

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SHORCUTBREAKER: LOW-RANK NOISY BOTTLE- NECK WITH GLOBAL PERTURBATION ATTENTION FOR MULTI-CLASS UNSUPERVISED ANOMALY DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Multi-class unsupervised anomaly detection (MUAD) has garnered growing research interest, as it seeks to develop a unified model for anomaly detection across multiple classes—eliminating the need to train separate models for distinct objects and thereby saving substantial computational resources. Under the MUAD setting, while advanced Transformer-based architectures have brought significant performance improvements, identity shortcuts persist: they directly copy inputs to outputs, narrowing the gap in reconstruction errors between normal and abnormal cases, and thereby making the two harder to distinguish. Therefore, we propose ShortcutBreaker, a novel unified feature-reconstruction framework for MUAD tasks, featuring two key innovations to address the issue of shortcuts. First, drawing on matrix rank inequality, we design a low-rank noisy bottleneck (LRNB) to project high-dimensional features into a low-rank latent space, and theoretically demonstrate its capacity to prevent trivial identity reproduction. Second, leveraging ViT’s global modeling capability instead of merely focusing on local features, we incorporate a global perturbation attention to prevent information shortcuts in the decoders. Extensive experiments are performed on four widely used anomaly detection benchmarks, including three industrial datasets (MVTec-AD, ViSA, and Real-IAD) and one medical dataset (Universal Medical). The proposed method achieves a remarkable image-level AUROC of 99.8%, 98.9%, 90.6%, and 87.8% on these four datasets, respectively, consistently outperforming previous MUAD methods across different scenarios. Our code will be released.

1 INTRODUCTION

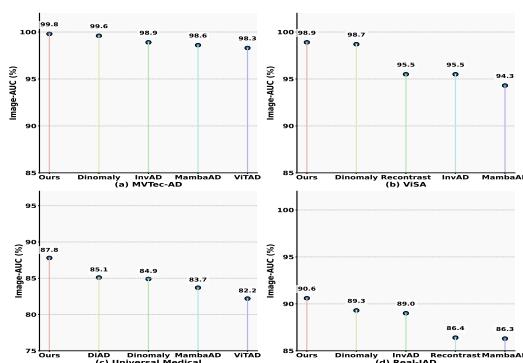


Figure 1: Performance comparison in terms of image-level AUC on MVTec, ViSA, Universal Medical and Real-IAD.

Deng & Li, 2022) reconstruct encoder-extracted features, assuming accurate reconstruction of normal regions but failure on unseen anomalies. Memory matching methods (Yi & Yoon, 2020; Defard

Anomaly detection in industrial and medical imaging aims to identify abnormal patterns among normal cases, saving labor and time in collecting and labeling anomalies. Given the abundance of normal cases and the scarcity of anomalies, this task is typically tackled via an unsupervised paradigm using only normal training samples. Before deep learning, anomaly detection relied on traditional techniques: density-based methods (Breunig et al., 2000; Guan et al., 2015), distance-based methods (Knorr et al., 2000; Angiulli et al., 2005), and statistics-based methods (Hido et al., 2011; Rousseeuw & Hubert, 2011). Current state-of-the-art methods employ deep learning networks pre-trained on ImageNet (Deng et al., 2009) to capture discriminative features. Feature reconstruction methods (Guo et al., 2023; 2024;

et al., 2021; Roth et al., 2022) memorize training-set normal features for inference matching, with those in (Defard et al., 2021; Roth et al., 2022) using pre-trained encoders for discriminative features. Pseudo-anomaly methods (Liu et al., 2023; Li et al., 2021; Zavrtanik et al., 2021) convert UAD to a supervised task by generating pseudo anomalies via noise addition to normal images/features. Hybrid methods (Tien et al., 2023; Zhao et al., 2023) integrate normalizing flows (Zhao et al., 2023) or pseudo noise (Tien et al., 2023) into feature reconstruction for UAD.

Despite their success, these methods are limited to a one-model-one-class setup, requiring substantial storage for per-class models—especially with many disease types (You et al., 2022). To address this, UniAD and follow-ups propose unified models for multi-class unsupervised anomaly detection (MUAD). However, identity mapping often emerges here, where the model returns input copies regardless of normality, enabling effective reconstruction of even anomalous samples and hindering detection (You et al., 2022).

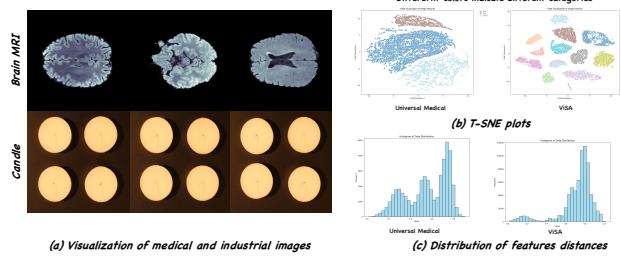


Figure 2: The visual patterns in the medical field are richer than those in the industrial field. (a) Visualization results, (b) T-SNE plots (Van der Maaten & Hinton, 2008), and (c) distributions of feature distances for the Universal Medical and ViSA datasets (Zou et al., 2022) are presented. These experimental results help observe the diversity of each dataset. For T-SNE plots, we extract the final features from the pre-trained ResNet-50 (He et al., 2016). Moreover, we use LPIPs (Zhang et al., 2018) to compare feature distances between individual image pairs.

datasets such as Real-IAD and Universal Medical, where the abundance of normal patterns exacerbates the aforementioned issue (You et al., 2022). The effectiveness of simple noise operations (You et al., 2022; Guo et al., 2025) is diminished due to the enhanced noise robustness acquired through exposure to diverse visual patterns. Additionally, the neighbor mask attention mechanism (You et al., 2022) is specifically tailored for features locally extracted by CNNs, and is not suitable for the global modeling structure - Transformer. Consequently, to enhance performance, our work aims to efficiently address the problem of identity shortcuts. Furthermore, why are the Real-IAD and Universal Medical datasets more complex? We elaborate on this as follows: It is apparent that in comparison to widely adopted industrial datasets—MVTec-AD (encompassing 15 classes) (Bergmann et al., 2019) and ViSA (comprising 12 classes) (Zou et al., 2022)—Real-IAD (Wang et al., 2024) exhibits more diverse normal patterns, featuring 30 object categories and 5 camera views. In contrast to standardized industrial images, although the Universal Medical dataset (He et al., 2024b) consists of only 3 categories, the inherent heterogeneity within medical normal samples enriches the visual features (e.g., variations in organ size and shape across different demographics, as illustrated in Fig. 2(a)). Moreover, the Universal Medical dataset displays a sparser t-SNE plot and a wider dispersion of feature distances compared to ViSA (see Fig. 2 (b) and (c)), indicating a higher degree of intrinsic diversity within medical data.

