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ABSTRACT

Multi-class unsupervised anomaly detection (MUAD) has garnered growing re-
search interest, as it seeks to develop a unified model for anomaly detection across
multiple classes—eliminating the need to train separate models for distinct ob-
jects and thereby saving substantial computational resources. Under the MUAD
setting, while advanced Transformer-based architectures have brought significant
performance improvements, identity shortcuts persist: they directly copy inputs to
outputs, narrowing the gap in reconstruction errors between normal and abnormal
cases, and thereby making the two harder to distinguish. Therefore, we propose
ShortcutBreaker, a novel unified feature-reconstruction framework for MUAD
tasks, featuring two key innovations to address the issue of shortcuts. First, draw-
ing on matrix rank inequality, we design a low-rank noisy bottleneck (LRNB) to
project high-dimensional features into a low-rank latent space, and theoretically
demonstrate its capacity to prevent trivial identity reproduction. Second, leverag-
ing ViT’s global modeling capability instead of merely focusing on local features,
we incorporate a global perturbation attention to prevent information shortcuts in
the decoders. Extensive experiments are performed on four widely used anomaly
detection benchmarks, including three industrial datasets (MVTec-AD, ViSA, and
Real-IAD) and one medical dataset (Universal Medical). The proposed method
achieves a remarkable image-level AUROC of 99.8%, 98.9%, 90.6%, and 87.8%
on these four datasets, respectively, consistently outperforming previous MUAD
methods across different scenarios. Our code will be released.

1 INTRODUCTION
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Figure 1: Performance comparison in terms of
image-level AUC on MVTec, ViSA , Universal
Medical and Real-IAD .

Anomaly detection in industrial and medical
imaging aims to identify abnormal patterns
among normal cases, saving labor and time in
collecting and labeling anomalies. Given the
abundance of normal cases and the scarcity
of anomalies, this task is typically tackled
via an unsupervised paradigm using only nor-
mal training samples. Before deep learning,
anomaly detection relied on traditional tech-
niques: density-based methods (Breunig et al.,
2000; Guan et al., 2015), distance-based meth-
ods (Knorr et al., 2000; Angiulli et al., 2005),
and statistics-based methods (Hido et al., 2011;
Rousseeuw & Hubert, 2011). Current state-of-
the-art methods employ deep learning networks
pre-trained on ImageNet (Deng et al., 2009)
to capture discriminative features. Feature re-
construction methods (Guo et al., 2023; 2024;

Deng & Li, 2022) reconstruct encoder-extracted features, assuming accurate reconstruction of nor-
mal regions but failure on unseen anomalies. Memory matching methods (Yi & Yoon, 2020; Defard
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et al., 2021; Roth et al., 2022) memorize training-set normal features for inference matching, with
those in (Defard et al., 2021; Roth et al., 2022) using pre-trained encoders for discriminative features.
Pseudo-anomaly methods (Liu et al., 2023; Li et al., 2021; Zavrtanik et al., 2021) convert UAD to a
supervised task by generating pseudo anomalies via noise addition to normal images/features. Hy-
brid methods (Tien et al., 2023; Zhao et al., 2023) integrate normalizing flows (Zhao et al., 2023) or
pseudo noise (Tien et al., 2023) into feature reconstruction for UAD.

Despite their success, these methods are limited to a one-model-one-class setup, requiring substan-
tial storage for per-class models—especially with many disease types (You et al., 2022). To address
this, UniAD and follow-ups propose unified models for multi-class unsupervised anomaly detection
(MUAD). However, identity mapping often emerges here, where the model returns input copies re-
gardless of normality, enabling effective reconstruction of even anomalous samples and hindering
detection (You et al., 2022).

(c) Distribution of features distances(a) Visualization of medical and industrial images
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Figure 2: The visual patterns in the medical field are richer
than those in the industrial field. (a) Visualization results,
(b) T-SNE plots (Van der Maaten & Hinton, 2008), and
(c) distributions of feature distances for the Universal Med-
ical and ViSA datasets (Zou et al., 2022) are presented.
These experimental results help observe the diversity of
each dataset. For T-SNE plots, we extract the final features
from the pre-trained ResNet-50 (He et al., 2016). Moreover,
we use LPIPs (Zhang et al., 2018) to compare feature dis-
tances between individual image pairs.

