
Under review as a conference paper at ICLR 2018

PREDICTION UNDER UNCERTAINTY WITH ERROR-
ENCODING NETWORKS

ABSTRACT

In this work we introduce a new framework for performing temporal predictions
in the presence of uncertainty. It is based on a simple idea of disentangling com-
ponents of the future state which are predictable from those which are inherently
unpredictable, and encoding the unpredictable components into a low-dimensional
latent variable which is fed into a forward model. Our method uses a supervised
training objective which is fast and easy to train. We evaluate it in the context
of video prediction on multiple datasets and show that it is able to consistently
generate diverse predictions without the need for alternating minimization over a
latent space or adversarial training.

1 INTRODUCTION

Learning forward models in time series is a central task in artificial intelligence, with applications in
unsupervised learning, planning and compression. A major challenge in this task is how to handle
the multi-modal nature of many time series. When there are multiple valid ways in which a time
series can evolve, training a model using classical `1 or `2 losses produces predictions which are the
average or median of the different outcomes across each dimension, which is itself often not a valid
prediction.

In recent years, Generative Adversarial Networks (Goodfellow et al., 2014) have been introduced,
a general framework where the prediction problem is formulated as a minimax game between the
predictor function and a trainable discriminator network representing the loss. By using a trainable
loss function, it is in theory possible to handle multiple output modes since a generator which covers
each of the output modes will fool the discriminator leading to convergence. However, a generator
which covers a single mode can also fool the discriminator and converge, and this behavior of
mode collapse has been widely observed in practice. Some workarounds have been introduced
to resolve or partially reduce mode-collapsing, such as minibatch discrimination, adding parameter
noise (Salimans et al., 2016), backpropagating through the unrolled discriminator (Metz et al., 2016)
and using multiple GANs to cover different modes (Tolstikhin et al., 2017). However, many of
these techniques can bring additional challenges such as added complexity of implementation and
increased computational cost. The mode collapsing problem becomes even more pronounced in the
conditional generation setting when the output is highly dependent on the context, such as video
prediction (Mathieu et al., 2015; Isola et al., 2016).

In this work, we introduce a novel architecture that allows for robust multimodal conditional pre-
dictions in time series data. It is based on a simple intuition of separating the future state into a
deterministic component, which can be predicted from the current state, and a stochastic (or difficult
to predict) component which accounts for the uncertainty regarding the future mode. By training
a deterministic network, we can obtain this factorization in the form of the network’s prediction
together with the prediction error with respect to the true state. This error can be encoded as a low-
dimensional latent variable which is fed into a second network which is trained to accurately correct
the determinisic prediction by incorporating this additional information. We call this model the Error
Encoding Network (EEN). In a nutshell, this framework contains three function mappings at each
timestep: (i) a mapping from the current state to the future state, which separates the future state into
deterministic and non-deterministic components; (ii) a mapping from the non-deterministic compo-
nent of the future state to a low-dimensional latent vector; (iii) a mapping from the current state to
the future state conditioned on the latent vector, which encodes the mode information of the future
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state. While the training procedure involves all these mappings, the inference phase involves only
(iii).

Both networks are trained end-to-end using a supervised learning objective and latent variables are
computed using a learned parametric function, leading to easy and fast training. We apply this
method to video datasets from games, robotic manipulation and simulated driving, and show that
the method is able to consistently produce multimodal predictions of future video frames for all of
them. Although we focus on video in this work, the method itself is general and can in principle be
applied to any continuous-valued time series.

2 MODEL

Many natural processes carry some degree of uncertainty. This uncertainty may be due to an inher-
ently stochastic process, a deterministic process which is partially observed, or it may be due to the
complexity of the process being greater than the capacity of the forward model. One natural way of
dealing with uncertainty is through latent variables, which can be made to account for aspects of the
target that are not explainable from the observed input.

Assume we have a set of continuous vector-valued input-target pairs (xi, yi), where the targets
depend on both the inputs and some inherently unpredictable factors. For example, the inputs could
be a set of consecutive video frames and the target could be the following frame. Classical latent
variable models such as k-means or mixtures of Gaussians are trained by alternately minimizing the
loss with respect to the latent variables and model parameters; in the probabilistic case this is the
Expectation-Maximization algorithm (Dempster et al., 1977). In the case of a neural network model
fθ(xi, z), continuous latent variables can be optimized using gradient descent and the model can be
trained with the following procedure:

Algorithm 1 Train latent variable model with alternating minimization

Require: Learning rates α, β, number of iterations K.
1: repeat
2: Sample (xi, yi) from the dataset
3: initialize z ∼ N (0, 1)
4: i← 1
5: while i ≤ K do
6: z ← z − α∇zL(yi, fθ(xi, z))
7: i← i+ 1
8: θ ← θ − β∇θL(yi, fθ(xi, z))
9: until converged