In this paper, we propose a simple yet effective framework for the MUAD task, named Shortcut-Breaker, built on the advanced DINO-pretrained vision transformer with two key innovations. First, drawing on two observed properties of low-rank matrix decomposition, we design a low-rank noisy bottleneck (LRNB) to effectively mitigate the identity mapping issue. Within LRNB, the low-rank property theoretically circumvents shortcut learning of unseen patterns, while learnable matrix parameters are optimized to reconstruct normal patterns. Second, considering that ViT-extracted fea-

Over the past three years, substantial progress has been made in multi-class unsupervised anomaly detection (MUAD), with explorations into pretrained vision transformers (ViTs) (Zhang et al., 2023; Guo et al., 2025), state space models (Mambas) (He et al., 2024a), diffusion models (Yin et al., 2023; He et al., 2024b), and other approaches (Guo et al., 2024; Zhao, 2023; He et al., 2024c). Nevertheless, the multi-class setting inevitably induces identity mapping in most methods, resulting in performance degradation. While previous studies (You et al., 2022; Guo et al., 2025) have endeavored to mitigate shortcut learning, the efficacy of their proposed techniques in complex and highly diverse scenarios remains limited (see Fig. 1 (c)-(d)). This is particularly evident in

108 tures share similar global information, we introduce a global perturbation attention (GPA) mecha-
 109 nism to curb information leakage from input to output in the decoder. In GPA, a global redistribution
 110 operation and a global-self-masking mechanism force the decoder to learn reconstruction based on
 111 longer-range and impaired features. To validate the effectiveness of the proposed method, we con-
 112 duct extensive experiments on four publicly available datasets: MVTec-AD (Bergmann et al., 2019),
 113 ViSA (Zou et al., 2022), Universal Medical (He et al., 2024b), and Real-IAD (Wang et al., 2024).
 114 As presented in Fig. 1, our ShortcutBreaker achieves the highest image-level AUC: 99.8%, 98.9%,
 115 88.2%, and 90.6% on these four datasets, respectively. Notably, on the complex Universal Medical
 116 and Real-IAD datasets, it outperforms previous methods by a significant margin. In summary, our
 117 contributions are:

- 118 • We observe and simulate the properties of matrix decomposition to design a low-rank noisy
 119 bottleneck, efficiently suppressing identity mapping.
- 120 • We propose a global perturbation attention mechanism, which effectively prevents shortcut
 121 learning in the decoder via global redistribution and global-self-masking operations.
- 122 • Our ShortcutBreaker consistently outperforms previous methods across all four datasets,
 123 demonstrating enhanced robustness in diverse scenarios.

125 2 RELATED WORKS

126 2.1 SINGLE CLASS UAD

127 Recently, reconstruction mechanisms have dominated unsupervised anomaly detection (UAD) meth-
 128 ods, detecting outliers by evaluating reconstruction errors between input and output pixels or fea-
 129 tures. These approaches include pixel reconstruction methods (Schlegl et al., 2017a;b) and feature
 130 reconstruction methods (Deng & Li, 2022; Guo et al., 2023; 2024). Pixel reconstruction methods
 131 aim to recreate normal images from scratch using a generative model framework. They assume
 132 that reconstructing normal samples will produce low reconstruction errors, while abnormal sam-
 133 ples—differing from training data—will result in higher errors. Feature reconstruction methods
 134 suggest that latent features extracted from a pre-trained encoder provide more discriminative and
 135 robust representations compared to pixel-level reconstructions. Building on the success of such
 136 methods, many subsequent approaches (*e.g.*, EDC (Guo et al., 2023) and AE-FLOW (Zhao et al.,
 137 2023)) leverage this foundation to enhance anomaly detection. For instance, EDC employs an un-
 138 frozen pre-trained encoder, which is fine-tuned to adapt to the target domain while using a stop-
 139 gradient operation to retain important domain-relevant features. AE-FLOW further extends this idea
 140 by combining feature map reconstruction errors with distribution distances (measured via normaliz-
 141 ing flows) as the final anomaly score. However, simply applying single-class methods as part of this
 142 one-class-one-model scheme is memory-intensive (especially as the number of classes grows) and
 143 ill-suited for scenarios with high intra-class diversity in normal samples, such as multi-class UAD
 144 (You et al., 2022).

145 2.2 MULTI CLASS UAD

146 UniAD (You et al., 2022) pioneers the field of multi-class unsupervised anomaly detection (MUAD),
 147 presenting a unified model capable of detecting anomalies across various classes. Most subsequent
 148 works have explored advanced modules to build better reconstruction models for MUAD. For exam-
 149 ple, LafitE (Yin et al., 2023) and DiAD (He et al., 2024b) further advance the MUAD task by lever-
 150 aging the generative power of diffusion models to better capture anomalies across multiple classes.
 151 ViTAD (Zhang et al., 2023) and MambaAD (He et al., 2024a) develope feature reconstruction-
 152 based MUAD methods using recently advanced modules: Vision Transformer (Zhang et al., 2023)
 153 and State Space Model (He et al., 2024a), respectively. Few methods explicitly aim to address the
 154 identity mapping issue. UniAD (You et al., 2022) counteracts this through techniques like feature
 155 jittering and neighbor-masked attention. Dinomaly (Guo et al., 2025) employs components such as
 156 noisy bottleneck dropout to disrupt input feature replication. However, these noise operations have
 157 limited effectiveness in preventing shortcut learning when training on complex medical/industrial
 158 datasets (Universal Medical and Real-IAD), and neighbor-masked attention—specifically designed
 159 for CNN-extracted features—is not suitable for advanced ViT architectures (Guo et al., 2025; Zhang
 160 et al., 2023).