Over the past three years, sub-
stantial progress has been made
in multi-class unsupervised anomaly
detection (MUAD), with explorations
into pretrained vision transformers
(ViTs) (Zhang et al., 2023; Guo et al.,
2025), state space models (Mam-
bas) (He et al., 2024a), diffusion
models (Yin et al., 2023; He et al.,
2024b), and other approaches (Guo
et al., 2024; Zhao, 2023; He et al.,
2024c). Nevertheless, the multi-
class setting inevitably induces iden-
tity mapping in most methods, re-
sulting in performance degradation.
While previous studies (You et al.,
2022; Guo et al., 2025) have endeav-
ored to mitigate shortcut learning, the
efficacy of their proposed techniques
in complex and highly diverse scenar-
ios remains limited (see Fig. 1 (c)-
(d)). This is particularly evident in

datasets such as Real-IAD and Universal Medical, where the abundance of normal patterns exac-
erbates the aforementioned issue (You et al., 2022). The effectiveness of simple noise operations
(You et al., 2022; Guo et al., 2025) is diminished due to the enhanced noise robustness acquired
through exposure to diverse visual patterns. Additionally, the neighbor mask attention mechanism
(You et al., 2022) is specifically tailored for features locally extracted by CNNs, and is not suitable
for the global modeling structure - Transformer. Consequently, to enhance performance, our work
aims to efficiently address the problem of identity shortcuts. Furthermore, why are the Real-IAD
and Universal Medical datasets more complex? We elaborate on this as follows: It is apparent
that in comparison to widely adopted industrial datasets—MVTec-AD (encompassing 15 classes)
(Bergmann et al., 2019) and ViSA (comprising 12 classes) (Zou et al., 2022)—Real-IAD (Wang
et al., 2024) exhibits more diverse normal patterns, featuring 30 object categories and 5 camera
views. In contrast to standardized industrial images, although the Universal Medical dataset (He
et al., 2024b) consists of only 3 categories, the inherent heterogeneity within medical normal sam-
ples enriches the visual features (e.g., variations in organ size and shape across different demograph-
ics, as illustrated in Fig. 2(a)). Moreover, the Universal Medical dataset displays a sparser t-SNE
plot and a wider dispersion of feature distances compared to ViSA (see Fig. 2 (b) and (c)), indicating
a higher degree of intrinsic diversity within medical data.

In this paper, we propose a simple yet effective framework for the MUAD task, named Shortcut-
Breaker, built on the advanced DINO-pretrained vision transformer with two key innovations. First,
drawing on two observed properties of low-rank matrix decomposition, we design a low-rank noisy
bottleneck (LRNB) to effectively mitigate the identity mapping issue. Within LRNB, the low-rank
property theoretically circumvents shortcut learning of unseen patterns, while learnable matrix pa-
rameters are optimized to reconstruct normal patterns. Second, considering that ViT-extracted fea-
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tures share similar global information, we introduce a global perturbation attention (GPA) mecha-
nism to curb information leakage from input to output in the decoder. In GPA, a global redistribution
operation and a global-self-masking mechanism force the decoder to learn reconstruction based on
longer-range and impaired features. To validate the effectiveness of the proposed method, we con-
duct extensive experiments on four publicly available datasets: MVTec-AD (Bergmann et al., 2019),
ViSA (Zou et al., 2022), Universal Medical (He et al., 2024b), and Real-IAD (Wang et al., 2024).
As presented in Fig. 1, our ShortcutBreaker achieves the highest image-level AUC: 99.8%, 98.9%,
88.2%, and 90.6% on these four datasets, respectively. Notably, on the complex Universal Medical
and Real-IAD datasets, it outperforms previous methods by a significant margin. In summary, our
contributions are:

• We observe and simulate the properties of matrix decomposition to design a low-rank noisy
bottleneck, efficiently suppressing identity mapping.

• We propose a global perturbation attention mechanism, which effectively prevents shortcut
learning in the decoder via global redistribution and global-self-masking operations.

• Our ShortcutBreaker consistently outperforms previous methods across all four datasets,
demonstrating enhanced robustness in diverse scenarios.

