
Under review as a conference paper at ICLR 2018

LONG-TERM FORECASTING USING
TENSOR-TRAIN RNNS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Tensor-Train RNN (TT-RNN), a novel family of neural sequence ar-
chitectures for multivariate forecasting in environments with nonlinear dynam-
ics. Long-term forecasting in such systems is highly challenging, since there
exist long-term temporal dependencies, higher-order correlations and sensitivity
to error propagation. Our proposed tensor recurrent architecture addresses these
issues by learning the nonlinear dynamics directly using higher order moments
and high-order state transition functions. Furthermore, we decompose the higher-
order structure using the tensor-train (TT) decomposition to reduce the number of
parameters while preserving the model performance. We theoretically establish
the approximation properties of Tensor-Train RNNs for general sequence inputs,
and such guarantees are not available for usual RNNs. We also demonstrate sig-
nificant long-term prediction improvements over general RNN and LSTM archi-
tectures on a range of simulated environments with nonlinear dynamics, as well
on real-world climate and traffic data.

1 INTRODUCTION

One of the central questions in science is forecasting: given the past history, how well can we
predict the future? In many domains with complex multivariate correlation structures and nonlinear
dynamics, forecasting is highly challenging since the system has long-term temporal dependencies
and higher-order dynamics. Examples of such systems abound in science and engineering, from
biological neural network activity, fluid turbulence, to climate and traffic systems (see Figure 1).
Since current forecasting systems are unable to faithfully represent the higher-order dynamics, they
have limited ability for accurate long-term forecasting.

Figure 1: Climate and traffic time se-
ries per location. The time-series ex-
hibits long-term temporal correlations,
and can be viewed as a realization of
highly nonlinear dynamics.

Therefore, a key challenge is accurately modeling nonlin-
ear dynamics and obtaining stable long-term predictions,
given a dataset of realizations of the dynamics. Here, the
forecasting problem can be stated as follows: how can we
efficiently learn a model that, given only few initial states,
can reliably predict a sequence of future states over a long
horizon of T time-steps?

Common approaches to forecasting involve linear time
series models such as auto-regressive moving average
(ARMA), state space models such as hidden Markov
model (HMM), and deep neural networks. We refer read-
ers to a survey on time series forecasting by (Box et al.,
2015) and the references therein. A recurrent neural net-
work (RNN), as well as its memory-based extensions
such as the LSTM, is a class of models that have achieved
good performance on sequence prediction tasks from de-
mand forecasting (Flunkert et al., 2017) to speech recog-
nition (Soltau et al., 2016) and video analysis (LeCun
et al., 2015). Although these methods can be effective for short-term, smooth dynamics, neither
analytic nor data-driven learning methods tend to generalize well to capturing long-term nonlinear
dynamics and predicting them over longer time horizons.

1

Under review as a conference paper at ICLR 2018

To address this issue, we propose a novel family of tensor-train recurrent neural networks that can
learn stable long-term forecasting. These models have two key features: they 1) explicitly model
the higher-order dynamics, by using a longer history of previous hidden states and high-order state
interactions with multiplicative memory units; and 2) they are scalable by using tensor trains, a
structured low-rank tensor decomposition that greatly reduces the number of model parameters,
while mostly preserving the correlation structure of the full-rank model.

In this work, we analyze Tensor-Train RNNs theoretically, and also experimentally validate them
over a wide range of forecasting domains. Our contributions can be summarized as follows:

• We describe how TT-RNNs encode higher-order non-Markovian dynamics and high-order
state interactions. To address the memory issue, we propose a tensor-train (TT) decompo-
sition that makes learning tractable and fast.

• We provide theoretical guarantees for the representation power of TT-RNNs for nonlinear
dynamics, and obtain the connection between the target dynamics and TT-RNN approxi-
mation. In contrast, no such theoretical results are known for standard recurrent networks.

• We validate TT-RNNs on simulated data and two real-world environments with nonlinear
dynamics (climate and traffic). Here, we show that TT-RNNs can forecast more accurately
for significantly longer time horizons compared to standard RNNs and LSTMs.

2 FORECASTING USING TENSOR-TRAIN RNNS

Forecasting Nonlinear Dynamics Our goal is to learn an efficient model f for sequential multi-
variate forecasting in environments with nonlinear dynamics. Such systems are governed by dynam-
ics that describe how a system state xt ∈ Rd evolves using a set of nonlinear differential equations:{

ξi
(
xt,

dx

dt
,
d2x

dt2
, . . . ;φ

)
= 0

}
i

, (1)

where ξi can be an arbitrary (smooth) function of the state xt and its derivatives. Continous time
dynamics are usually described by differential equations while difference equations are employed
for discrete time. In continuous time, a classic example is the first-order Lorenz attractor, whose
realizations showcase the “butterfly-effect”, a characteristic set of double-spiral orbits. In discrete-
time, a non-trivial example is the 1-dimensional Genz dynamics, whose difference equation is:

xt+1 =
(
c−2 + (xt + w)2

)−1
, c, w ∈ [0, 1], (2)

where xt denotes the system state at time t and c, w are the parameters. Due to the nonlinear
nature of the dynamics, such systems exhibit higher-order correlations, long-term dependencies and
sensitivity to error propagation, and thus form a challenging setting for learning. Given a sequence
of initial states x0 . . .xt, the forecasting problem aims to learn a model f

f : (x0 . . .xt) 7→ (yt . . .yT) , yt = xt+1, (3)

that outputs a sequence of future states xt+1 . . .xT . Hence, accurately approximating the dynamics
ξ is critical to learning a good forecasting model f and accurately predicting for long time horizons.