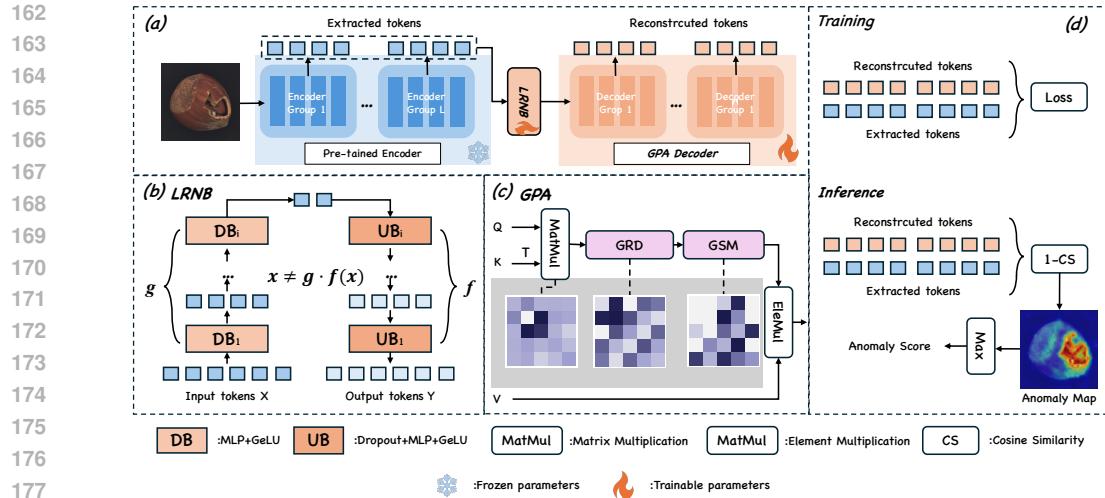


Figure 3: Flowchart of our ShortcutBreaker: (a) the overall structure of our proposed method; (b) the structure of the Low-Rank Noisy Bottleneck (LRNB); (c) the structure of the Global Perturbation Attention (GPA), which consists of GRD (global redistribution) and GSM (global-self masking); and (d) the training and inference pipelines.

3 METHOD

3.1 OVERVIEW

Following ViTAD and Dinomaly (Zhang et al., 2023; Guo et al., 2025), our ShortcutBreaker is a feature-reconstruction framework and constructed based on the vision transformer (ViT) structure. As depicted in Fig. 3(a), ShortcutBreaker consists of a pre-trained encoder, a bottleneck, and a decoder. The DINO-pretrained ViT model (Darcel et al., 2023) is utilized as the encoder, capturing informative feature tokens to facilitate subsequent reconstruction. The bottleneck is built upon a multi-layer perceptron (MLP), integrating multi-scale feature representations from intermediate encoder layers. The decoder maintains structural similarity with the encoder, employing transformer layers to reconstruct feature maps. As illustrated in Fig. 3(d), the encoder remains frozen during training, while the remaining components of ShortcutBreaker are optimized to reconstruct the encoder’s feature tokens by minimizing inter-token representation discrepancies. During inference, this configuration enables accurate reconstruction of normal patterns but exhibits reconstruction failures in anomalous regions. The anomaly localization map is generated by computing 1-CS (where CS denotes cosine similarity) between the original and reconstructed feature tokens and then reshaping the result. The anomaly detection score is subsequently determined by the maximum value within this anomaly map.

3.2 LOW-RANK NOISY BOTTLENECK (LRNB)

As discussed in the introduction, under the MUAD setting, identity shortcuts readily occur, narrowing the gap in anomaly scores between normal and abnormal cases. Previous methods (Guo et al., 2025; You et al., 2022) propose perturbing extracted feature tokens to compel the network to reconstruct from information-impaired normal features, rather than directly copying them. However, these noisy operations are often limited in effectively preventing shortcut learning in complex scenarios. We hypothesize that richer visual patterns inherent in the data enhance the reconstruction model’s robustness to noise. Consequently, we aim to design a novel paradigm for avoiding shortcuts that goes beyond solely relying on noisy operations. Through empirical observation of low-rank matrix decomposition in LoRA (Hu et al., 2022) (or the encoder-decoder structure in Auto-Encoder (He et al., 2022)), we identified two inherent properties particularly suitable for addressing the identity mapping issue.

Property 1 stems from the constrained low-rank latent space, which effectively circumvents identity shortcuts. In deep learning, nonlinear activations are generally used to improve performance, so we

need to prove Property 1 under non-linear transformations, primarily using the Jacobian matrix (Goodfellow et al., 2016) for this proof.

To achieve identity mapping of $x \in \mathbb{R}^d$, we require that $g \circ f(x) = x$ holds for all $x \in \mathbb{R}^n$. Differentiating both sides with respect to x yields the Jacobian equation:

$$J_g(f(x)) \cdot J_f(x) = I_{d \times d} \quad (1)$$

where $J_f(x) \in \mathbb{R}^{d \times k}$ and $J_g(f(x)) \in \mathbb{R}^{k \times d}$. Taking the determinant of both sides:

$$r((J_g(f(x)) \cdot J_f(x))) = r(I_{d \times d}) = d. \quad (2)$$

Since the product $J_g(f(x)) \cdot J_f(x)$ is an $d \times d$ matrix, applying the rank inequality yields:

$$r(J_g(f(x)) \cdot J_f(x)) \leq \min(r(J_g(f(x))), r(J_f(x))) \leq k \quad (3)$$

Here, $r(\cdot)$ indicate the rank of the input. Under the low-rank adaptation module, we have $k < d$. Substituting into Eq. equation 3 implies:

$$r(J_g(f(x)) \cdot J_f(x)) \leq k < d \quad (4)$$

This contradicts Eqs. equation 2 that $\det(I_{d \times d})$ requires rank= d . Consequently, no such functions f and g exist.