Our approach is based on two observations. First, the latent variable z should represent what is not
explainable using the input xi. Ideally, the model should make use of the input xi and only use z to
account for what is not predictable from it. Second, if we are using gradient descent to optimize the
latent variables, z will be a continuous function of xi and yi, although a possibly highly nonlinear
one. We train two functions to predict the targets: a deterministic model g(x) and a latent variable
model f(x, z). We first train the deterministic model g to minimize the following loss over the
training set:

Lg =
∑
i

‖yi − g(xi)‖ (1)

Here the norm can denote `1, `2 or any other loss which is a function of the difference between the
target and the prediction. Given sufficient data and capacity, g will learn to extract all the information
possible about each yi from the corresponding xi, and what is inherently unpredictable will be
contained within the residual error, yi − g(xi). This can be passed through a learned parametric
function φ to produce a low-dimensional latent variable z = φ(yi − g(xi)) which encodes the
identity of the mode to which the future state belongs. This can then be used as input to f to more
accurately predict yi conditioned on knowledge of the proper mode.
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Figure 1: Model Architecure.

Once g is trained, we then minimize the following loss over the training data:

Lf =
∑
i

‖yi − f(xi, φ(yi − g(xi)))‖ (2)

The fact that z is a function of the prediction error of g reflects the intuition that it should only
account for what is not explainable by the input, while still being a smooth function of x and y.
Note that z is typically of much lower dimension than yi − g(xi), which prevents the network from
learning a trivial solution where f would simply invert φ and cancel the error from the prediction.
This forces the network to map the errors to general representations which can be reused across
different samples and correspond to different modes of the conditional distribution.

To perform inference after the network is trained, we first extract and save the zi = φ(yi − g(xi))
from each sample in the training set. Given some new input x′, we can then generate different
predictions by computing f(x′, z′), for different z′ sampled from the set {zi}. This can be seen as
a non-parametric estimation of the distribution over z, which differs from other approaches such as
VAEs (Kingma & Welling) where z is pushed towards a predefined distribution (for example, an
isotropic Gaussian) through an additional term in the loss function.

The model architecture is shown in Figure 1. To speed up training, we choose f and g to have similar
architecture and initialize f with the parameters of g. For example, we can have g(x) = g2(g1(x))
and f(x, z) = f2(f1(x) +Wz) and initialize f1, f2 with the weights of g1, g2 respectively. Thus,
if φ and W are initialized such that Wz has zero mean and small variance, the network is already
able to extract all the signal from the input x and can only improve further by adapting its weights
to make use of the mode information contained in z.

3 RELATED WORK

In recent years a number of works have explored video prediction. These typically train models to
predict future frames with the goal of learning representations which disentangle factors of variation
and can be used for unsupervised learning (Srivastava et al., 2015; Villegas et al., 2017; Denton &
Birodkar, 2017), or learn action-conditional forward models which can be used for planning (Oh
et al., 2015; Finn et al., 2016; Agrawal et al., 2016; Kalchbrenner et al., 2016). In the first case,
the predictions are deterministic and ignore the possibly multimodal nature of the time series. In
the second, it is possible to make different predictions about the future by conditioning on different
actions, however this requires that the training data includes additional action labels. Our work
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makes different predictions about the future by conditioning on latent variables which are extracted
in an unsupervised manner from the videos themselves.

Several works have used adversarial losses in the context of video prediction. The work of (Mathieu
et al., 2015) used a multiscale architecture and a combination of several different losses to predict
future frames in natural videos. They found that the addition of the adversarial loss and a gradient
difference loss improved the generated image quality, in particular by reducing the blur effects which
are common when using `2 loss. However, they also note that the generator learns to ignore the noise
and produces similar outputs to a deterministic model trained without noise. This observation was
also made by (Isola et al., 2016) when training conditional networks to perform image-to-image
translation.

Other works have used models for video prediction where latent variables are inferred using alter-
nating minimization. The model in (Vondrick et al., 2015) includes a discrete latent variable which
was used to choose between several different networks for predicting hidden states of future video
frames obtained using a pretrained network. This is more flexible than a purely deterministic model,
however the use of a discrete latent variable still limits the possible future modes to a discrete set.
The work of (Goroshin et al., 2015) also made use of latent variables to model uncertainty, which
were inferred through alternating minimization. In contrast, our model infers continuous latent vari-
ables through a learned parametric function. This is related to algorithms which learn to predict the
solution of an iterative optimization procedure (Gregor & LeCun, 2010).