First-order Markov Models In deep learning, common approaches for modeling dynamics usu-
ally employ first-order hidden-state models, such as recurrent neural networks (RNNs). An RNN
with a single RNN cell recursively computes the output yt from a hidden state ht using:

ht = f(xt,ht−1; θ), yt = g(ht; θ), (4)

where f is the state transition function, g is the output function and θ are model parameters. An RNN
only considers the most recent hidden state in its state transition function. A common parametriza-
tion scheme for (4) is a nonlinear activation function applied to a linear map of xt and ht−1 as:

ht = f(Whxxt +Whhht−1 + bh), xt+1 =W xhht + bx, (5)

where f is the activation function (e.g. sigmoid, tanh) for the state transition, Whx,W xh and Whh

are transition weight matrices and bh,bx are biases. RNNs have many different variations, including

2

Under review as a conference paper at ICLR 2018

Figure 2: Tensor-train recurrent cells within a seq2seq model.
Both encoder (blue) and decoder (pink) contain tensor-train re-
current cells (red) with high-order hidden states.

Figure 3: Tensor-train cell
with factorized hidden states
using tensor-train model.

LSTMs (Hochreiter & Schmidhuber, 1997) and GRUs (Chung et al., 2014). For instance, LSTM
cells use a memory-state, which mitigate the “exploding gradient” problem and allow RNNs to
propagate information over longer time horizons. Although RNNs are very expressive, they compute
ht only using the previous state ht−1 and input xt. Such models do not explicitly model higher-order
dynamics and only implicitly model long-term dependencies between all historical states h0 . . .ht,
which limits their forecasting effectiveness in environments with nonlinear dynamics.

2.1 TENSORIZED RECURRENT NEURAL NETWORKS

To effectively learn nonlinear dynamics, we propose Tensor-Train RNNs, or TT-RNNs, a class of
higher-order models that can be viewed as a higher-order generalization of RNNs. We developed
TT-RNNs with two goals in mind: explicitly modeling 1) L-order Markov processes with L steps of
temporal memory and 2) polynomial interactions between the hidden states h· and xt.

First, we consider longer “history”: we keep length L historic states: ht, · · · ,ht−L:
ht = f(xt,ht−1, · · · ,ht−L; θ)

where f is an activation function. In principle, early work (Giles et al., 1989) has shown that with a
large enough hidden state size, such recurrent structures are capable of approximating any dynamics.

Second, to learn the nonlinear dynamics ξ efficiently, we also use higher-order moments to approx-
imate the state transition function. We construct a higher-order transition tensor by modeling a
degree P polynomial interaction between hidden states. Hence, the TT-RNN with standard RNN
cell is defined by:

[ht]α = f(Whx
α xt +

∑
i1,··· ,ip

Wαi1···iP st−1;i1 ⊗ · · · ⊗ st−1;ip︸ ︷︷ ︸
P

) (6)

where α index the hidden dimension, i· index historic hidden states and P is the polynomial degree.
Here, we defined the L-lag hidden state as:

sTt−1 = [1 h>t−1 . . . h>t−L]

We included the bias unit 1 to model all possible polynomial expansions up to order P in a compact
form. The TT-RNN with LSTM cell, or “TLSTM”, is defined analogously as: itgtft

ot

α

= σ

Whx
α xt +

∑
i1,··· ,ip

Wαi1···iP st−1;i1 ⊗ · · · ⊗ st−1;iP︸ ︷︷ ︸
P

 ,

ct = ct−1 ◦ ft + it ◦ gt, ht = ct ◦ ot (7)
where ◦ denotes the Hadamard product. Note that the bias units are again included. TT-RNN serves
as a module for sequence-to-sequence (Seq2Seq) framework (Sutskever et al., 2014), which consists
of an encoder-decoder pair (see Figure 2). We use tensor-train recurrent cells both the encoder and
decoder. The encoder receives the initial states and the decoder predicts xt+1, . . . , xT . For each
timestep t, the decoder uses its previous prediction yt as an input.

3

Under review as a conference paper at ICLR 2018

2.2 TENSOR-TRAIN NETWORKS

Unfortunately, due to the “curse of dimensionality”, the number of parameters inWα with hidden
size H grows exponentially as O(HLP), which makes the high-order model prohibitively large to
train. To overcome this difficulty, we utilize tensor networks to approximate the weight tensor. Such
networks encode a structural decomposition of tensors into low-dimensional components and have
been shown to provide the most general approximation to smooth tensors (Orús, 2014). The most
commonly used tensor networks are linear tensor networks (LTN), also known as tensor-trains in
numerical analysis or matrix-product states in quantum physics (Oseledets, 2011).