2 RELATED WORKS

2.1 SINGLE CLASS UAD

Recently, reconstruction mechanisms have dominated unsupervised anomaly detection (UAD) meth-
ods, detecting outliers by evaluating reconstruction errors between input and output pixels or fea-
tures. These approaches include pixel reconstruction methods (Schlegl et al., 2017a;b) and feature
reconstruction methods (Deng & Li, 2022; Guo et al., 2023; 2024). Pixel reconstruction methods
aim to recreate normal images from scratch using a generative model framework. They assume
that reconstructing normal samples will produce low reconstruction errors, while abnormal sam-
ples—differing from training data—will result in higher errors. Feature reconstruction methods
suggest that latent features extracted from a pre-trained encoder provide more discriminative and
robust representations compared to pixel-level reconstructions. Building on the success of such
methods, many subsequent approaches (e.g., EDC (Guo et al., 2023) and AE-FLOW (Zhao et al.,
2023)) leverage this foundation to enhance anomaly detection. For instance, EDC employs an un-
frozen pre-trained encoder, which is fine-tuned to adapt to the target domain while using a stop-
gradient operation to retain important domain-relevant features. AE-FLOW further extends this idea
by combining feature map reconstruction errors with distribution distances (measured via normaliz-
ing flows) as the final anomaly score. However, simply applying single-class methods as part of this
one-class-one-model scheme is memory-intensive (especially as the number of classes grows) and
ill-suited for scenarios with high intra-class diversity in normal samples, such as multi-class UAD
(You et al., 2022).

2.2 MULTI CLASS UAD

UniAD (You et al., 2022) pioneers the field of multi-class unsupervised anomaly detection (MUAD),
presenting a unified model capable of detecting anomalies across various classes. Most subsequent
works have explored advanced modules to build better reconstruction models for MUAD. For exam-
ple, LafitE (Yin et al., 2023) and DiAD (He et al., 2024b) further advance the MUAD task by lever-
aging the generative power of diffusion models to better capture anomalies across multiple classes.
ViTAD (Zhang et al., 2023) and MambaAD (He et al., 2024a) develope feature reconstruction-
based MUAD methods using recently advanced modules: Vision Transformer (Zhang et al., 2023)
and State Space Model (He et al., 2024a), respectively. Few methods explicitly aim to address the
identity mapping issue. UniAD (You et al., 2022) counteracts this through techniques like feature
jittering and neighbor-masked attention. Dinomaly (Guo et al., 2025) employs components such as
noisy bottleneck dropout to disrupt input feature replication. However, these noise operations have
limited effectiveness in preventing shortcut learning when training on complex medical/industrial
datasets (Universal Medical and Real-IAD), and neighbor-masked attention—specifically designed
for CNN-extracted features—is not suitable for advanced ViT architectures (Guo et al., 2025; Zhang
et al., 2023).
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Figure 3: Flowchart of our ShortcutBreaker: (a) the overall structure of our proposed method; (b) the
structure of the Low-Rank Noisy Bottleneck (LRNB); (c) the structure of the Global Perturbation
Attention (GPA), which consists of GRD (global redistribution) and GSM (global-self masking);
and (d) the training and inference pipelines.

3 METHOD

3.1 OVERVIEW

Following ViTAD and Dinomaly (Zhang et al., 2023; Guo et al., 2025), our ShortcutBreaker is a
feature-reconstruction framework and constructed based on the vision transformer (ViT) structure.
As depicted in Fig. 3(a), ShortcutBreaker consists of a pre-trained encoder, a bottleneck, and a de-
coder. The DINO-pretrained ViT model (Darcet et al., 2023) is utilized as the encoder, capturing
informative feature tokens to facilitate subsequent reconstruction. The bottleneck is built upon a
multi-layer perceptron (MLP), integrating multi-scale feature representations from intermediate en-
coder layers. The decoder maintains structural similarity with the encoder, employing transformer
layers to reconstruct feature maps. As illustrated in Fig. 3(d), the encoder remains frozen dur-
ing training, while the remaining components of ShortcutBreaker are optimized to reconstruct the
encoder’s feature tokens by minimizing inter-token representation discrepancies. During inference,
this configuration enables accurate reconstruction of normal patterns but exhibits reconstruction fail-
ures in anomalous regions. The anomaly localization map is generated by computing 1-CS (where
CS denotes cosine similarity) between the original and reconstructed feature tokens and then re-
shaping the result. The anomaly detection score is subsequently determined by the maximum value
within this anomaly map.

