limit the number of input/output examples to five, and allow every
method up to 30 minutes. Our model is further restricted to 200 steps for consistency with Table 1A5.
Results are shown in Table 1B. Our method is able to solve problems much larger than those seen in
training, and is competitive in its potential to generalize to larger programs.

Table 1: Synthesis Results. A. Test Problems Solved (%); B. Generalization: largest N for which
synthesis succeeded, and failure modes (out of time, out of memory, requires oracle, other error)

Method A. Test B. Generalization
% Solved Repeat(N) DropLast(N) BringToFront(N)

Naive (Byrd et al., 2012) 27% 6 (time) 2 (time) - (time)
+Heuristics (Byrd et al., 2017) 82% 11 (time) 3 (time) - (time)
RNN-Guided (Ours) 99% 20+ 6 (time) 5 (time)
λ2 (Feser et al., 2015) 4 (memory) 3 (error) 3 (error)
Escher (Albarghouthi et al., 2013) 10 (error) 1 (oracle) - (oracle)
Myth (Osera & Zdancewic, 2015) 20+6 - (error) - (error)

4 CONCLUSION AND FUTURE WORK

We presented a neural guided synthesis model where the neural guide takes as input the internal
constraint encoding of the PBE problem used by miniKanren. We show promising results in the
model’s ability to generalize to larger problems. The ability to encode recursive problems is available
in miniKanren, so learning to guide recursive program synthesis is left as future work.

3All test experiments are run on Intel i7-6700 3.40GHz CPU with 16GB RAM.
4Problems in Table 1A are dynamically-typed, improper list construction problems.
5If given the full 30 minutes, our model is able to synthesize DropLast(7) and BringToFront(6).
6Myth solved Repeat(N) much faster than our model, taking <15ms per problem.

3



Workshop track - ICLR 2018

ACKNOWLEDGMENTS

Research reported in this publication was supported in part by the Natural Sciences and Engineering
Research Council of Canada, and the National Center For Advancing Translational Sciences of
the National Institutes of Health under Award Number OT2TR002517. The content is solely the
responsibility of the authors and does not necessarily represent the official views of the funding
agencies.

REFERENCES

Harold Abelson, Gerald J. Sussman, and Julie Sussman. Structure and Interpretation of Computer
Programs. MIT Press ; McGraw-Hill, second edition, July 1996. ISBN 0262011530. URL
http://mitpress.mit.edu/sicp/full-text/book/book.html.

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In Interna-
tional Conference on Computer Aided Verification, pp. 934–950. Springer, 2013.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. International Conference on Learning Representations,
2017.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In Advances in Neural Information Processing Sys-
tems, pp. 1171–1179, 2015.

William E. Byrd and Daniel P. Friedman. From variadic functions to variadic relations. In Pro-
ceedings of the 2006 Scheme and Functional Programming Workshop, University of Chicago
Technical Report TR-2006-06, pp. 105–117, 2006.

William E. Byrd, Eric Holk, and Daniel P. Friedman. miniKanren, live and untagged: Quine genera-
tion via relational interpreters (programming pearl). In Proceedings of the 2012 Annual Workshop
on Scheme and Functional Programming, pp. 8–29. ACM, 2012.

William E. Byrd, Michael Ballantyne, Gregory Rosenblatt, and Matthew Might. A unified approach
to solving seven programming problems (functional pearl). Proceedings of the ACM on Program-
ming Languages, 1(ICFP):8, 2017.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 990–998, International Convention
Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations from
input-output examples. In ACM SIGPLAN Notices, volume 50, pp. 229–239. ACM, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gul-
wani. Neural-guided deductive search for real-time program synthesis from examples. Interna-
tional Conference on Learning Representations, 2018.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. International Conference on Learning Representations, 2016.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In ACM
SIGPLAN Notices, volume 50, pp. 619–630. ACM, 2015.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. International Conference on Learning Repre-
sentations, 2017.

4

http://mitpress.mit.edu/sicp/full-text/book/book.html


Workshop track - ICLR 2018

Scott Reed and Nando de Freitas. Neural programmer-interpreters. International Conference on
Learning Representations, 2016.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In-
ternational Conference on Learning Representations, 2016.

5


	Introduction
	Model
	Experiments
	Conclusion and Future Work