Property 2 This property emerges from training exclusively on normal samples, during which the learnable g and f layers are optimized to specifically enhance the reconstruction of normal patterns. This optimization process minimizes adverse effects on the reconstruction fidelity of normal cases, thereby achieving a more favorable trade-off between the reconstruction of normal and abnormal samples.

Specifically, we adapt the LoRA framework (Hu et al., 2022) by implementing Multi-Layer Perceptrons (MLPs) with nonlinear activations to parameterize functions g and f , constructing an auto-encoder-like structure. As illustrated in Fig. 3, the modules g and f exhibit symmetrical architectures, where g comprises i downsampling blocks (DBs) and f contains i upsampling blocks (UBs). Within DBs, the output token count of the i -th block is halved relative to the $(i-1)$ -th block, while UBS correspondingly double the token count relative to their preceding block. Furthermore, we explore integrating feature-level noisy operations via Dropout (Guo et al., 2025), and introduce additional perturbations for better performance.

3.3 GLOBAL PERTURBATION ATTENTION (GPA)

The self-attention mechanism in vanilla Transformer inherently facilitates identity mapping issues (You et al., 2022), as it permits unrestricted interaction between feature tokens and their own representations. Therefore, we propose a Global Perturbation Attention (GPA) in the decoder to prevent shortcut pathways in ViT architectures. As illustrated in Fig. 3, GPA comprises two core components: (1) global redistribution and (2) joint global-self masking.

Global Redistributing (GRD)

In the vanilla self-attention block (Eq. (5)), Softmax function is applied to the query-key attention map to conduct non-linear normalization (Alexey, 2020).

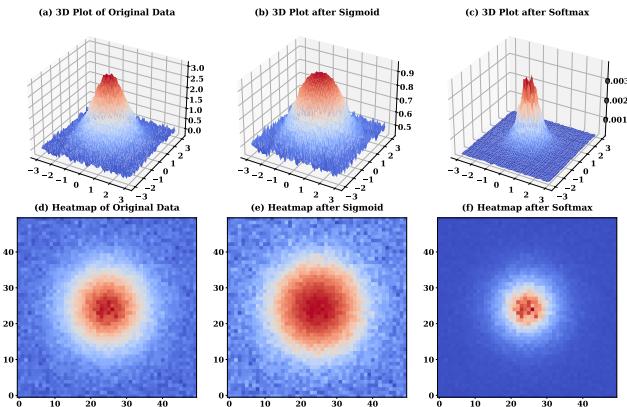


Figure 4: Comparison of sigmoid and softmax Functions on a 2D attention map with Gaussian distribution, (a), (b), (c) are the 3D plot of original data, after softmax and sigmoid respectively, (d), (e), (f) are the corresponding heatmaps.

$$\text{Attention}(Q, K, V) = \text{softmax} \left(\frac{QK^\top}{\sqrt{d_k}} \right) V \quad (5)$$

270 where $Q \in \mathbb{R}^{N \times d}$, $K \in \mathbb{R}^{N \times d}$ and $V \in \mathbb{R}^{N \times d}$ indicate the query, key and value vectors respectively. $K^T \in \mathbb{R}^{d \times N}$ is the transpose matrix of K and d_k is the scaling factor.
 271
 272

273 However, as shown in Fig. 4 ((a) vs. (c) and (d) vs. (f)), we observe that the Softmax function tends
 274 to overfocus on dominant activation regions during output generation. This behavior is prone to
 275 inducing identity mapping under the MUAD setting (Guo et al., 2025). To avoid the overfocusing
 276 behavior, the most intuitive approach is to remove Softmax or replace it with an alternative, the
 277 Sigmoid (Eq. (6)).
 278

$$\text{Attention}(Q, K, V) = \text{sigmoid}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V \quad (6)$$

280 As shown in the 1st and 2nd columns of Fig. 4, when Softmax is removed, the overconcentration
 281 issue is alleviated. When Softmax is replaced with the Sigmoid function, the attention spreads
 282 more broadly. This indicates that Sigmoid functions tend to leverage longer-range dependencies
 283 for feature reconstruction rather than relying on focal attention, thereby reducing the likelihood of
 284 propagating unseen information to subsequent layers. Therefore, we apply Sigmoid as a replacement
 285 for Softmax in the final setting.
 286

287 **Global-Self Masking (GSM)** Following global redistribution, GPA applies a global-
 288 self-masking operation to the attention map to suppress shortcut learning. The self-
 289 masking mechanism effectively prevents tokens from attending to their own positions.
 290 Moreover, considering that feature tokens are
 291 captured by the ViT structure, all tokens in the
 292 same sequence may share similar information.
 293 Therefore, we propose to mask tokens globally
 294 and randomly. Specifically, we implement self-
 295 masking by masking the elements on the diag-
 296 onal of the attention map (AM) and conduct ran-
 297 dom global masking via attention dropout. The
 298 flowchart of GSM is shown in Fig. 5; the output
 299 AM is obtained by element-wise multiplication
 300 of the input AM and our mask.
 301

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

305 **Datasets** We evaluated our method on four well-established datasets, including three for industrial
 306 scenarios: **MVTec-AD** (Bergmann et al., 2019), **ViSA** (Zou et al., 2022), **Real-IAD** (Wang et al.,
 307 2024), and one for medical scenario: **Universal Medical** (He et al., 2024b;a; Zhang et al., 2023;
 308 2024a). **MVTec-AD** comprises 15 object categories, with 3,629 normal images in the training set
 309 and 498 normal images alongside 1,982 anomalous samples in the test set. **ViSA** contains 12 cat-
 310 egories, providing 8,659 normal training images and a test set with 962 normal images and 1,200
 311 anomalous cases. **Real-IAD**, the largest industrial benchmark, includes 30 diverse objects, utilizing
 312 36,645 normal images for training and 63,256 normal images combined with 51,329 anomalous in-
 313 stances for testing. **Universal Medical** consists of 13,339 normal cases for training, with a test set
 314 containing 2,514 normal cases and 4,499 abnormal cases. This dataset spans three medical imaging
 315 modalities: Brain MRI, Liver CT, and Retinal CT scans. All datasets include both image-level and
 316 pixel-level labels.
 317