Recent work has shown that good generative models can be learned by jointly learning representa-
tions in a latent space together with the parameters of a decoder model (Bojanowski et al., 2017).
This leads to easier training than adversarial networks. This generative model is also learned by
alternating minimization over the latent variables and parameters of the decoder model, however
the latent variables for each sample are saved after each update and optimization resumes when the
corresponding sample is drawn again from the training set. This is related to our method, with the
difference that rather than saving the latent variables for each sample we compute them through a
learned function of the deterministic network’s prediction error.

Our work is related to predictive coding models (Rao & Ballard, 1999; Spratling, 2008; Chalasani
& Principe, 2013; Lotter et al., 2016) and chunking architectures (Schmidhuber, 1992), which also
pass residual errors or incorrectly predicted inputs between different parts of the network. It differs
in that these models pass errors upwards to higher layers in the network at each timestep, whereas
our model passes the compressed error signal from the deterministic network backwards in time to
serve as input to the latent variable network at the previous timestep.

Our model is also related to Variational Autoencoders (Kingma & Welling), in that we use a latent
variable z at training time which is a function of the input x and target y. It differs in the use of a
pretrained deterministic model which is used to compute the residual error of which z is a function
and for initializing the network, as well as the non-parametric sampling procedure which does not
place any prior assumptions on the z distribution and removes the need for an additional term in the
loss function enforcing that the z distribution matches this prior.

4 EXPERIMENTS

We tested our method on four different video datasets from different areas such as games (Atari
Breakout and Flappy Bird), robot manipulation (Agrawal et al., 2016) and simulated driving (Zhang
& Cho, 2016). These have a well-defined multimodal structure, where the environment can change
due to the actions of the agent or other stochastic factors and span a diverse range of visual envi-
ronments. For each dataset, we trained our model to predict the next 4 frames conditioned on the
previous 4 frames. Code to train our models and obtain video generations is available at url.

We trained several baseline models to compare performance: a deterministic model (CNN), a model
with z variables drawn from an isotropic Gaussian (CNN + noise), a conditional autoencoder (AE),
a conditional variational autoencoder model (cVAE), and a GAN. These different models are sum-
marized in Table 1. Note that they have the same architecture but differ in their loss function and/or
sampling procedure for the z variables. We used the same architecture across all tasks and for all
models, namely f2(f1(x) +Wz) where f1 is a 3-layer convolutional network and f2 is a 3-layer
deconvolutional network, all with 64 feature maps at each layer and batch normalization. We did
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Model z (train) z (test) Loss
CNN z = 0 z = 0 ‖ỹ − y‖

CNN + noise z ∼ N (0, I) z ∼ N (0, I) ‖ỹ − y‖
cVAE z ∼ N (µ, σ) where (µ, σ) = φ(x, y) z ∼ N (0, I) ‖ỹ − y‖+KL(N (µ, σ),N (0, I))
GAN z ∼ N (0, I) z ∼ N (0, I) Discriminator D
AE z = φ(x, y) z ∼ {zi} ‖ỹ − y‖

EEN z = φ(y − g(x)) z ∼ {zi} ‖ỹ − y‖

Table 1: Inference methods and loss for the different models. All models have the same architecture,
ỹ = f2(f1(x) +Wz).

not use pooling and instead used strided convolutions, similar to the DCGAN architecture (Radford
et al., 2015).

The φ network represents the posterior network for the cVAE, the encoder network for the AE and
the network described in Section 2 for the EEN. For all models φ had a similar structure, i.e. a 3-
layer convolutional network with 64 feature maps followed by two fully-connected layers with 1000
units each which output the z variables for the EEN and AE and the parameters of the z distribution
for the CVAE. All models except the GAN were trained using the `2 loss for all datasets except
the Robot dataset, where we found that the `1 loss gave better-defined predictions. Although more
sophisticated losses exist, such as the Gradient Difference loss (Mathieu et al., 2015), our goal here
was to evaluate whether our model could capture multimodal structure such as objects moving or
appearing on the screen or perspective changing in multiple different realistic ways.

The EEN, AE, CNN and CNN + noise were trained using the ADAM optimizer (Kingma & Ba,
2014) with default parameters and learning rate 0.0005 for all tasks. For the cVAE, we additionally
optimized learning rates over the range {0.005, 0.001, 0.0005, 0.0001}. For these models we used
8 latent variables on all tasks except for the driving task, where we used 32. For the GAN, based
on visual examination of the generated samples, we selected the learning rates of the generator and
discriminator to be 0.00005 and 0.00001 respectively. We used 64 latent variables in the GAN
experiments. The other settings with GAN experiments are designed similarly to DCGAN’s, such
as using Leaky ReLU in the discriminator, Batch Normalization and etc.