A tensor train model decomposes a P -dimensional tensorW into a network of sparsely connected
low-dimensional tensors {Ad ∈ Rrd−1×nd×rd} as:

Wi1···iP =
∑

α1···αP−1

A1
α0i1α1

A2
α1i2α2

· · · APαP−1iPαP , α0 = αP = 1

as depicted in Figure (3). When r0 = rP = 1 the {rd} are called the tensor-train rank. With tensor-
train, we can reduce the number of parameters of TT-RNN from (HL+1)P to (HL+1)R2P , with
R = maxd rd as the upper bound on the tensor-train rank. Thus, a major benefit of tensor-train is
that they do not suffer from the curse of dimensionality, which is in sharp contrast to many classical
tensor decompositions, such as the Tucker decomposition.

3 APPROXIMATION RESULTS FOR TT-RNN

A significant benefit of using tensor-trains is that we can theoretically characterize the representa-
tion power of tensor-train neural networks for approximating high-dimensional functions. We do
so by analyzing a class of functions that satisfies some regularity condition. For such functions,
tensor-train decompositions preserve weak differentiability and yield a compact representation. We
combine this property with neural network estimation theory to bound the approximation error for
TT-RNN with one hidden layer in terms of: 1) the regularity of the target function f , 2) the dimen-
sion of the input space, 3) the tensor train rank and 4) the order of the tensor.

In the context of TT-RNN, the target function f(x), with x = s ⊗ . . . ⊗ s, describes the state
transitions of the system dynamics, as in (6). Let us assume that f(x) is a Sobolev function: f ∈ Hkµ,
defined on the input space I = I1 × I2 × · · · Id, where each Ii is a set of vectors. The space Hkµ is
defined as the functions that have bounded derivatives up to some order k and are Lµ-integrable:

Hkµ =

f ∈ Lµ(I) :∑
i≤k

‖D(i)f‖2 < +∞

 , (8)

where D(i)f is the i-th weak derivative of f and µ ≥ 0.1 Any Sobolev function admits a Schmidt
decomposition: f(·) =

∑∞
i=0

√
λ(i)γ(·; i) ⊗ φ(i; ·), where {λ} are the eigenvalues and {γ}, {φ}

are the associated eigenfunctions. Hence, we can decompose the target function f ∈ Hkµ as:

f(x) =

∞∑
α0,··· ,αd=1

A1(α0, x1, α1) · · · Ad(αd−1, xd, αd), (9)

where {Ad(αd−1, ·, αd)} are basis functions {Ad(αd−1, xd, αd)} =
√
λd−1(αd−1)φ(αd−1;xd)},

satisfying 〈Ad(i, ·,m),Ad(i, ·,m)〉 = δmn. We can truncate (13) to a low dimensional subspace
(r <∞), and obtain the functional tensor-train (FTT) approximation of the target function f :

fTT (x) =

r∑
α0,··· ,αd=1

A1(α0, x1, α1) · · · Ad(αd−1, xd, αd), (10)

In practice, TT-RNN implements a polynomial expansion of the state s as in (6), using powers
[s, s⊗2, · · · , s⊗p] to approximate fTT , where p is the degree of the polynomial. We can then bound
the approximation error using TT-RNN, viewed as a one-layer hidden neural network:

1A weak derivative generalizes the derivative concept for (non)-differentiable functions and is implicitly
defined as: e.g. v ∈ L1([a, b]) is a weak derivative of u ∈ L1([a, b]) if for all smooth ϕ with ϕ(a) = ϕ(b) = 0:∫ b

a
u(t)ϕ′(t) = −

∫ b

a
v(t)ϕ(t).

4

Under review as a conference paper at ICLR 2018

(a) Genz dynamics (b) Traffic daily : 3 sensors (c) Climate yearly: 3 stations

Figure 4: Data visualizations: (a) Genz dynamics, (b) traffic data, (c) climate data.

Theorem 3.1. Let the state transition function f ∈ Hkµ be a Hölder continuous function defined on a
input domain I = I1×· · ·×Id, with bounded derivatives up to order k and finite Fourier magnitude
distribution Cf . Then a single layer Tensor Train RNN can approximate f with an estimation error
of ε using with h hidden units:

h ≤
C2
f

ε
(d− 1)

(r + 1)−(k−1)

(k − 1)
+
C2
f

ε
C(k)p−k

where Cf =
∫
|ω|1|f̂(ω)dω|, d is the size of the state space, r is the tensor-train rank and p is the

degree of high-order polynomials i.e., the order of tensor.

For the full proof, see the Appendix. From this theorem we see: 1) if the target f becomes smoother,
it is easier to approximate and 2) polynomial interactions are more efficient than linear ones in the
large rank region: if the polynomial order increases, we require fewer hidden units n. This result
applies to the full family of TT-RNNs, including those using vanilla RNN or LSTM as the recurrent
cell, as long as we are given a state transitions (xt, st) 7→ st+1 (e.g. the state transition function
learned by the encoder).

4 EXPERIMENTS

4.1 DATASETS

We validated the accuracy and efficiency of TT-RNN on one synthetic and two real-world datasets,
as described below; Detailed preprocessing and data statistics are deferred to the Appendix.