318 **Metrics** For evaluation metrics, we followed protocols from (Zhang et al., 2023; He et al., 2024a;
 319 Guo et al., 2025), adopting four metrics: Area Under the Receiver Operating Curve (AUC), F1-max
 320 score, average precision (AP) for both image-level detection and pixel-level localization tasks, and
 321 Area Under the Per-Region-Overlap (AUPRO) to further evaluate the localization task.
 322

323 **Implementation details** In our experiments, the encoder is initialized with DINO pre-trained
 324 weights (Dariset et al., 2023) and kept frozen during training. Images are resized to 512×512 and
 325 then center-cropped to 448×448. We use a stable variant of the AdamW optimizer (Wortsman et al.,
 326

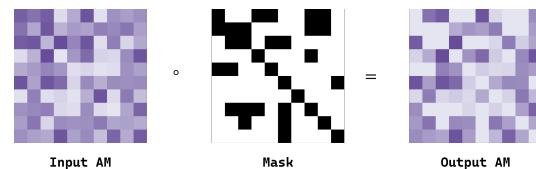


Figure 5: The flowchart of Global-Self Masking operation. AM: attention map and (\cdot) indicate element-wise multiplication.

324 Table 1: Comparison between our method and currently state-of-the-art methods on four datasets,
 325 MVTec-AD (Bergmann et al., 2019), ViSA (Zou et al., 2022), Universal Medical (He et al., 2024b)
 326 and Real-IAD (Wang et al., 2024). Bold values indicate the best, and underlined values indicates the
 327 second best. (%)

Method	MVTec-AD							ViSA						
	Image-Level			Pixel-Level			AUPRO	Image-Level			Pixel-Level			AUPRO
	AUC	AP	F1	AUC	AP	F1		AUC	AP	F1	AUC	AP	F1	
UniAD	96.5	98.8	96.2	96.8	43.4	49.5	90.7	88.8	90.8	85.8	98.3	33.7	39.0	85.5
Recontrast	98.3	99.4	97.6	97.1	60.2	61.5	93.2	95.5	96.4	92.0	98.5	47.9	50.6	91.9
DiAD	97.2	99.0	96.5	96.8	52.6	55.5	90.7	86.8	88.3	85.1	96.0	26.1	33.0	75.2
ViTAD	98.3	99.4	97.3	97.7	55.3	58.7	91.4	90.5	91.7	86.3	98.2	36.6	41.1	85.1
InvAD	98.9	99.6	97.2	98.1	57.2	59.5	94.3	95.5	95.8	92.1	98.9	43.1	47.0	92.5
MambaAD	98.6	99.6	97.8	97.7	56.3	59.2	93.1	94.3	94.5	89.4	98.5	39.4	44.0	91.0
Dinomaly	99.6	99.8	99.0	98.4	<u>69.3</u>	69.2	<u>94.8</u>	98.7	98.9	96.2	98.7	53.2	<u>55.7</u>	94.5
Ours	99.8	99.9	99.5	98.4	69.4	<u>68.9</u>	95.2	98.9	99.1	96.2	99.0	<u>53.1</u>	56.2	94.5
Method	Universal Medical							Real-IAD						
	Image-Level			Pixel-Level			AUPRO	Image-Level			Pixel-Leve			AUPRO
	AUC	AP	F1	AUC	AP	F1		AUC	AP	F1	AUC	AP	F1	
UniAD	78.5	75.2	76.6	96.4	37.6	40.2	85.0	83.0	80.9	74.3	97.3	21.1	29.2	86.7
Recontrast	80.1	79.7	80.9	96.3	42.3	43.8	85.2	86.4	84.2	77.4	97.8	31.6	38.2	91.8
DiAD	<u>85.1</u>	84.5	81.2	95.9	38.0	35.6	85.4	75.6	66.4	69.9	88.0	2.9	7.1	58.1
ViTAD	82.2	81.0	80.1	97.1	49.9	49.6	86.1	82.3	79.4	73.4	96.9	26.7	34.9	84.9
InvAD	82.2	79.6	80.6	97.3	47.5	47.1	89.6	89.0	86.4	79.6	98.4	30.7	37.6	91.9
MambaAD	83.7	80.1	<u>82.0</u>	96.9	45.4	47.3	87.5	86.3	84.6	77.0	98.5	33.0	38.7	90.5
Dinomaly	84.9	84.1	81.0	96.8	<u>51.7</u>	<u>52.1</u>	85.5	<u>89.3</u>	<u>86.8</u>	<u>80.2</u>	<u>98.8</u>	<u>42.8</u>	<u>47.1</u>	<u>93.9</u>
Ours	87.8	87.8	82.5	<u>97.1</u>	54.8	54.0	87.1	90.6	87.9	81.3	99.1	44.7	49.1	95.6

2023) incorporating the AMSGrad algorithm (Reddi et al., 2019), with a batch size of 32. Training iterations are set to 20,000 for MVTec-AD and ViSA, 25,000 for Universal Medical, and 50,000 for the largest dataset, Real-IAD. The learning rate is initialized to 2e-3 and gradually reduced to 2e-4 via a Cosine Annealing schedule with a warm-start scheme (Loshchilov & Hutter, 2016). The model is optimized using the global hard-mining loss (Guo et al., 2025). In LRNB, we set the noise rate to 0.1, and set the number of LRNB layers to 2 for MVTec-AD and ViSA, and 3 for Universal Medical and Real-IAD.