4.1 DATASETS

We now describe the video datasets we used.

Atari Games We used a pretrained A2C agent (Mnih et al., 2016) 1 to generate episodes of gameplay
for the Atari games Breakout (Bellemare et al., 2012) using a standard video preprocessing pipeline,
i.e. downsampling video frames to 84× 84 pixels and converting to grayscale. We then trained our
forward model using 4 consecutive frames as input to predict the following 4 frames.

Flappy Bird We used the OpenAI Gym environment Flappy Bird 2 and had a human player play
approximately 50 episodes of gameplay. In this environment, the player controls a moving bird
which must navigate between obstacles appearing at different heights. We trained the model to
predict the next 4 frames using the previous 4 frames as input, all of which were rescaled to 128×72
pixel color images.

Robot Manipulation We used the dataset of (Agrawal et al., 2016), which consists of 240 × 240
pixel color images of objects on a table before and after manipulation by a robot. The robot pokes
the object at a random location with random angle and duration causing it to move, hence the ma-
nipulation does not depend of the environment except for the location of the object. Our model was
trained to take a single image as input and predict the following image.

Simulated Driving We used the dataset from (Zhang & Cho, 2016), which consists of color videos
from the front of a car taken within the TORCS simulated driving environment. This car is driven
by an agent whose policy is to follow the road and pass or avoid other cars while staying within the

1https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
2https://gym.openai.com/envs/FlappyBird-v0/
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Figure 2: Best loss for different models over varying numbers of different samples.

speed limit. Here we again trained the model to predict 4 frames using the 4 previous frames as
input. Each image was rescaled to 160× 72 pixels as in the original work.

4.2 RESULTS

Our experiments were designed to test whether our method can generate multiple realistic predic-
tions given the start of a video sequence. We first report quantitative results, using the approach
adopted in (Walker et al., 2016). As noted by the authors, quantitatively evaluating multimodal pre-
dictions is challenging, since the ground truth sample is drawn from one of several possible modes
and the model may generate a sample from a different mode. In this case, simply comparing the
generated sample to the ground truth sample may give high loss even if the generated sample is of
high quality. We therefore fix a number of samples each model is allowed to generate and report
the best score across different generated samples: min

k
L(y, f(x, zk)). If the multimodal model is

able to use its latent variables to generate predictions which cover several modes, generating more
samples will improve the score since it increases the chance that a generated sample will be from the
same mode as the test sample. If however the model ignores latent variables or does not capture the
mode that the test sample is drawn from, generating more samples will not improve the loss. Note
that if L is a valid metric in the mathematical sense (such as the `1 or `2 distance), this is a finite-
sample approximation to the Earth Mover or Wasserstein-1 distance between the true and generated
distributions on the metric space induced by L. Although this metric can reflect how many real
modes the generative model is able to cover, and thus detect mode collapse, it does not necessarily
detect when the model is generating samples from a mode that is not present in the testing data. 3

3 For example, say p(y|x) has modes m1,m2 with equal mass and the model generates samples in m1,m2

and a third mode m3 with equal probability. This model would still get a fairly good score by our metric
(although the curves would likely improve a bit more slowly with more samples). However if the model only
generates samples in m1 or m2, it would be penalized more.
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a) Ground truth

b) Deterministic Baseline

c) Residual

d) Autoencoder generations with different z

d) EEN generations with different z

Figure 3: Generations on Breakout. Left 4 frames are given, right 4 frames are generated. Note that
the paddle changes location for the different generations. Best viewed with zoom.
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Figure 2 shows the best loss for different numbers of generated samples for the various models. We
did not include GAN results in these plots as we found that their `1/`2 loss differed significantly
from that of the other models, which skewed the plots. This is reasonable since the GANs are opti-
mizing a different loss than the other models. Plots including the GAN performance can be found
in the Appendix. The EEN and the AE see their performance increase with higher numbers of gen-
erated samples whereas the CNN + noise and cVAE have very similar performance to the baseline
CNN model, indicating that they have learned to ignore their latent variables. This behavior has
been observed in other works on conditional generation and is referred to as “posterior collapse”.
When the conditioning variable x contains a lot of signal, the model can achieve large improvements
in the prediction loss by learning a deterministic function of x, while letting the z distribution go to
N (0, 1) to lower the KL term in the loss, and having the rest of the network ignore z. Various strate-
gies have been proposed such as adding additional features or losses (Zhao et al., 2017), annealing
the magnitude of the KL term during training (Bowman et al., 2015; Fraccaro et al., 2016) or using
discrete latent codes (van den Oord et al., 2017). In contrast, the EEN and AE are able to generate
diverse predictions without any modifications or additional hyperparameters to tune, due to the non-
parametric sampling procedure which does not place any assumptions on the latent distribution and
does not require an additional KL term in the loss. The fact that performance increases with more
generated samples indicates that the generations of the EEN and AE are diverse enough to cover at
least some of the modes of the test set. Given the same number of samples, the AE performance
is consistently lower than the EEN on all datasets except for TORCS, where it is comparable or
slightly better depending on how many samples are generated.