3.2 LOW-RANK NOISY BOTTLENECK (LRNB)

As discussed in the introduction, under the MUAD setting, identity shortcuts readily occur, narrow-
ing the gap in anomaly scores between normal and abnormal cases. Previous methods (Guo et al.,
2025; You et al., 2022) propose perturbing extracted feature tokens to compel the network to recon-
struct from information-impaired normal features, rather than directly copying them. However, these
noisy operations are often limited in effectively preventing shortcut learning in complex scenarios.
We hypothesize that richer visual patterns inherent in the data enhance the reconstruction model’s
robustness to noise. Consequently, we aim to design a novel paradigm for avoiding shortcuts that
goes beyond solely relying on noisy operations. Through empirical observation of low-rank matrix
decomposition in LoRA (Hu et al., 2022) (or the encoder-decoder structure in Auto-Encoder (He
et al., 2022)), we identified two inherent properties particularly suitable for addressing the identity
mapping issue.

Property 1 stems from the constrained low-rank latent space, which effectively circumvents identity
shortcuts. In deep learning, nonlinear activations are generally used to improve performance, so we
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need to prove Property 1 under non-linear transformations, primarily using the Jacobian matrix
(Goodfellow et al., 2016) for this proof.

To achieve identity mapping of x ∈ Rd, we require that g ◦ f(x) = x holds for all x ∈ Rn.
Differentiating both sides with respect to xyields the Jacobian equation:

Jg(f(x)) · Jf (x) = Id×d (1)

where Jf (x) ∈ Rd×k and Jg(f(x)) ∈ Rk×d. Taking the determinant of both sides:

r((Jg(f(x)) · Jf (x))) = r(Id×d) = d. (2)

Since the product Jg(f(x)) · Jf (x) is an d× d matrix, applying the rank inequality yields:

r (Jg(f(x)) · Jf (x)) ≤ min (r(Jg(f(x))), r(Jf (x))) ≤ k (3)

Here, r(·) indicate the rank of the input. Under the low-rank adaptation module, we have k < d,
Substituting into Eq. equation 3 implies:

r (Jg(f(x)) · Jf (x)) ≤ k < d (4)

This contradicts Eqs. equation 2 that det(Id×d) requires rank=d. Consequently, no such functions f
and g exist.

Property 2 This property emerges from training exclusively on normal samples, during which the
learnable g and f layers are optimized to specifically enhance the reconstruction of normal patterns.
This optimization process minimizes adverse effects on the reconstruction fidelity of normal cases,
thereby achieving a more favorable trade-off between the reconstruction of normal and abnormal
samples.

Specifically, we adapt the LoRA framework (Hu et al., 2022) by implementing Multi-Layer Per-
ceptrons (MLPs) with nonlinear activations to parameterize functions g and f , constructing an
auto-encoder-like structure. As illustrated in Fig. 3, the modules g and f exhibit symmetrical ar-
chitectures, where g comprises i downsampling blocks (DBs) and f contains i upsampling blocks
(UBs). Within DBs, the output token count of the i-th block is halved relative to the (i−1)-th block,
while UBs correspondingly double the token count relative to their preceding block. Furthermore,
we explore integrating feature-level noisy operations via Dropout (Guo et al., 2025), and introduce
additional perturbations for better performance.

3.3 GLOBAL PERTURBATION ATTENTION (GPA)
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Figure 4: Comparison of sigmoid and softmax Functions on
a 2D attention map with Gaussian distribution, (a), (b), (c)
are the 3D plot of original data, after softmax and sigmoid
respectively, (d), (e), (f) are the corresponding heatmaps.

The self-attention mechanism in
vanilla Transformer inherently facil-
itates identity mapping issues (You
et al., 2022), as it permits unre-
stricted interaction between feature
tokens and their own representations.
Therefore, we propose a Global
Perturbation Attention (GPA) in the
decoder to prevent shortcut pathways
in ViT architectures. As illustrated
in Fig. 3, GPA comprises two core
components: (1) global redistribution
and (2) joint global-self masking.

Global Redistributing (GRD)
In the vanilla self-attention block
(Eq. (5)), Softmax function is applied
to the query-key attention map to
conduct non-linear normalization
(Alexey, 2020).

Attention(Q,K, V ) = softmax

(
QK⊤
√
dk

)
V (5)
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where Q ∈ RN×d, K ∈ RN×d and V ∈ RN×d indicate the query, key and value vectors respec-
tively. KT ∈ Rd×N is the transpose matrix of K and dk is the scaling factor.

However, as shown in Fig. 4 ((a) vs. (c) and (d) vs. (f)), we observe that the Softmax function tends
to overfocus on dominant activation regions during output generation. This behavior is prone to
inducing identity mapping under the MUAD setting (Guo et al., 2025). To avoid the overfocusing
behavior, the most intuitive approach is to remove Softmax or replace it with an alternative, the
Sigmoid (Eq. (6)).