4.2 EVALUATIONS

Comparison with SOTA MUAD methods We evaluate our method against seven state-of-the-art (SOTA) MUAD methods—UniAD (You et al., 2022), DiAD (He et al., 2024b), ViTAD (Zhang et al., 2023), InvAD (Zhang et al., 2024b), Recontrast (Guo et al., 2024), and Dinomaly (Guo et al., 2025)—across four benchmark datasets: MVTec-AD (Bergmann et al., 2019), ViSA (Zou et al., 2022), Universal Medical (He et al., 2024b), and Real-IAD (Wang et al., 2024). Performance is quantified using both image-level metrics (I-AUC, I-AP, I-F1) and pixel-level metrics (P-AUC, P-AP, P-F1, P-AUPRO), where higher values indicate better detection capability. Experimental results are presented in Table 1, where our method outperforms comparative methods across all datasets in most metrics (The qualitative results obtained by our method can be seen in Appendix 3). On the widely adopted MVTec-AD, our method achieves SOTA overall performance, with the highest image-level metrics of **99.8/99.9/99.5**, as well as three top-ranked and one second-ranked pixel-level metrics of **98.4/69.4/68.9/95.2**. On ViSA, our method consistently achieves the best image-level performance of **98.9/99.1/96.2** and competitive pixel-level performance of **99.0/53.1/56.2/94.5**. These results demonstrate that image-level performance on these two datasets is nearly 100On Universal Medical, our method attains the highest image-level metrics of **87.8/87.8/82.5**, surpassing prior SOTAs by a large margin of 2.6/3.4/0.5, and achieves best or third-best pixel-level metrics of **97.1/54.8/54.0/87.1**. On Real-IAD, our method produces a new SOTA result, with image-level and pixel-level performance of **90.6/87.9/81.4** and **99.1/44.7/49.1/95.6**, outperforming previous SO-

378 Table 2: Ablations studies of component contributions on Universal Medical dataset, including
 379 LRNB: low-rank noisy bottleneck, GRD: global redistribution operation and GSM: global-self
 380 masking mechanism. GPA: global perturbation attention, which is the combination of GRD and
 381 GSM. (%)

383 LRNB	384 GPA		385 Image-level			386 Pixel-level			
	387 GRD	388 GSM	389 AUC	390 AP	391 F1	392 AUC	393 AP	394 F1	395 AUPRO
			79.28	78.67	80.41	95.49	39.30	41.11	81.35
✓			86.38	85.72	81.67	96.83	51.83	52.29	86.18
	✓		79.89	78.60	80.26	95.70	41.03	42.11	81.77
		✓	79.48	78.77	80.50	95.53	39.54	41.40	81.78
✓	✓		87.53	86.96	82.42	97.05	54.74	53.89	87.11
✓		✓	86.70	87.12	81.53	96.98	53.43	52.88	86.09
✓	✓	✓	87.81	87.75	82.45	97.06	54.81	54.03	87.06

393 TAs by 1.3/1.1/1.1 and 0.3/1.9/2.0/1.7. These results demonstrate strong generalization to complex
 394 medical and diverse real-world industrial scenarios.

397 4.3 ABLATION STUDIES

400 **Overall Ablation** To explore the contributions of each component in our method, including the
 401 low-rank noisy bottleneck (LRNB), global redistribution (GRD), and global-self masking (GSM)
 402 operations, we conduct ablation experiments as shown in Table 2. The baseline is constructed fol-
 403 lowing Dinomaly (Guo et al., 2025) and ViTAD (Zhang et al., 2023), which construct a baseline
 404 model with a DINO-pretrained ViT encoder and a learnable softmax attention-based ViT decoder.
 405 The effectiveness of the baseline has been proven in industrial scenarios. The results of the ab-
 406 lation experiments demonstrate that the proposed LRNB, GRD, and GSM modules all contribute
 407 to performance improvement, with their combinations further enhancing performance. Compared
 408 to the baseline model, using any single module alone achieves better performance in terms of the
 409 key indicators I-AUC and P-AUC. Among them, GRD and GSM bring moderate improvements,
 410 while LRNB shows the most significant enhancement—it notably boosts image-level and pixel-level
 411 performances with respective large margins of 7.10/7.05/1.26 and 1.44/12.53/11.18/4.83. These
 412 results demonstrate that the LRNB module serves as a core foundation in our method. More-
 413 over, module combinations yield even better results than single modules. When LRNB is com-
 414 bined with either GRD or GSM, performance exceeds that of LRNB used alone. The combina-
 415 tion of LRNB and GRD stands out particularly in optimizing I-AUC and P-AUC. The integra-
 416 tion of all three modules (LRNB + GRD + GSM) delivers the best overall performance, achiev-
 417 ing the highest image-level metrics **87.81/87.80/82.45** and top/top-2 ranked pixel-level perfor-
 418 mance **97.06/54.81/54.03**/87.06—confirming that their collaborative effect effectively enhances the
 419 model’s overall performance.

420 BN	421 Image-level			422 Pixel level			
	423 AUC	424 AP	425 F1	426 AUC	427 AP	428 F1	429 AUPRO
None	78.6	77.7	80.8	95.3	38.6	40.1	81.2
FJ	77.7	74.0	80.2	95.6	39.5	42.3	81.1
NDB	82.8	81.8	80.4	96.3	44.6	46.0	83.9
LRNB	87.8	87.8	82.5	97.1	54.8	54.0	87.1

425 Table 3: Performance comparison of different
 426 bottlenecks (BNs) on Universal Medical. (%)

427 Modules	428 Image-level			429 Pixel level			
	430 AUC	431 AP	432 F1	433 AUC	434 AP	435 F1	436 AUPRO
ViT	86.4	85.7	81.7	96.8	51.8	52.3	86.2
CNN	84.6	84.9	81.3	96.4	48.4	48.9	85.1
CNN+ViT	83.9	83.8	81.2	96.4	47.8	48.4	84.1
NMA	87.4	86.6	82.0	97.0	53.2	53.6	86.4
GPA	87.8	87.8	82.5	97.1	54.8	54.0	87.1

430 Table 4: Performance comparison of different
 431 modules in decoder on Universal Medical. (%)

432 **Comparison between LRNB and previous noisy bottlenecks** Previous methods also pro-
 433 posed some noisy operations in the bottleneck to avoid identity shortcuts, such as fea-
 434 ture jittering (FJ) in UniAD (You et al., 2022) and dropout noisy bottleneck (DNB) in Di-

nomaly (Guo et al., 2025). To further validate the advantage of the proposed LRNB, we conduct a comparison in Table 3. The results in this table demonstrate that FJ experiences a performance drop and DNB yields slight improvements compared to models without such noise operations, while our LRNB achieves a significant enhancement. To explore the capacity of these operations in addressing the "identity mapping" issue, we further examine the corresponding training loss and average anomaly score. As shown in Fig. 6, models without a bottleneck achieve near-zero training loss and obtain extremely close anomaly scores between normal and abnormal cases (0.0195 vs. 0.0223). These results indicate that these models suffers from identity mapping behavior where inputs are directly replicated in outputs. Introducing FJ or DNB noise operations partially alleviates this issue, which we attribute to enhanced noise robustness from exposure to diverse medical patterns. Our LRNB framework effectively resolves identity mapping: while moderately increasing the normal score, it substantially enhances the abnormal score. This strategic trade-off widens the discrimination margin between normal and abnormal samples, ultimately improving anomaly detection performance.