Genz dynamics The Genz “product peak” (see Figure 4 a) is one of the Genz functions (Genz,
1984), which are often used as a basis for high-dimensional function approximation. In particu-
lar, (Bigoni et al., 2016) used them to analyze tensor-train decompositions. We generated 10, 000
samples of length 100 using (2) with w = 0.5, c = 1.0 and random initial points.

Traffic The traffic data (see Figure 4 b) of Los Angeles County highway network is collected from
California department of transportation http://pems.dot.ca.gov/. The prediction task is to
predict the speed readings for 15 locations across LA, aggregated every 5 minutes. After upsampling
and processing the data for missing values, we obtained 8, 784 sequences of length 288.

Climate The climate data (see Figure 4 c) is collected from the U.S. Historical Climatology Net-
work (USHCN) (http://cdiac.ornl.gov/ftp/ushcn_daily/). The prediction task is
to predict the daily maximum temperature for 15 stations. The data spans approximately 124 years.
After preprocessing, we obtained 6, 954 sequences of length 366.

4.2 LONG-TERM FORECASTING EVALUATION

Experimental Setup To validate that TT-RNNs effectively perform long-term forecasting task
in (3), we experiment with a seq2seq architecture with TT-RNN using LSTM as recurrent cells

5

http://pems.dot.ca.gov/
http://cdiac.ornl.gov/ftp/ushcn_daily/

Under review as a conference paper at ICLR 2018

(a) Genz dynamics (b) Traffic (c) Climate

Figure 5: Forecasting RMSE for Genz dynamics and real world traffic, climate time series for vary-
ing forecasting horizon for LSTM, MLSTM, and TLSTM.

Figure 6: Model prediction for three realizations with different intiial conditions for Genz dynamics
“product peak”. Top (blue): ground truth. Bottom: model predictions for LSTM (green) and TL-
STM (red). TLSTM perfectly captures the Genz oscillations, whereas the LSTM fails to do so (left)
or only approaches the ground truth towards the end (middle and right).

(TLSTM). For all experiments, we used an initial sequence of length t0 as input and varied the
forecasting horizon T . We trained all models using stochastic gradient descent on the length-T
sequence regression loss L(y, ŷ) =

∑T
t=1 ||ŷt − yt||22, where yt = xt+1, ŷt are the ground truth and

model prediction respectively. For more details on training and hyperparameters, see the Appendix.

We compared TT-RNN against 2 set of natural baselines: 1st-order RNN (vanilla RNN, LSTM), and
matrix RNNs (vanilla MRNN, MLSTM), which use matrix products of multiple hidden states with-
out factorization (Soltani & Jiang, 2016)). We observed that TT-RNN with RNN cells outperforms
vanilla RNN and MRNN, but using LSTM cells performs best in all experiments. We also evaluated
the classic ARIMA time series model and observed that it performs ∼ 5% worse than LSTM.

Long-term Accuracy For traffic, we forecast up to 18 hours ahead with 5 hours as initial inputs.
For climate, we forecast up to 300 days ahead given 60 days of initial observations. For Genz
dynamics, we forecast for 80 steps given 5 initial steps. All results are averages over 3 runs.

We now present the long-term forecasting accuracy of TLSTM in nonlinear systems. Figure 5 shows
the test prediction error (in RMSE) for varying forecasting horizons for different datasets. We can
see that TLSTM notably outperforms all baselines on all datasets in this setting. In particular,
TLSTM is more robust to long-term error propagation. We observe two salient benefits of using
TT-RNNs over the unfactorized models. First, MRNN and MLSTM can suffer from overfitting as
the number of weights increases. Second, on traffic, unfactorized models also show considerable
instability in their long-term predictions. These results suggest that tensor-train neural networks
learn more stable representations that generalize better for long-term horizons.

Visualization of Predictions To get intuition for the learned models, we visualize the best per-
forming TLSTM and baselines in Figure 6 for the Genz function “corner-peak” and the state-
transition function. We can see that TLSTM can almost perfectly recover the original function,
while LSTM and MLSTM only correctly predict the mean. These baselines cannot capture the
dynamics fully, often predicting an incorrect range and phase for the dynamics.

6

Under review as a conference paper at ICLR 2018

Figure 7: Top: 18 hour ahead predictions for hourly traffic time series given 5 hour as input for
LSTM, MLSTM and TLSTM. Bottom: 300 days ahead predictions for daily climate time series
given 2 month observations as input for LSTM, MLSTM and TLSTM.

TLSTM Prediction Error (RMSE ×10−2)
Tensor rank r 2 4 8 16
Genz (T = 95) 0.82 0.93 1.01 1.01
Traffic (T = 67) 9.17 9.11 9.32 9.31
Climate (T = 360) 10.55 10.25 10.51 10.63

TLSTM Traffic Prediction Error (RMSE ×10−2)
Number of lags L 2 4 5 6
T = 12 7.38 7.41 7.43 7.41
T = 84 8.97 9.31 9.38 9.01
T = 156 9.49 9.32 9.48 9.31
T = 228 10.19 9.63 9.58 9.94

Table 1: TLSTM performance for various tensor-
train hyperparameters. Top: varying tensor rank r
with L = 3. Bottom: varying number of lags L
and prediction horizon T .

