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ABSTRACT

Neural networks are usually over-parameterized with significant redundancy in
the number of required neurons which results in unnecessary computation and
memory usage at inference time. One common approach to address this issue
is to prune these big networks by removing extra neurons and parameters while
maintaining the accuracy. In this paper, we propose NoiseOut, a fully automated
pruning algorithm based on the correlation between activations of neurons in the
hidden layers. We prove that adding additional output neurons with entirely random
targets results into a higher correlation between neurons which makes pruning by
NoiseOut even more efficient. Finally, we test our method on various networks
and datasets. These experiments exhibit high pruning rates while maintaining the
accuracy of the original network.

1 INTRODUCTION

Neural networks and deep learning recently achieved state-of-the-art solutions to many problems in
computer vision (Krizhevsky et al. (2012); He et al. (2015)), speech recognition (Graves et al. (2013)),
natural language processing (Mikolov et al. (2013)) and reinforcement learning (Silver et al. (2016)).
Using large and oversized networks in these tasks is a common practice. Such oversized networks
can easily overfit on the training dataset while having poor generalization on the testing data (Sabo
& Yu (2008)). A rule of thumb for obtaining useful generalization is to use the smallest number
of parameters that can fit the training data (Reed (1993)). Unfortunately, this optimal size is not
usually obvious and therefore the size of the neural networks is determined by a few rules-of-thumb
(Heaton (2008)) which do not guarantee an optimal size for a given problem. One common approach
to overcome overfitting is to choose an over-sized network and then apply regularization (Ng (2004))
and Dropout (Srivastava et al. (2014)). However, these techniques do not reduce the number of
parameters and therefore do not resolve the high demand of resources at test time.

Another method is to start with an oversized network and then use pruning algorithms to remove
redundant parameters while maintaining the network’s accuracy (Augasta & Kathirvalavakumar
(2013)). These methods need to estimate the upper-bound size of a network, a task for which there are
adequate estimation methods (Xing & Hu (2009)). If the size of a neural network is bigger than what
is necessary, in theory, it should be possible to remove some of the extra neurons without affecting
its accuracy. To achieve this goal, the pruning algorithm should find neurons which once removed
result into no additional prediction errors. However, this may not be as easy as it sounds since all the
neurons contribute to the final prediction and removing them usually leads to error.

It is easy to demonstrate this problem by fitting an oversized network on a toy dataset. Figure 1
shows a two-dimensional toy dataset which contains two linearly separable classes. Hence, only one
hidden neuron in a two-layer perceptron should be enough to classify this data and any network with
more than one neuron (such as the network in Figure 2-a) is an oversized network and can be pruned.
However, there is no guarantee that removing one of the hidden neurons will maintain the network’s
performance. As shown in the example in Figure 1, removing any of the hidden neurons results into a
more compact, but under-performing network. Therefore, a more complicated process is required for
pruning neural networks without accuracy loss.
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Figure 1: Effect of pruning on accuracy. Bold
line represents discriminator learned by a 2-2-1
MLP (Figure 2-a) on a toy data set. Dash line and
dotted line show the results after pruning one of
the hidden neurons. As it can be seen removing a
hidden neuron will result into accuracy drop.
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Figure 2: a) a simple 2-2-1 MLP; b) the same
network with one additional noise output. All
the hidden units have a linear activation while
the output neurons use sigmoid as activation
function. The gray neuron is a noise output
which changes its target in each iteration.

Our goal in this paper is two-fold. First, we introduce NoiseOut, a pruning method based on the
correlation between activations of the neurons. Second, we propose an approach which enforces the
higher correlation between activations of neurons. Since the effectiveness of NoiseOut hinges on
high correlations between neuron activations, the combination of these two methods facilitates more
aggressive pruning.

2 RELATED WORK

Optimal Brain Damage (LeCun et al. (1989)) and Optimal Brain Surgeon (Hassibi & Stork (1993))
prune networks based on the Hessian of the loss function. It is shown that such pruning is more
effective and more accurate than earlier magnitude-based pruning such as weight decay (Hanson
& Pratt (1989)). However, the necessary second-order derivatives require additional computational
resources.