Figure 6: The plots of loss (left part) and the averaged anomaly scores (right part) of different bottlenecks on Universal Medical.

Comparison between GPA and previous modules in decoder Prior works proposed decoder modules to address the identity mapping issue. (Lu et al., 2024) attributes it to encoder-decoder homogeneity and advocates heterogeneous decoders for reconstructing encoder outputs (e.g., using ViT as encoder and CNN as decoder blocks). (You et al., 2022) introduced neighbor-masking attention (NMA) to prevent information leakage from CNN-extracted tokens. We compared ViT (baseline), CNN, CNN+ViT, NMA, and our GPA in Table 4. The table shows that replacing ViT with CNN or CNN+ViT yields poorer performance, as CNNs are more prone to identity mapping (You et al., 2022). Fig. 7 in Appendix 2.1 supports this: training losses of CNN and CNN+ViT drop sharply—even lower than ViT’s—narrowing the score distance between normal and abnormal cases. In contrast, NMA and our GPA outperform ViT, where the corresponding increased training losses and reconstruction errors for both cases confirm they alleviate shortcut learning. Finally, our GPA outperforms NMA in most metrics, which we attribute to its adaptability to ViT-extracted tokens.

5 CONCLUSION

In this paper, we propose ShortcutBreaker, a novel feature-reconstruction framework designed to mitigate the identity shortcut issue in the MUAD setting. It incorporates two core innovations: a low-rank noisy bottleneck and a global perturbation attention mechanism, which significantly enhance performance by preventing shortcut learning in the bottleneck and decoder components. Extensive experiments confirm the efficacy of these components. Furthermore, the state-of-the-art performance achieved on four MUAD benchmarks (MVTec-AD, ViSA, Real-IAD, and Universal Medical) demonstrates consistent superiority over prior methods, particularly in complex and diverse scenarios.

REFERENCES

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv: 2010.11929*, 2020.

Fabrizio Angiulli, Stefano Basta, and Clara Pizzuti. Distance-based detection and prediction of outliers. *IEEE transactions on knowledge and data engineering*, 18(2):145–160, 2005.

486 Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtac ad—a comprehensive
 487 real-world dataset for unsupervised anomaly detection. In *Proceedings of the IEEE/CVF*
 488 *conference on computer vision and pattern recognition*, pp. 9592–9600, 2019.

489

490 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
 491 based local outliers. In *Proceedings of the 2000 ACM SIGMOD international conference on*
 492 *Management of data*, pp. 93–104, 2000.

493

494 Yu Cai, Hao Chen, and Kwang-Ting Cheng. Rethinking autoencoders for medical anomaly detection
 495 from a theoretical perspective. In *International Conference on Medical Image Computing and*
 496 *Computer-Assisted Intervention*, pp. 544–554. Springer, 2024.

497

498 Timothée Dariset, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
 499 registers. *arXiv preprint arXiv:2309.16588*, 2023.

500

501 Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distri-
 502 bution modeling framework for anomaly detection and localization. In *International Conference*
 503 *on Pattern Recognition*, pp. 475–489. Springer, 2021.

504

505 Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding.
 506 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 507 9737–9746, 2022.

508

509 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 510 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 511 pp. 248–255. Ieee, 2009.

512

513 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 514 MIT Press, 2016.

515

516 Haowen Guan, Qingzhong Li, Zhongmin Yan, and Wei Wei. Slof: identify density-based local
 517 outliers in big data. In *2015 12th Web Information System and Application Conference (WISA)*,
 518 pp. 61–66. IEEE, 2015.

519

520 Jia Guo, Shuai Lu, Lize Jia, Weihang Zhang, and Huiqi Li. Encoder-decoder contrast for unsuper-
 521 vised anomaly detection in medical images. *IEEE Transactions on Medical Imaging*, 2023.

522

523 Jia Guo, Lize Jia, Weihang Zhang, Huiqi Li, et al. Recontrast: Domain-specific anomaly detection
 524 via contrastive reconstruction. *Advances in Neural Information Processing Systems*, 36, 2024.

525

526 Jia Guo, Shuai Lu, Weihang Zhang, Fang Chen, Huiqi Li, and Hongen Liao. Dinomaly: The less is
 527 more philosophy in multi-class unsupervised anomaly detection. In *Proceedings of the Computer*
 528 *Vision and Pattern Recognition Conference*, pp. 20405–20415, 2025.

529

530 Haoyang He, Yuhu Bai, Jiangning Zhang, Qingdong He, Hongxu Chen, Zhenye Gan, Chengjie
 531 Wang, Xiangtai Li, Guanzhong Tian, and Lei Xie. Mambaad: Exploring state space models for
 532 multi-class unsupervised anomaly detection. *Advances in Neural Information Processing Systems*,
 533 37:71162–71187, 2024a.

534

535 Haoyang He, Jiangning Zhang, Hongxu Chen, Xuhai Chen, Zhishan Li, Xu Chen, Yabiao Wang,
 536 Chengjie Wang, and Lei Xie. A diffusion-based framework for multi-class anomaly detection. In
 537 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 8472–8480, 2024b.

538

539 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 540 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 541 770–778, 2016.