Figure 8: Training speed evaluation: valida-
tion loss versus steps for the models with the
best long-term forecasting accuracy.

In Figure 7 we show predictions for the real world traffic and climate dataset. We can see that the
TLSTM corresponds significantly better with ground truth in long-term forecasting. As the ground
truth time series is highly chaotic and noisy, LSTM often deviates from the general trend. While
both MLSTM and TLSTM can correctly learn the trend, TLSTM captures more detailed curvatures
due to the inherent high-order structure.

Speed Performance Trade-off We now investigate potential trade-offs between accuracy and
computation. Figure 8 displays the validation loss with respect to the number of steps, for the
best performing models on long-term forecasting. We see that TT-RNNs converge significantly
faster than other models, and achieve lower validation-loss. This suggests that TT-RNN has a more
efficient representation of the nonlinear dynamics, and can learn much faster as a result.

Hyper-parameter Analysis The TLSTM model is equipped with a set of hyper-parameters, such
as tensor-train rank and the number of lags. We perform a random grid search over these hyper-
parameters and showcase the results in Table 1. In the top row, we report the prediction RMSE for
the largest forecasting horizon w.r.t tensor ranks for all the datasets with lag 3. When the rank is too
low, the model does not have enough capacity to capture non-linear dynamics. when the rank is too
high, the model starts to overfit. In the bottom row, we report the effect of changing lags (degree of
orders in Markovian dynamics). For each setting, the best r is determined by cross-validation. For
different forecasting horizon, the best lag value also varies.

7

Under review as a conference paper at ICLR 2018

(a) Lorenz Attractor (b) T = 20 (c) T = 40 (d) T = 60 (e) T = 80 6

Figure 9: a Lorenz attraction with dynamics (blue) and sampled data (red). b, c, d ,e TLSTM long-
term predictions for different forecasting horizons T versus the ground truth (blue). TLSTM shows
consistent predictions over increasing horizons T .

Chaotic Nonlinear Dynamics We have also evaluated TT-RNN on long-term forecasting for
chaotic dynamics, such as the Lorenz dynamics (see Figure 9a). Such dynamics are highly sen-
sitive to input perturbations: two close points can move exponentially far apart under the dynamics.
This makes long-term forecasting highly challenging, as small errors can lead to catastrophic long-
term errors. Figure 9 shows that TT-RNN can predict up to T = 40 steps into the future, but diverges
quickly beyond that. We have found no state-of-the-art prediction model is stable in this setting.

5 RELATED WORK

Classic work in time series forecasting has studied auto-regressive models, such as the ARMA or
ARIMA model (Box et al., 2015), which model a process x(t) linearly, and so do not capture non-
linear dynamics. Our method contrasts with this by explicitly modeling higher-order dependencies.
Using neural networks to model time series has a long history. More recently, they have been applied
to room temperature prediction, weather forecasting, traffic prediction and other domains. We refer
to (Schmidhuber, 2015) for a detailed overview of the relevant literature.

From a modeling perspective, (Giles et al., 1989) considers a high-order RNN to simulate a deter-
ministic finite state machine and recognize regular grammars. This work considers a second order
mapping from inputs x(t) and hidden states h(t) to the next state. However, this model only con-
siders the most recent state and is limited to two-way interactions. (Sutskever et al., 2011) proposes
multiplicative RNN that allow each hidden state to specify a different factorized hidden-to-hidden
weight matrix. A similar approach also appears in (Soltani & Jiang, 2016), but without the factoriza-
tion. Our method can be seen as an efficient generalization of these works. Moreover, hierarchical
RNNs have been used to model sequential data at multiple resolutions, e.g. to learn both short-term
and long-term human behavior (Zheng et al., 2016).

Tensor methods have tight connections with neural networks. For example, (Cohen et al.,
2016) shows convolutional neural networks have equivalence to hierarchical tensor factorizations.
(Novikov et al., 2015; Yang et al., 2017) employs tensor-train to compress large neural networks
and reduce the number of weights. (Yang et al., 2017) forms tensors from reshaping inputs and de-
composes the input-output weights. Our model forms tensors from high-order hidden states and de-
composes the hidden-output weights. (Stoudenmire & Schwab, 2016) propose to parameterizes the
supervised learning models with matrix-product states for image classification. This work however,
to the best of our knowledge, is the first work to consider tensor networks in RNNS for sequential
prediction tasks for learning in environments with nonlinear dynamics.

6 CONCLUSION AND DISCUSSION

In this work, we considered forecasting under nonlinear dynamics.We propose a novel class of RNNs
– TT-RNN. We provide approximation guarantees for TT-RNN and characterize its representation
power. We demonstrate the benefits of TT-RNN to forecast accurately for significantly longer time
horizon in both synthetic and real-world multivariate time series data.

As we observed, chaotic dynamics still present a significant challenge to any sequential prediction
model. Hence, it would be interesting to study how to learn robust models for chaotic dynamics.
In other sequential prediction settings, such as natural language processing, there does not (or is
not known to) exist a succinct analytical description of the data-generating process. It would be
interesting to further investigate the effectiveness of TT-RNNs in such domains as well.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information theory, 39(3):930–945, 1993.