Attention(Q,K, V ) = sigmoid

(
QK⊤
√
dk

)
V (6)

As shown in the 1st and 2nd columns of Fig. 4, when Softmax is removed, the overconcentration
issue is alleviated. When Softmax is replaced with the Sigmoid function, the attention spreads
more broadly. This indicates that Sigmoid functions tend to leverage longer-range dependencies
for feature reconstruction rather than relying on focal attention, thereby reducing the likelihood of
propagating unseen information to subsequent layers. Therefore, we apply Sigmoid as a replacement
for Softmax in the final setting.

Global-Self Masking (GSM) Following global redistribution, GPA applies a global-
self-masking operation to the attention map to suppress shortcut learning. The self-
masking mechanism effectively prevents tokens from attending to their own positions.

Figure 5: The flowchart of Global-Self Masking
operation. AM: attention map and (·) indicate
element-wise multiplication.

Moreover, considering that feature tokens are
captured by the ViT structure, all tokens in the
same sequence may share similar information.
Therefore, we propose to mask tokens globally
and randomly. Specifically, we implement self-
masking by masking the elements on the diago-
nal of the attention map (AM) and conduct ran-
dom global masking via attention dropout. The
flowchart of GSM is shown in Fig. 5; the output
AM is obtained by element-wise multiplication
of the input AM and our mask.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets We evaluated our method on four well-established datasets, including three for industrial
scenarios: MVTec-AD (Bergmann et al., 2019), ViSA (Zou et al., 2022), Real-IAD (Wang et al.,
2024), and one for medical scenario: Universal Medical (He et al., 2024b;a; Zhang et al., 2023;
2024a). MVTec-AD comprises 15 object categories, with 3,629 normal images in the training set
and 498 normal images alongside 1,982 anomalous samples in the test set. ViSA contains 12 cat-
egories, providing 8,659 normal training images and a test set with 962 normal images and 1,200
anomalous cases. Real-IAD, the largest industrial benchmark, includes 30 diverse objects, utilizing
36,645 normal images for training and 63,256 normal images combined with 51,329 anomalous in-
stances for testing. Universal Medical consists of 13,339 normal cases for training, with a test set
containing 2,514 normal cases and 4,499 abnormal cases. This dataset spans three medical imaging
modalities: Brain MRI, Liver CT, and Retinal CT scans. All datasets include both image-level and
pixel-level labels.

Metrics For evaluation metrics, we followed protocols from (Zhang et al., 2023; He et al., 2024a;
Guo et al., 2025), adopting four metrics: Area Under the Receiver Operating Curve (AUC), F1-max
score, average precision (AP) for both image-level detection and pixel-level localization tasks, and
Area Under the Per-Region-Overlap (AUPRO) to further evaluate the localization task.

Implementation details In our experiments, the encoder is initialized with DINO pre-trained
weights (Darcet et al., 2023) and kept frozen during training. Images are resized to 512×512 and
then center-cropped to 448×448. We use a stable variant of the AdamW optimizer (Wortsman et al.,
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Table 1: Comparison between our method and currently state-of-the-art methods on four datasets,
MVTec-AD (Bergmann et al., 2019), ViSA (Zou et al., 2022), Universal Medical (He et al., 2024b)
and Real-IAD (Wang et al., 2024). Bold values indicate the best, and underlined values indicates the
second best. (%)

Method
MVTec-AD ViSA

Image-Level Pixel-Level Image-Level Pixel-Level

AUC AP F1 AUC AP F1 AUPRO AUC AP F1 AUC AP F1 AUPRO

UniAD 96.5 98.8 96.2 96.8 43.4 49.5 90.7 88.8 90.8 85.8 98.3 33.7 39.0 85.5
Recontrast 98.3 99.4 97.6 97.1 60.2 61.5 93.2 95.5 96.4 92.0 98.5 47.9 50.6 91.9

DiAD 97.2 99.0 96.5 96.8 52.6 55.5 90.7 86.8 88.3 85.1 96.0 26.1 33.0 75.2
ViTAD 98.3 99.4 97.3 97.7 55.3 58.7 91.4 90.5 91.7 86.3 98.2 36.6 41.1 85.1
InvAD 98.9 99.6 97.2 98.1 57.2 59.5 94.3 95.5 95.8 92.1 98.9 43.1 47.0 92.5