Recently, replacing the fully connected layers with other types of layers has been utilized to reduced
the number of parameters in a neural network. Deep fried convnets (Yang et al. (2015)) replaces these
layers with kernel methods while the GoogLenet (Szegedy et al. (2015)) and Network in Network
architecture (Lin et al. (2013)) replace them with global average pooling. Alternatively, Han et al.
(2015) proposed a pruning method which learns the import connections between neurons, pruning
the unimportant connections, and then retraining the remaining sparse network.

Besides pruning, other approaches have been proposed to reduce the computation and memory
requirements of neural networks. HashNets( Chen et al. (2015)) reduce the storage requirement of
neural networks by randomly grouping weights into hash buckets. These techniques can be combined
with pruning algorithms to achieve even better performance. As an example, Deep Compression( Han
et al. (2016)) proposed a three stage pipeline: pruning, trained quantization, and Huffman coding, to
reduce the storage requirement of neural networks.

3 PROPOSED METHOD

In this section, we describe the details of the proposed method called NoiseOut. First, we show how
this method can prune a single neuron and then how it can prune a full network, one neuron at a time.
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3.1 PRUNING A SINGLE NEURON

The key idea in NoiseOut is to remove one of the two neurons with strongly correlated activations.
The main rationale behind this pruning is to keep the signals inside the network as close to the original
network as possible. To demonstrate this, assume there exists u, v, l such that |ρ(h(l)u , h(l)v )

∣∣ = 1⇒
h
(l)
u = αh

(l)
v + β, where h(l)i is the activation of ith neuron in the lth layer. By definition:

h
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This means that neuron u can be removed without affecting any of the neurons in the next layer,
simply by adjusting the weights of v and neurons’ biases. Note that max

i,j,i 6=j

∣∣ρ(h(l)i , h(l)j )
∣∣ = 1 is an

ideal case. In this ideal scenario, removing one of the neurons results into no change in accuracy since
the final output of the network will stay the same. In non-ideal cases, when the highest correlated
neurons are not strongly correlated, merging them into one neuron may alter the accuracy. However,
continuing the training after the merge may compensate for this loss. If this does not happen, it
means that the removed neuron was necessary to achieve the target accuracy and the algorithm cannot
compress the network any further without accuracy degradation.

NoiseOut follows the same logic to prune a single neuron using the following steps:

1. For each i, j, l calculate ρ
(
h
(l)
i , h

(l)
j

)
2. Find u, v, l = argmax

u,v,l,u6=v

∣∣ρ(h(l)u , h(l)v )∣∣
3. Calculate α, β := argmin

α,β

(
h
(l)
u − αh(l)v − β

)
4. Remove neuron u in layer l
5. For each neuron k in layer l + 1:

- Update the weight w(l)
v,k = w

(l)
v,k + αw

(l)
u,k

- Update the bias b(l+1)
k = b

(l+1)
k + βw

(l)
u

3.2 ENCOURAGING CORRELATION BETWEEN NEURONS

The key element for successful pruning of neural networks using NoiseOut is the strong correlation
between activation of the neurons. Essentially, a higher correlation between these activations means
more efficient pruning. However, there is no guarantee that back-propagation results in correlated
activations in a hidden layer. In this section, we propose a method to encourage higher correlation
by adding additional output nodes, called noise outputs. The targets for noise outputs will randomly
change in each iteration based on a predefined random distribution. We show that adding noise
outputs to the output layer intensifies the correlation between activation in the hidden layers which
will subsequently make the pruning task more effective.

3.2.1 EFFECT OF ADDING NOISE OUTPUTS TO THE NETWORK

To demonstrate the effect of adding noise outputs to the network, let us reconsider the toy example
described previously in Figure 1, this time with some additional noise outputs in the output layer as
shown in Figure 2-b. The result of training this network has been shown in Figure 3. As seen in this
figure, the activation of the two hidden neurons has become highly correlated, and each hidden unit
converged to the optimal discriminant by itself. This means that either of the extra neurons in the
hidden layer can be removed without loss of accuracy.
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a) descriminators learned by hidden
neurons in Figure 2-a
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b) descriminators learned by hidden
neurons in Figure 2-b
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c) result after pruning

Figure 3: Comparison between discriminators learned with and without noise neurons. As it can be
seen with noise neurons the activation of hidden neurons is more correlated; a) discriminators defined
by each hidden neuron in Figure 2-a; b) discriminators defined by each hidden neuron in Figure 2-b;
c) final discriminator after pruning one hidden neuron in Figure 2-b.