542

543 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
 544 toencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*
 545 *vision and pattern recognition*, pp. 16000–16009, 2022.

546

547 Liren He, Zhengkai Jiang, Jinlong Peng, Wenbing Zhu, Liang Liu, Qiangang Du, Xiaobin Hu,
 548 Mingmin Chi, Yabiao Wang, and Chengjie Wang. Learning unified reference representation for
 549 unsupervised multi-class anomaly detection. In *European Conference on Computer Vision*, pp.
 550 216–232. Springer, 2024c.

540 Shohei Hido, Yuta Tsuboi, Hisashi Kashima, Masashi Sugiyama, and Takafumi Kanamori. Statistical
 541 outlier detection using direct density ratio estimation. *Knowledge and information systems*,
 542 26:309–336, 2011.

543

544 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 545 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

546

547 Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers: algorithms and
 548 applications. *The VLDB Journal*, 8(3):237–253, 2000.

549

550 Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning
 551 for anomaly detection and localization. In *Proceedings of the IEEE/CVF conference on computer
 vision and pattern recognition*, pp. 9664–9674, 2021.

552

553 Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang. Simplenet: A simple network for image
 554 anomaly detection and localization. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 20402–20411, 2023.

555

556 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv
 557 preprint arXiv:1608.03983*, 2016.

558

559 Shuai Lu, Weihang Zhang, He Zhao, Hanruo Liu, Ningli Wang, and Huiqi Li. Anomaly detection
 560 for medical images using heterogeneous auto-encoder. *IEEE Transactions on Image Processing*,
 2024.

561

562 Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. *arXiv
 563 preprint arXiv:1904.09237*, 2019.

564

565 Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler.
 566 Towards total recall in industrial anomaly detection. In *Proceedings of the IEEE/CVF conference
 567 on computer vision and pattern recognition*, pp. 14318–14328, 2022.

568

569 Peter J Rousseeuw and Mia Hubert. Robust statistics for outlier detection. *Wiley interdisciplinary
 reviews: Data mining and knowledge discovery*, 1(1):73–79, 2011.

570

571 Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Georg Langs, and Ursula Schmidt-
 572 Erfurthb. Fast unsupervised anomaly detection with generative adversarial networks. *Medical
 573 Image Analysis*, 2:2, 2017a.

574

575 Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg
 576 Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker
 577 discovery. In *International conference on information processing in medical imaging*, pp. 146–
 157. Springer, 2017b.

578

579 Tran Dinh Tien, Anh Tuan Nguyen, Nguyen Hoang Tran, Ta Duc Huy, Soan Duong, Chanh D Tr
 580 Nguyen, and Steven QH Truong. Revisiting reverse distillation for anomaly detection. In *Proceed-
 581 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 24511–24520,
 2023.

582

583 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine
 584 learning research*, 9(11), 2008.

585

586 Chengjie Wang, Wenbing Zhu, Bin-Bin Gao, Zhenye Gan, Jiangning Zhang, Zhihao Gu, Shuguang
 587 Qian, Mingang Chen, and Lizhuang Ma. Real-iad: A real-world multi-view dataset for bench-
 588 marking versatile industrial anomaly detection. In *Proceedings of the IEEE/CVF Conference on
 Computer Vision and Pattern Recognition*, pp. 22883–22892, 2024.

589

590 Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
 591 Schmidt. Stable and low-precision training for large-scale vision-language models. *Advances
 592 in Neural Information Processing Systems*, 36:10271–10298, 2023.

593

Jihun Yi and Sungroh Yoon. Patch svdd: Patch-level svdd for anomaly detection and segmentation.
 In *Proceedings of the Asian conference on computer vision*, 2020.

594 Haonan Yin, Guanlong Jiao, Qianhui Wu, Borje F Karlsson, Binqing Huang, and Chin Yew Lin.
 595 Lafite: Latent diffusion model with feature editing for unsupervised multi-class anomaly detec-
 596 tion. *arXiv preprint arXiv:2307.08059*, 2023.

597

598 Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified model for
 599 multi-class anomaly detection. *Advances in Neural Information Processing Systems*, 35:4571–
 600 4584, 2022.

601 Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Draem-a discriminatively trained reconstruc-
 602 tion embedding for surface anomaly detection. In *Proceedings of the IEEE/CVF international*
 603 *conference on computer vision*, pp. 8330–8339, 2021.

604

605 Jiangning Zhang, Xuhai Chen, Yabiao Wang, Chengjie Wang, Yong Liu, Xiangtai Li, Ming-Hsuan
 606 Yang, and Dacheng Tao. Exploring plain vit reconstruction for multi-class unsupervised anomaly
 607 detection. *arXiv preprint arXiv:2312.07495*, 2023.

608 Jiangning Zhang, Chengjie Wang, Xiangtai Li, Guanzhong Tian, Zhucun Xue, Yong Liu, Guansong
 609 Pang, and Dacheng Tao. Learning feature inversion for multi-class anomaly detection under
 610 general-purpose coco-ad benchmark. *arXiv preprint arXiv:2404.10760*, 2024a.

611 Jiangning Zhang, Chengjie Wang, Xiangtai Li, Guanzhong Tian, Zhucun Xue, Yong Liu, Guansong
 612 Pang, and Dacheng Tao. Learning feature inversion for multi-class anomaly detection under
 613 general-purpose coco-ad benchmark. *arXiv preprint arXiv:2404.10760*, 2024b.

614

615 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 616 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 617 *computer vision and pattern recognition*, pp. 586–595, 2018.

618 Ying Zhao. Omnia: A unified cnn framework for unsupervised anomaly localization. In *Proceed-
 619 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3924–3933,
 620 2023.

621

622 Yuzhong Zhao, Qiaoqiao Ding, and Xiaoqun Zhang. Ae-flow: Autoencoders with normalizing flows
 623 for medical images anomaly detection. In *The Eleventh International Conference on Learning*
 624 *Representations*, 2023.

625 Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, and Onkar Dabeer. Spot-the-difference
 626 self-supervised pre-training for anomaly detection and segmentation. In *European Conference on*
 627 *Computer Vision*, pp. 392–408. Springer, 2022.

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647