Daniele Bigoni, Allan P Engsig-Karup, and Youssef M Marzouk. Spectral tensor-train decomposi-
tion. SIAM Journal on Scientific Computing, 38(4):A2405–A2439, 2016.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep learning: a tensor
analysis. In 29th Annual Conference on Learning Theory, pp. 698–728, 2016.

Valentin Flunkert, David Salinas, and Jan Gasthaus. Deepar: Probabilistic forecasting with autore-
gressive recurrent networks. arXiv preprint arXiv:1704.04110, 2017.

Alan Genz. Testing multidimensional integration routines. In Proc. Of International Conference
on Tools, Methods and Languages for Scientific and Engineering Computation, pp. 81–94, New
York, NY, USA, 1984. Elsevier North-Holland, Inc. ISBN 0-444-87570-0. URL http://dl.
acm.org/citation.cfm?id=2837.2842.

C Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong Chen. Higher order
recurrent networks and grammatical inference. In NIPS, pp. 380–387, 1989.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In Advances in Neural Information Processing Systems, pp. 442–450, 2015.

Román Orús. A practical introduction to tensor networks: Matrix product states and projected
entangled pair states. Annals of Physics, 349:117–158, 2014.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

Rohollah Soltani and Hui Jiang. Higher order recurrent neural networks. arXiv preprint
arXiv:1605.00064, 2016.

Hagen Soltau, Hank Liao, and Hasim Sak. Neural speech recognizer: Acoustic-to-word lstm model
for large vocabulary speech recognition. arXiv preprint arXiv:1610.09975, 2016.

Edwin Stoudenmire and David J Schwab. Supervised learning with tensor networks. In Advances
in Neural Information Processing Systems, pp. 4799–4807, 2016.

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural net-
works. In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pp. 1017–1024, 2011.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks for
video classification. In International Conference on Machine Learning, pp. 3891–3900, 2017.

Stephan Zheng, Yisong Yue, and Patrick Lucey. Generating long-term trajectories using deep hi-
erarchical networks. In Advances in Neural Information Processing Systems, pp. 1543–1551,
2016.

9

http://dl.acm.org/citation.cfm?id=2837.2842
http://dl.acm.org/citation.cfm?id=2837.2842

Under review as a conference paper at ICLR 2018

7 APPENDIX

7.1 THEORETICAL ANALYSIS

We provide theoretical guarantees for the proposed TT-RNNmodel by analyzing a class of functions
that satisfy some regularity condition. For such functions, tensor-train decompositions preserve
weak differentiability and yield a compact representation. We combine this property with neural
network estimation theory to bound the approximation error for TT-RNN with one hidden layer, in
terms of: 1) the regularity of the target function f , 2) the dimension of the input space, and 3) the
tensor train rank.

In the context of TT-RNN, the target function f(x) with x = s⊗ . . .⊗s, is the system dynamics that
describes state transitions, as in (6). Let us assume that f(x) is a Sobolev function: f ∈ Hkµ, defined
on the input space I = I1 × I2 × · · · Id, where each Ii is a set of vectors. The space Hkµ is defined
as the set of functions that have bounded derivatives up to some order k and are Lµ-integrable:

Hkµ =

f ∈ L2
µ(I) :

∑
i≤k

‖D(i)f‖2 < +∞

 , (11)

where D(i)f is the i-th weak derivative of f and µ ≥ 0.2

Any Sobolev function admits a Schmidt decomposition: f(·) =
∑∞
i=0

√
λ(i)γ(·; i)⊗φ(i; ·), where

{λ} are the eigenvalues and {γ}, {φ} are the associated eigenfunctions. Hence, we can decompose
the target function f ∈ Hkµ as:

f(x) =

∞∑
α0,··· ,αd=1

A1(α0, x1, α1) · · · Ad(αd−1, xd, αd), (12)

where {Ad(αd−1, ·, αd)} are basis functions {Ad(αd−1, xd, αd)} =
√
λd−1(αd−1)φ(αd−1;xd)},

satisfying 〈Ad(i, ·,m),Ad(i, ·,m)〉 = δmn. We can truncate Eqn 13 to a low dimensional subspace
(r <∞), and obtain the functional tensor-train (FTT) approximation of the target function f :

fTT (x) =

r∑
α0,··· ,αd=1

A1(α0, x1, α1) · · · Ad(αd−1, xd, αd) (13)

.