This claim can be proved formally as well. The key to this proof is that neural networks are
deterministic at inference time. In other words, the network generates a constant output for a
constant input. For noise output, since the target is independent of the input, the training algorithm
finds an optimal constant value that minimizes the expected error for every input. This objective can
be presented as:

min
W

C
(
f(X;W ),

[
Y, Ŷ

])
= min

W

(
C
(
fm(X;W ), Y ) +

m∑
i=0

C
(
f̂i(X;W ), Ŷi

))
(2)

where W is the adjustable parameters (i.e. weights), X is the input, Y is the target, Ŷi is the target
of noisy outputs at iteration i, C is the cost function, m is the number of iterations. fi(X;W ) and
f̂i(X;W ) are the outputs of the neural network in the original and noise outputs respectively, at
iteration i. Note that Ŷi changes in each iteration according to a random distribution PŶ .

The first part of Equation 2 represents the common objective of training a neural network, while the
second part has been added because of the noise outputs. It is possible to adjust the effect of noise
outputs based on PŶ . For instance by adding more noise outputs (in the case of Binomial distribution)
or adjusting the variance (for Gaussian distribution). Another way of this adjustment is introducing a
new multiplier for the second part of the cost. Although Ŷi changes in each iteration, the constant
value that the network infers for any given input would be the same e.g. θ, due to the independent of
PŶ from X . Therefore:

f̂m(X;W ) = J1×nθ

where J1×n is the matrix of ones of size 1×n (n is the number of samples in the dataset). The actual
value of θ can be estimated for any given network architecture. As an example, let W (1), W (2) and
Ŵ (2) be the weights of the first hidden layer, the output layer and the noisy neurons in a 2-2-1 MLP
network respectively (Figure 2-b). Assuming linear activation in the hidden neurons and mean square
error (MSE) as the cost function, Equation 2 can be rewritten as:

min
W

C = min
W

C
(
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[
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Figure 4: Effect of noise outputs to the correlation of neurons activation in the hidden layers. The top
row shows the correlation of two hidden neurons in the network of Figure 2 while the bottom row is
the correlation between the two neurons on the first hidden layer of a 6 layer MLP (2-2-2-2-2-2-1).
The left column represents the mean correlation during training of the network for 100 times. In right
column, yellow is the distribution of correlations at the end of the training and small red line shows
the median. As it can be seen in these graphs, adding noise outputs improves the correlation between
neurons in the hidden layer.

In this particular case, θ can be calculated using derivatives of the cost functions in Equation 3:

∂C

∂θ
=

∂

∂θ
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+

1

2

(
f̂(X;W )− θ

)2]
=

∂

∂θ

[1
2

(
f̂(X;W )− θ)2

]
=
(
θ − f̂(X;W )

)
= 0

⇒ θ = E
[
f̂(X;W )
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PŶ
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(4)

This means that in this particular network with MSE as the cost function, the final error will be
minimized when the network outputs the expected value of targets in noise outputs

(
E
[
PŶ
])

for any
given input.

To demonstrate how outputting a constant value affects the weights of a network, let’s consider the
network in Figure 2-b. In this case, the output of noisy output will be:

f̂(X;W ) = XW (1)Ŵ (2) = h
(1)
1 w

(2)
1,1 + h

(1)
2 w

(2)
2,1 = θ

⇒ h
(1)
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w
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)
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h
(1)
1 ,h

(1)
2

∣∣ = 1 (5)

Equation 6 means that the activation of the hidden neurons has a correlation of 1 or -1. For more
than two neurons it can be shown that the output of one neuron will be a linear combination of other
neurons which means the claim still holds.

The same results can be achieved empirically. Since the output of the noise outputs will converge to
E
[
PŶ
]
, it seems that there may not be any difference between different random distributions with

the same expected value. Therefore, we tested different random distributions for E
[
PŶ
]

with the
same E

[
PYN

]
, on the network shown in Figure 2-b. These noise distributions are as follows:
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Algorithm 1 NoiseOut for pruning hidden layers in neural networks
1: procedure TRAIN(X,Y ) . X is input, Y is expected output
2: W ← initialize_weights()
3: for each iteration do
4: YN ← generate_random_noise() . generate random expected values
5: Y ′ ← concatenate(Y, YN )
6: W ← back_prop(X,Y ′)
7: while cost(W ) ≤ threshold do
8: A,B ← find_most_correlated_neurons(W,X)
9: α, β ← estimate_parameters(W,X,A,B)

10: W ′ ← remove_neuron(W,A)
11: W ′ ← adjust_weights(W ′, B, α, β)
12: W ←W ′

13: return W

- Gaussian PŶ (x) = N (0.1, 0.4) Normal distribution with mean of 0.1 and standard devia-
tion of 0.4. This noise distribution is appropriate for regression tasks with MSE cost.