MambaAD 98.6 99.6 97.8 97.7 56.3 59.2 93.1 94.3 94.5 89.4 98.5 39.4 44.0 91.0
Dinomaly 99.6 99.8 99.0 98.4 69.3 69.2 94.8 98.7 98.9 96.2 98.7 53.2 55.7 94.5

Ours 99.8 99.9 99.5 98.4 69.4 68.9 95.2 98.9 99.1 96.2 99.0 53.1 56.2 94.5

Method
Universal Medical Real-IAD

Image-Level Pixel-Level Image-Level Pixel-Leve

AUC AP F1 AUC AP F1 AUPRO AUC AP F1 AUC AP F1 AUPRO

UniAD 78.5 75.2 76.6 96.4 37.6 40.2 85.0 83.0 80.9 74.3 97.3 21.1 29.2 86.7
Reconstrast 80.1 79.7 80.9 96.3 42.3 43.8 85.2 86.4 84.2 77.4 97.8 31.6 38.2 91.8

DiAD 85.1 84.5 81.2 95.9 38.0 35.6 85.4 75.6 66.4 69.9 88.0 2.9 7.1 58.1
ViTAD 82.2 81.0 80.1 97.1 49.9 49.6 86.1 82.3 79.4 73.4 96.9 26.7 34.9 84.9
InvAD 82.2 79.6 80.6 97.3 47.5 47.1 89.6 89.0 86.4 79.6 98.4 30.7 37.6 91.9

MambaAD 83.7 80.1 82.0 96.9 45.4 47.3 87.5 86.3 84.6 77.0 98.5 33.0 38.7 90.5
Dinomaly 84.9 84.1 81.0 96.8 51.7 52.1 85.5 89.3 86.8 80.2 98.8 42.8 47.1 93.9

Ours 87.8 87.8 82.5 97.1 54.8 54.0 87.1 90.6 87.9 81.3 99.1 44.7 49.1 95.6

2023) incorporating the AMSGrad algorithm (Reddi et al., 2019), with a batch size of 32. Training
iterations are set to 20,000 for MVTec-AD and ViSA, 25,000 for Universal Medical, and 50,000
for the largest dataset, Real-IAD. The learning rate is initialized to 2e-3 and gradually reduced to
2e-4 via a Cosine Annealing schedule with a warm-start scheme (Loshchilov & Hutter, 2016). The
model is optimized using the global hard-mining loss (Guo et al., 2025). In LRNB, we set the noise
rate to 0.1, and set the number of LRNB layers to 2 for MVTec-AD and ViSA, and 3 for Universal
Medical and Real-IAD.

4.2 EVALUATIONS

Comparison with SOTA MUAD methods We evaluate our method against seven state-of-the-
art (SOTA) MUAD methods—UniAD (You et al., 2022), DiAD (He et al., 2024b), ViTAD (Zhang
et al., 2023), InvAD (Zhang et al., 2024b), Recontrast (Guo et al., 2024), and Dinomaly (Guo et al.,
2025)—across four benchmark datasets: MVTec-AD (Bergmann et al., 2019), ViSA (Zou et al.,
2022), Universal Medical (He et al., 2024b), and Real-IAD (Wang et al., 2024). Performance is
quantified using both image-level metrics (I-AUC, I-AP, I-F1) and pixel-level metrics (P-AUC, P-
AP, P-F1, P-AUPRO), where higher values indicate better detection capability. Experimental results
are presented in Table 1, where our method outperforms comparative methods across all datasets
in most metrics (The qualitative results obtained by our method can be seen in Appendix 3). On
the widely adopted MVTec-AD, our method achieves SOTA overall performance, with the highest
image-level metrics of 99.8/99.9/99.5, as well as three top-ranked and one second-ranked pixel-
level metrics of 98.4/69.4/68.9/95.2. On ViSA, our method consistently achieves the best image-
level performance of 98.9/99.1/96.2 and competitive pixel-level performance of 99.0/53.1/56.2/94.5.
These results demonstrate that image-level performance on these two datasets is nearly 100On Uni-
versal Medical, our method attains the highest image-level metrics of 87.8/87.8/82.5, surpassing
prior SOTAs by a large margin of 2.6/3.4/0.5, and achieves best or third-best pixel-level metrics
of 97.1/54.8/54.0/87.1. On Real-IAD, our method produces a new SOTA result, with image-level
and pixel-level performance of 90.6/87.9/81.4 and 99.1/44.7/49.1/95.6, outperforming previous SO-
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Table 2: Ablations studies of component contributions on Universal Medical dataset, including
LRNB: low-rank noisy bottleneck, GRD: global redistribution operation and GSM: global-self
masking mechanism. GPA: global perturbation attention, which is the combination of GRD and
GSM. (%)