FTT approximation in Eqn 13 projects the target function to a subspace with finite basis. And the
approximation error can be bounded using the following Lemma:
Lemma 7.1 (FTT Approximation Bigoni et al. (2016)). Let f ∈ Hkµ be a Hölder continuous func-
tion, defined on a bounded domain I = I1 × · · · × Id ⊂ Rd with exponent α > 1/2, the FTT
approximation error can be upper bounded as

‖f − fTT ‖2 ≤ ‖f‖2(d− 1)
(r + 1)−(k−1)

(k − 1)
(14)

for r ≥ 1 and

lim
r→∞

‖fTT − f‖2 = 0 (15)

for k > 1

Lemma 7.1 relates the approximation error to the dimension d, tensor-train rank r,and the regularity
of the target function k. In practice, TT-RNN implements a polynomial expansion of the input states
s, using powers [s, s⊗2, · · · , s⊗p] to approximate fTT , where p is the degree of the polynomial. We
can further use the classic spectral approximation theory to connect the TT-RNN structure with the
degree of the polynomial, i.e., the order of the tensor. Let I1× · · · × Id = I ⊂ Rd. Given a function
f and its polynomial expansion PTT , the approximation error is therefore bounded by:

2A weak derivative generalizes the derivative concept for (non)-differentiable functions and is implicitly
defined as: e.g. v ∈ L1([a, b]) is a weak derivative of u ∈ L1([a, b]) if for all smooth ϕ with ϕ(a) = ϕ(b) = 0:∫ b

a
u(t)ϕ′(t) = −

∫ b

a
v(t)ϕ(t).

10

Under review as a conference paper at ICLR 2018

Lemma 7.2 (Polynomial Approximation). Let f ∈ Hkµ for k > 0. Let P be the approximating
polynomial with degree p, Then

‖f − PNf‖ ≤ C(k)p−k|f |k,µ

Here |f |2k,µ =
∑
|i|=k ‖D(i)f‖2 is the semi-norm of the space Hkµ. C(k) is the coefficient of the

spectral expansion. By definition, Hkµ is equipped with a norm ‖f‖2k,µ =
∑
|i|≤k ‖D(i)f‖2 and a

semi-norm |f |2k,µ =
∑
|i|=k ‖D(i)f‖2. For notation simplicity, we muted the subscript µ and used

‖ · ‖ for ‖ · ‖Lµ .

So far, we have obtained the tensor-train approximation error with the regularity of the target func-
tion f . Next we will connect the tensor-train approximation and the estimation error of neural
networks with one layer hidden units. Given a neural network with one hidden layer and sigmoid
activation function, following Lemma describes the classic result of describes the error between a
target function f and the single hidden-layer neural network that approximates it best:

Lemma 7.3 (NN Approximation Barron (1993)). Given a function f with finite Fourier magnitude
distribution Cf , there exists a neural network of n hidden units fn, such that

‖f − fn‖ ≤
Cf√
n

(16)

where Cf =
∫
|ω|1|f̂(ω)|dω with Fourier representation f(x) =

∫
eiωxf̂(ω)dω.

We can now generalize Barron’s approximation lemma 7.3 to TT-RNN. The target function we are
approximating is the state transition function f() = f(s⊗· · ·⊗s). We can express the function using
FTT, followed by the polynomial expansion of the states concatenation PTT . The approximation
error of TT-RNN, viewed as one layer hidden

‖f − PTT ‖ ≤ ‖f − fTT ‖+ ‖fTT − PTT ‖

≤ ‖f‖

√
(d− 1)

(r + 1)−(k−1)

(k − 1)
+ C(k)p−k|fTT |k

≤ ‖f − fn‖

√
(d− 1)

(r + 1)−(k−1)

(k − 1)
+ C(k)p−k

∑
i=k

‖D(i)(fTT − fn)‖+ o(‖fn‖)

≤
C2
f√
n
(

√
(d− 1)

(r + 1)−(k−1)

(k − 1)
+ C(k)p−k

∑
i=k

‖D(i)fTT ‖) + o(‖fn‖)

Where p is the order of tensor and r is the tensor-train rank. As the rank of the tensor-train and the
polynomial order increase, the required size of the hidden units become smaller, up to a constant
that depends on the regularity of the underlying dynamics f .

7.2 TRAINING AND HYPERPARAMETER SEARCH

We trained all models using the RMS-prop optimizer and employed a learning rate decay of 0.8
schedule. We performed an exhaustive search over the hyper-parameters for validation. Table 2
reports the hyper-parameter search range used in this work.

Hyper-parameter search range

learning rate 10−1 . . . 10−5 hidden state size 8, 16, 32, 64, 128
tensor-train rank 1 . . . 16 number of lags 1 . . . 6
number of orders 1 . . . 3 number of layers 1 . . . 3

Table 2: Hyper-parameter search range statistics for TT-RNN experiments.

11

Under review as a conference paper at ICLR 2018

For all datasets, we used a 80% − 10% − 10% train-validation-test split and train for a maximum
of 1e4 steps. We compute the moving average of the validation loss and use it as an early stopping
criteria. We also did not employ scheduled sampling, as we found training became highly unstable
under a range of annealing schedules.

7.3 DATASET DETAILS

Genz Genz functions are often used as basis for evaluating high-dimensional function approx-
imation. In particular, they have been used to analyze tensor-train decompositions (Bigoni
et al., 2016). There are in total 7 different Genz functions. (1) g1(x) = cos(2πw + cx), (2)
g2(x) = (c−2 + (x + w)−2)−1, (3) g3(x) = (1 + cx)−2, (4) e−c

2π(x−w)2 (5) e−c
2π|x−w| (6)

g6(x) =

{
0 x > w

ecx else
. For each function, we generated a dataset with 10, 000 samples using (2)

with w = 0.5 and c = 1.0 and random initial points draw from a range of [−0.1, 0.1].