- Binomial PŶ (x) = B(1, 0.1) Binomial distribution with 1 trial and success probability of
0.1. We chose binomial distribution since it generates random classification labels and is
appropriate for networks that have to produce binary labels.

- Constant PŶ (x) = δ(x− 0.1) In this case, the target of the noise outputs is the constant
value of 0.1. This is used as an expected-value “shortcut" so that we can examine a stochastic
vs. a deterministic approach.

- No_Noise no noise output for comparison.

As it can be seen in the top row Figure 4, in a regular network with no noise unit (shown as
No_Noise), the correlation between the output of hidden neurons

∣∣ρ
h
(1)
1 ,h

(1)
2

∣∣ does not go higher
than 0.8, while in the existence of a noise output this value approaches to one, rather quickly. This
means that the two hidden neuron are outputting just a different scale of the same value for any given
input. In this case, NoiseOut easily prunes one of the two neurons.

The same technique can be applied to correlate the activation of the hidden neurons in networks
with more than two layers. The bottom row of Figure 4 shows the correlation between the activation
of two hidden neurons in the first layer of a six layer MLP (2-2-2-2-2-2-1). As it can be seen in
this figure, adding noise outputs helped the neurons to achieve higher correlation compared to a
network with no noise output. Binomial noise acts chaotic at the beginning due to its sudden change
of expected values in the noise outputs while Gaussian noise improved the correlation the best in
these experiments.

3.3 PRUNING A FULLY CONNECTED NETWORK

Algorithm 1 shows the final NoiseOut algorithm. For the sake of readability, this algorithm has
been shown for networks with only one hidden layer. But the same algorithm can be applied to
networks with more that one hidden layer by performing the same pruning on all the hidden layers
independently. It can also be applied to convolutional neural networks that use dense layers, in which
we often see over 90% of the network parameters (Cheng et al. (2015)).

This algorithm is simply repeating the process of removing a single neuron, as described in the
previous section. The pruning ends when the accuracy of the network drops below some given
threshold. Note that the pruning process is happening while training.

4 EXPERIMENTS

To illustrate the generality of our method we test it on a core set of common network architectures,
including fully connected networks and convolutional neural networks with dense layers. In all of
these experiments, the only stop criteria is the accuracy decay of the model. We set the threshold
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Table 1: Results of pruning Lenet-300-100 on MNIST. The accuracy of all the compressed networks
are the same as the original network.

Method Noise
Outpus

Layer 1
Neurons

Layer 2
Neurons

Parameters Removed
Parameters

Compression
Rate

Ground Truth - 300 100 266610 - -

No_Noise - 23 14 15989 94.00% 16.67
Gaussian 512 20 9 15927 94.02% 16.73
Constant 512 20 7 15105 94.33% 17.65
Binomial 512 19 6 11225 95.78% 23.75

No_Noise - 13 12 10503 96.06% 20.89
Gaussian 1024 16 7 12759 95.21% 18.58
Constant 1024 18 7 14343 94.62% 17.61
Binomial 1024 19 7 15135 94.32% 25.38

Table 2: Pruning Lenet-5 on MNIST. The accuracy of all the compressed networks are the same as
the original network.

Method Noise
Neurons

Dense
Layer

Neurons
Parameters Removed

Parameters
Compression

Rate

Ground Truth - 512 605546 - -

No_Noise - 313 374109 38.21% 1.61
Gaussian 512 3 13579 97.75% 44.59
Constant 512 33 48469 91.99% 12.49
Binomial 512 26 40328 93.34% 15.01

for this criteria to match the original accuracy; therefore all the compressed network have the same
accuracy as the original network. For each experiment, different random distributions have been used
for PŶ , to demonstrate the difference in practice.