LRNB GPA Image-level Pixel-level

GRD GSM AUC AP F1 AUC AP F1 AUPRO

79.28 78.67 80.41 95.49 39.30 41.11 81.35
✓ 86.38 85.72 81.67 96.83 51.83 52.29 86.18

✓ 79.89 78.60 80.26 95.70 41.03 42.11 81.77
✓ 79.48 78.77 80.50 95.53 39.54 41.40 81.78

✓ ✓ 87.53 86.96 82.42 97.05 54.74 53.89 87.11
✓ ✓ 86.70 87.12 81.53 96.98 53.43 52.88 86.09
✓ ✓ ✓ 87.81 87.75 82.45 97.06 54.81 54.03 87.06

TAs by 1.3/1.1/1.1 and 0.3/1.9/2.0/1.7. These results demonstrate strong generalization to complex
medical and diverse real-world industrial scenarios.

4.3 ABLATION STUDIES

Overall Ablation To explore the contributions of each component in our method, including the
low-rank noisy bottleneck (LRNB), global redistribution (GRD), and global-self masking (GSM)
operations, we conduct ablation experiments as shown in Table 2. The baseline is constructed fol-
lowing Dinomaly (Guo et al., 2025) and ViTAD (Zhang et al., 2023), which construct a baseline
model with a DINO-pretrained ViT encoder and a learnable softmax attention-based ViT decoder.
The effectiveness of the baseline has been proven in industrial scenarios. The results of the ab-
lation experiments demonstrate that the proposed LRNB, GRD, and GSM modules all contribute
to performance improvement, with their combinations further enhancing performance. Compared
to the baseline model, using any single module alone achieves better performance in terms of the
key indicators I-AUC and P-AUC. Among them, GRD and GSM bring moderate improvements,
while LRNB shows the most significant enhancement—it notably boosts image-level and pixel-level
performances with respective large margins of 7.10/7.05/1.26 and 1.44/12.53/11.18/4.83. These
results demonstrate that the LRNB module serves as a core foundation in our method. More-
over, module combinations yield even better results than single modules. When LRNB is com-
bined with either GRD or GSM, performance exceeds that of LRNB used alone. The combina-
tion of LRNB and GRD stands out particularly in optimizing I-AUC and P-AUC. The integra-
tion of all three modules (LRNB + GRD + GSM) delivers the best overall performance, achiev-
ing the highest image-level metrics 87.81/87.80/82.45 and top/top-2 ranked pixel-level perfor-
mance 97.06/54.81/54.03/87.06—confirming that their collaborative effect effectively enhances the
model’s overall performance.

BN Image-level Pixel level

AUC AP F1 AUC AP F1 AUPRO

None 78.6 77.7 80.8 95.3 38.6 40.1 81.2
FJ 77.7 74.0 80.2 95.6 39.5 42.3 81.1

NDB 82.8 81.8 80.4 96.3 44.6 46.0 83.9
LRNB 87.8 87.8 82.5 97.1 54.8 54.0 87.1

Table 3: Performance comparison of different
bottlenecks (BNs) on Universal Medical. (%)

Modules Image-level Pixel level

AUC AP F1 AUC AP F1 AUPRO

ViT 86.4 85.7 81.7 96.8 51.8 52.3 86.2
CNN 84.6 84.9 81.3 96.4 48.4 48.9 85.1

CNN+ViT 83.9 83.8 81.2 96.4 47.8 48.4 84.1
NMA 87.4 86.6 82.0 97.0 53.2 53.6 86.4
GPA 87.8 87.8 82.5 97.1 54.8 54.0 87.1

Table 4: Performance comparison of different
modules in decoder on Universal Medical. (%)

Comparison between LRNB and previous noisy bottlenecks Previous methods also pro-
posed some noisy operations in the bottleneck to avoid identity shortcuts, such as fea-
ture jittering (FJ) in UniAD (You et al., 2022) and dropout noisy bottleneck (DNB) in Di-
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nomaly (Guo et al., 2025). To further validate the advantage of the proposed LRNB,
we conduct a comparison in Table 3. The results in this table demonstrate that FJ ex-
periences a performance drop and DNB yields slight improvements compared to mod-
els without such noise operations, while our LRNB achieves a significant enhancement.
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Figure 6: The plots of loss (left part) and the averaged
anomaly scores (right part) of different bottlenecks on Uni-
versal Medical.