Traffic We use the traffic data of Los Angeles County highway network collected from California
department of transportation http://pems.dot.ca.gov/. The dataset consists of 4 month
speed readings aggregated every 5 minutes . Due to large number of missing values (∼ 30%) in
the raw data, we impute the missing values using the average values of non-missing entries from
other sensors at the same time. In total, after processing, the dataset covers 35 136, time-series. We
treat each sequence as daily traffic of 288 time stamps. We up-sample the dataset every 20 minutes,
which results in a dataset of 8 784 sequences of daily measurements. We select 15 sensors as a joint
forecasting tasks.

Climate We use the daily maximum temperature data from the U.S. Historical Climatology
Network (USHCN) daily (http://cdiac.ornl.gov/ftp/ushcn_daily/) contains daily
measurements for 5 climate variables for approximately 124 years. The records were collected
across more than 1 200 locations and span over 45 384 days. We analyze the area in California which
contains 54 stations. We removed the first 10 years of day, most of which has no observations. We
treat the temperature reading per year as one sequence and impute the missing observations using
other non-missing entries from other stations across years. We augment the datasets by rotating the
sequence every 7 days, which results in a data set of 5 928 sequences.

We also perform a DickeyFuller test in order to test the null hypothesis of whether a unit root is
present in an autoregressive model. The test statistics of the traffic and climate data is shown in
Table 3, which demonstrate the non-stationarity of the time series.

Traffic Climate

Test Statistic 0.00003 0 3e-7 0
p-value 0.96 0.96 1.12 e-13 2.52 e-7

Number Lags Used 2 7 0 1
Critical Value (1%) -3.49 -3.51 -3.63 2.7
Critical Value (5%) -2.89 -2.90 -2.91 -3.70

Critical Value (10%) -2.58 -2.59 -2.60 -2.63

Table 3: Dickey-Fuller test statistics for traffic and climate data used in the experiments.

7.4 PREDICTION VISUALIZATIONS

Genz functions are basis functions for multi-dimensional Figure 10 visualizes different Genz func-
tions, realizations of dynamics and predictions from TLSTM and baselines. We can see for “oscil-
latory”, “product peak” and “Gaussian ”, TLSTM can better capture the complex dynamics, leading
to more accurate predictions.

12

http://pems.dot.ca.gov/
http://cdiac.ornl.gov/ftp/ushcn_daily/

Under review as a conference paper at ICLR 2018

(a) g1 oscillatory (b) g1 dynamics (c) g1 predictions

(d) g2 product peak (e) g2 dynamics (f) g2 predictions

(g) g3 corner peak (h) g3 dynamics (i) g3 predictions

(j) g4 Gaussian (k) g4 dynamics (l) g4 predictions

(m) g5 continuous (n) g5 dynamics (o) g5 predictions

(p) g6 discontinuous (q) g6 dynamics (r) g6 predictions

Figure 10: Visualizations of Genz functions, dynamics and predictions from TLSTM and baselines.
Left column: transition functions, middle: realization of the dynamics and right: model predictions
for LSTM (green) and TLSTM (red).

13

Under review as a conference paper at ICLR 2018

7.5 MORE CHAOTIC DYNAMICS RESULTS

Chaotic dynamics such as Lorenz attractor is notoriously different to lean in non-linear dynamics.
In such systems, the dynamics are highly sensitive to perturbations in the input state: two close
points can move exponentially far apart under the dynamics. We also evaluated tensor-train neural
networks on long-term forecasting for Lorenz attractor and report the results as follows:

Lorenz The Lorenz attractor system describes a two-dimensional flow of fluids (see Figure 9):

dx

dt
= σ(y − x), dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz, σ = 10, ρ = 28, β = 2.667.

This system has chaotic solutions (for certain parameter values) that revolve around the so-called
Lorenz attractor. We simulated 10 000 trajectories with the discretized time interval length 0.01. We
sample from each trajectory every 10 units in Euclidean distance. The dynamics is generated using
σ = 10 ρ = 28, β = 2.667. The initial condition of each trajectory is sampled uniformly random
from the interval of [−0.1, 0.1].
Figure 11 shows 45 steps ahead predictions for all models. HORNN is the full tensor TT-RNN using
vanilla RNN unit without the tensor-train decomposition. We can see all the tensor models perform
better than vanilla RNN or MRNN. TT-RNN shows slight improvement at the beginning state.

(a) RNN (b) MRNN (c) HORNN (d) TT-RNN (e) TLSTM

Figure 11: Long-term (right 2) predictions for different models (red) versus the ground truth (blue).
TT-RNN shows more consistent, but imperfect, predictions, whereas the baselines are highly unsta-
ble and gives noisy predictions.

14

	Introduction
	Forecasting using Tensor-Train RNNs
	Tensorized Recurrent Neural Networks
	Tensor-train Networks

	Approximation results for TT-RNN
	Experiments
	Datasets
	Long-term Forecasting Evaluation

	Related Work
	Conclusion and Discussion
	Appendix
	Theoretical Analysis
	Training and Hyperparameter Search
	Dataset Details
	Prediction Visualizations
	More Chaotic Dynamics Results