4.1 PRUNING FULLY CONNECTED AND CONVOLUTIONAL NETWORKS

Table 1 and Table 2 show the result of pruning Lenet-300-100 and Lenet-5 (LeCun et al. (1998)) on
MNIST dataset. Lenet-300-100 is a fully connected network with two hidden layers, with 300 and
100 neurons each, while Lenet-5 is a convolutional network with two convolutional layers and one
dense layer. These networks achieve 3.05% and 0.95% error rate on MNIST respectively (LeCun
et al. (1998)). Note that in Lenet-5 over 98% of parameters are in the dense layer and pruning them
can decrease the model size significantly.

As it can be seen in these tables, NoiseOut removed over %95 of parameters with no accuracy
degradation. Astonishingly, pruned Lenet-5 can achieve 0.95% error rate with only 3 neurons in
the hidden layer which reduce the total number of weights in Lenet-5 by a factor of 44. Figure 6
demonstrates the output of these 3 neurons. This graph has been generated by outputting the activation
of hidden layer neurons for 1000 examples randomly selected from MNIST dataset. Then, the data
has been sorted by the target class. As it can be seen in this figure, the three neurons in the hidden
layer efficiently encoded the output of convolutional layers to the expected ten classes. Obviously,
these values can be utilized by the softmax layer to perform the final classification.

To test the effect of pruning of deeper architectures, we prune the network described in Table 4
on SVHN data set.This model which has over 1 million parameters, achieves 93.39% and 93.84%
accuracy on training set and test set respectively. As it can be seen in Table 3, NoiseOut pruned more
than 85% of the parameters from the base model while maintaining the accuracy.
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Table 3: Pruning the reference network in Table 4,
on SVHN dataset.

Method
Dense
Layer

Neurons
Parameters Removed

Parameters

Ground Truth 1024 1236250 -

No_Noise 132 313030 74.67%
Gaussian 4 180550 85.39%
Constant 25 202285 83.63%
Bionomial 17 194005 84.30%

Table 4: Base model architecture for SVHN
with 1236250 parameters.

Layer Filters Kernel Weights
conv1 32 3× 3 896
conv2 32 3× 3 9246
conv3 32 3× 3 9246
pool1 - 2× 2 -
conv4 48 3× 3 13872
conv5 48 3× 3 20784
conv6 48 3× 3 20784
pool2 - 2× 2 -
conv7 64 3× 3 27712
conv8 64 3× 3 36928
conv9 64 3× 3 36928
pool3 - 2× 2 -
dense 1024 - 1049600
softmax 10 - 10250
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Figure 5: Pruning Lenet-300-100 and Lenet-5 on MNIST data set with various accuracy thresholds.
x axis represents the total number of parameters in the pruned network (including weights in the
convolutional layers), while y axis shows the accuracy of the model on test and training dataset.

4.2 EFFECT OF NOISEOUT ON TEST ACCURACY

To explore the effect of NoiseOut on the test accuracy, we pruned Lenet-300-100 and Lenet-5 on
MNIST with multiple accuracy thresholds, using Gaussian distribution as the target for noise outputs.
In each one of these experiments, we measured both the training and test accuracy. As expected, the
results which have been shown in Figure 5, indicate that lower accuracy thresholds result into more
pruned parameters. However, the gap between training and testing threshold stays the same. This
shows that pruning the network using NoiseOut does not lead to overfitting.

4.3 RELATION TO DROPOUT AND REGULARIZATION

The key point in successful pruning with NoiseOut is a higher correlation between neurons. This
goal might seem to be in contradiction with techniques designed to avoid overfitting such as Dropout
and Regularization. To investigate this, we pruned Lenet-5 in the presence and absence of these
features and demonstrated the results in Figure 7. As it can be seen in this figure, Dropout helps the
pruning process significantly, while L2-regularizations causes more variance. It seems that preventing
co-adaptation of neurons using Dropout also intensifies the correlation between them, which helps
NoiseOut to remove even more redundant neurons without accuracy loss.
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5 CONCLUSION

In this paper, we have presented NoiseOut, a simple but effective pruning method to reduce the
number of parameters in the dense layers of neural networks by removing neurons with correlated
activation during training. We showed how adding noise outputs to the network could increase the
correlation between neurons in the hidden layer and hence result to more efficient pruning. The
experimental results on different networks and various datasets validate this approach, achieving
significant compression rates without loss of accuracy.
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