To explore the capacity of these op-
erations in addressing the ”identity
mapping” issue, we further examine
the corresponding training loss and
average anomaly score. As shown
in Fig. 6, models without a bottle-
neck achieve near-zero training loss
and obtain extremely close anomaly
scores between normal and abnormal
cases (0.0195 vs. 0.0223). These re-
sults indicate that these models suf-
fers from identity mapping behavior
where inputs are directly replicated
in outputs. Introducing FJ or DNB
noise operations partially alleviates
this issue, which we attribute to en-
hanced noise robustness from exposure to diverse medical patterns. Our LRNB framework effec-
tively resolves identity mapping: while moderately increasing the normal score, it substantially
enhances the abnormal score. This strategic trade-off widens the discrimination margin between
normal and abnormal samples, ultimately improving anomaly detection performance.

Comparison between GPA and previous modules in decoder Prior works proposed decoder
modules to address the identity mapping issue. (Lu et al., 2024) attributes it to encoder-decoder
homogeneity and advocates heterogeneous decoders for reconstructing encoder outputs (e.g., us-
ing ViT as encoder and CNN as decoder blocks). (You et al., 2022) introduced neighbor-masking
attention (NMA) to prevent information leakage from CNN-extracted tokens. We compared ViT
(baseline), CNN, CNN+ViT, NMA, and our GPA in Table 4. The table shows that replacing ViT
with CNN or CNN+ViT yields poorer performance, as CNNs are more prone to identity mapping
(You et al., 2022). Fig. 7 in Appendix 2.1 supports this: training losses of CNN and CNN+ViT drop
sharply—even lower than ViT’s—narrowing the score distance between normal and abnormal cases.
In contrast, NMA and our GPA outperform ViT, where the corresponding increased training losses
and reconstruction errors for both cases confirm they alleviate shortcut learning. Finally, our GPA
outperforms NMA in most metrics, which we attribute to its adaptability to ViT-extracted tokens.

5 CONCLUSION

In this paper, we propose ShortcutBreaker, a novel feature-reconstruction framework designed to
mitigate the identity shortcut issue in the MUAD setting. It incorporates two core innovations:
a low-rank noisy bottleneck and a global perturbation attention mechanism, which significantly
enhance performance by preventing shortcut learning in the bottleneck and decoder components.
Extensive experiments confirm the efficacy of these components. Furthermore, the state-of-the-art
performance achieved on four MUAD benchmarks (MVTec-AD, ViSA, Real-IAD, and Universal
Medical) demonstrates consistent superiority over prior methods, particularly in complex and di-
verse scenarios.
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Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
discovery. In International conference on information processing in medical imaging, pp. 146–
157. Springer, 2017b.

Tran Dinh Tien, Anh Tuan Nguyen, Nguyen Hoang Tran, Ta Duc Huy, Soan Duong, Chanh D Tr
Nguyen, and Steven QH Truong. Revisiting reverse distillation for anomaly detection. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 24511–24520,
2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Chengjie Wang, Wenbing Zhu, Bin-Bin Gao, Zhenye Gan, Jiangning Zhang, Zhihao Gu, Shuguang
Qian, Mingang Chen, and Lizhuang Ma. Real-iad: A real-world multi-view dataset for bench-
marking versatile industrial anomaly detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 22883–22892, 2024.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems, 36:10271–10298, 2023.

Jihun Yi and Sungroh Yoon. Patch svdd: Patch-level svdd for anomaly detection and segmentation.
In Proceedings of the Asian conference on computer vision, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haonan Yin, Guanlong Jiao, Qianhui Wu, Borje F Karlsson, Biqing Huang, and Chin Yew Lin.
Lafite: Latent diffusion model with feature editing for unsupervised multi-class anomaly detec-
tion. arXiv preprint arXiv:2307.08059, 2023.

Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified model for
multi-class anomaly detection. Advances in Neural Information Processing Systems, 35:4571–
4584, 2022.

Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Draem-a discriminatively trained reconstruc-
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