We next report qualitative results in the form of visualizations. In addition to the figures in this paper,
we provide a link to videos which facilitate viewing 4. An example of generated frames in Atari
Breakout is shown in Figure 3. For the baseline model, the image of the paddle gets increasingly
diffuse over time which reflects the model’s uncertainty as to its future location while the static
background remains well defined. The residual, which is the difference between the ground truth and
the baseline prediction, only depicts the movement of the ball and the paddle which the deterministic
model is unable to predict. This is encoded into the latent variables z through the learned function
φ which takes the residual as input. By sampling different z vectors from the training set, we obtain
three different generations for the same conditioning frames. For these we see a well-defined paddle
executing different movement sequences starting from its initial location. The autoencoder model
is also able to generate diverse predictions, however it often generates predictions which contain
artifacts as seen in the second set of frames.

Figure 4 shows generated frames on Flappy Bird. Flappy Bird is a simple game which is deter-
ministic except for two sources of stochasticity: the actions of the player and the height of new
pipes appearing on the screen. In this example, we see that by changing the latent variable the EEN
generates two sequences with pipes entering at different heights. The autoencoder generates two
sequences with pipes of different color, which is not a realistic prediction. This suggests that the z
variable encodes information which could be predicted from the input. In contrast, the EEN limits
the information content of the z variable by subtracting information which could be predicted from
the input.

We next evaluated our method on the Robot dataset. For this dataset the robot pokes the object with
random direction and force which cannot be predicted from the current state. The prediction of the
baseline model blurs the object but does not change its location or angle. In contrast, the EEN is able
to produce a diverse set of predictions where the object is moved to different adjacent locations, as
shown in Figure 5. We found that the autoencoder predictions were qualitatively similar to the EEN
predictions despite the fact that they scored less according to the metric in Figure 2, and therefore
omit them due to space constraints. Generations from both models can be viewed at the video link.

The last dataset we evaluated our method on was the TORCS driving simulator. Here we found
that generating frames with different z samples changed the location of stripes on the road, and
also produced translations of the frame as would happen when turning the steering wheel. We did
not notice significant qualitative differences in the generations of the EEN and the AE, which is
consistent with the quantitative metric in Figure 2. These effects are best viewed though the video
link.

4https://sites.google.com/view/errorencodingnetworks
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a) Ground truth

b) Deterministic Baseline

c) Autoencoder generations with different z

d) EEN generations with different z

Figure 4: Generations on Flappy Bird. Left 4 frames are given, right 4 frames are generated. Note
that the pipe on the right changes height for different generations. Best viewed with zoom.

5 CONCLUSION

In this work, we have introduced a new framework for performing temporal prediction in the pres-
ence of uncertainty by disentangling predictable and non-predictable components of the future state.
It is fast, simple to implement and easy to train without the need for an adverserial network or al-
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a) Deterministic Baseline b) Generation 1

c) Generation 2 d) Generation 3

Figure 5: EEN generations on Robot Task. Left frame is given, right frame is generated.

ternating minimization, and does not require additional tuning to prevent mode collapse. We have
provided one instantiation in the context of video prediction using convolutional networks, but it
is in principle applicable to different data types and architectures. There are several directions for
future work. Here, we have adopted a simple strategy of sampling uniformly from the z distribution
without considering their possible dependence on the state x, and there are likely better methods.
In addition, one advantage of our model is that it can extract latent variables from unseen data very
quickly, since it simply requires a forward pass through a network. If latent variables encode infor-
mation about actions in a manner that is easy to disentangle, this could be used to extract actions
from large unlabeled datasets and perform imitation learning. Another interesting application would
be using this model for planning and having it unroll different possible futures.
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Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. CoRR, abs/1511.05440, 2015. URL http://arxiv.org/abs/1511.
05440.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial
networks. CoRR, abs/1611.02163, 2016. URL http://arxiv.org/abs/1611.02163.
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Figure 6: Best loss for different models (including GANs) over varying numbers of different sam-
ples.
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