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Abstract

Lung volume segmentation is a relevant task within the design of Computer-Aided
Diagnosis systems related to automated lung pathology analysis. Isolating the lung
from CT volumes can be a challenging process due to the considerable deformations
and pathologies that can appear in different scans. Deep neural networks can be an
effective mechanism in order to model the spatial relationship between different
lung voxels. Unfortunately, this kind of models typically require large quantities of
annotated data, and manually delineating the lung from volumetric CT scans can be
a cumbersome process. In this paper, we propose to train a 3D Convolutional Neural
Network to solve this task based on semi-automatically generated annotations. To
achieve this goal, we introduce an extension of the well-known V-Net architecture
that can handle higher-dimensional input data. Even if the training set labels are
noisy and may contain some errors, we experimentally show that it is possible
to learn to accurately segment the lung relying on them. Numerical comparisons
performed on an external test set containing lung segmentations provided by a
medical expert demonstrate that the proposed model generalizes well to new data,
reaching an average 98.7% Dice coefficient. In addition, the proposed approach
results in a superior performance when compared to the standard V-Net model,
particularly on the lung boundary, achieving a 0.576 mm Average Symmetric
Surface Distance with respect to expert validated ground-truth.

1 Introduction

In Computer-aided diagnosis (CAD) of pulmonary diseases, lung volume segmentation is an essential
preliminary pre-processing stage intended to isolate the lung from the background. Accurate lung
segmentation is of great importance, since it allows to avoid unnecessarily processing irrelevant
information and it enables false positive removal, thereby preventing potentially incorrect diagnosis.

Several automated methods for lung segmentation have been developed along the years, specially
on Computer Tomography (CT) images. Most of these methods are threshold [7] or region-based
[15], relying mostly on intensity levels, contrast and neighborhood homogeneity. More sophisticated
methods are based on prior anatomical knowledge. This is the case of atlas-based methods, which
rely on the registration of the target image to a template image containing labels of the thoracic region
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Figure 1: (a) Example of a volumetric CT scan of the lung extracted from the dataset provided in the
LUNA16 competition [8] (b) Automatically generated volumetric segmentation of the lung.

[10]. Neighboring anatomy-guided methods use spatial information about the surrounding organs to
delineate the lung regions, in order to simplify the segmentation task in cases where abnormalities or
artifacts are present. Hybrid approaches combining fast traditional threshold-based techniques with
more sophisticated multi-atlas methods have also been proposed [14]. In this case, a segmentation
obtained using conventional approaches is automatically examined for errors, and corrected by means
of more time-consuming atlas-based methods.

A wide variety of techniques has also been proposed for the task of segmenting 3D volumetric
organs from CT scans. Dou et al. [1] proposed a 3D deeply supervised model based on a Fully
Convolutional Network (FCN) to automatically segment the liver on CT images. In order to segment
multiple organs in a CT scan, Roth et al. [13] adapted an existent architecture called 3D U-Net
[16]. For lung segmentation in CT scans, Harrison et al. [4] introduced a deep architecture termed
Holistically-nested network (HNN). This model was particularly accurate at finely delineating lung
borders. In addition, a progressive multi-path scheme was also implemented in order to deal with
issues related to output ambiguity and coarsening resolution, resulting in an extended method called
Progressive Holistically-nested network (P-HNN).

In general, deep neural networks are known to depend on the availability of large quantities of
annotated data. Unfortunately, for the problem of lung segmentation, there exist few public sources
of such data. On the other hand, semi-automatic segmentations of the lung in CT scans can be easily
generated. In the LUng Nodule Analysis 2016 (LUNA16) challenge [8], a competition aimed at
automatic lung nodule detection, such ground-truth was provided by the challenge based on the CT
scans from the Lung Image Database Consortium (LIDC) and Image Database Resource Initiative
(IDRI). In this case, lung segmentations were generated by a semi-automatic method [14], resulting in
reasonably accurate annotations, see Figure 1. However, it is important to stress that these annotations
are not perfect, and were not validated by a medical doctor. Therefore, they should not be used for
clinical evaluation purposes.

Noisy ground-truth and pseudo-labels have recently proven useful for training deep learning-based
segmentation models on brain MRI images in [3], where it was shown that models trained on this
kind of imperfect annotations can generalize properly to new data and achieve great performance
when evaluated with clinically correct ground-truth. Following this approach, in this paper we
propose to use the noisy automatically generated ground-truth provided from the LUNA16 challenge
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to train an extension of the V-Net architecture [11] for the task of lung segmentation. Our main
contribution is the demonstration that this kind of pseudo-annotations are indeed useful for this task.
We experimentally verify our approach by testing the model on a separate dataset containing lung
volumes that were manually delineated by a clinical expert. Experimental results demonstrate that
our model, even if trained on semi-automatically generated labels, is effective at segmenting the lungs
from CT scans when tested on ground-truth provided by a medical doctor.

2 Methodology

2.1 Model Architecture

One of the most popular methods for medical image segmentation is the U-Net [12] model, a
deep Convolutional Neural Network (CNN) architecture that was first proposed for the task of
segmenting neuronal structures in electron microscopic stacks. This architecture is an extension of
Fully-Convolutional Networks consisting of a downsampling followed by an upsampling path. In the
downsampling path, similarly to a standard CNN architecture, the input passes through several layers
of convolutional blocks of stride two (which subsequently reduce the spatial resolution of the output
volumes) followed by Rectified Linear Unit (ReLU) activations. Along the upsampling path, for each
layer the result of the previous layer is concatenated with the one of the corresponding layer from the
downsampling path, which is passed trough skip connections, thereby allowing to avoid information
loss from higher scales of the image.

The U-Net architecture has been later generalized by several authors to handle three-dimensional data.
For instance, in [16] 3D U-Net was introduced, while V-Net was presented [11]. In both cases, the
spatial resolution of the input images was relatively limited: 3D U-Net was applied on 3D confocal
microscopy images of the Xenopus kidney, training with volumes of approximately 245× 244× 56
resolution, while the V-Net model was proposed to segment the prostate in 3D MRI images dealing
with an input size of 128× 128× 64.

This reduced input spatial resolution is related to memory constraints arising when dealing with
three-dimensional medical data. When the available data has a much larger spatial resolution than
the size of the input in a previously defined architecture like 3D U-Net or V-Net, a solution needs to
be implemented to deal with such memory constraints. A possible approach is to resize the spatial
dimensions of the data to the size of the input of the architecture. This is a simple and fast strategy,
but in some cases it can lead to a critical loss of relevant information for the task to be solved. An
alternative approach consists of dividing the input image into volumetric patches of the size of the
desired network’s input. The output of the model is then a spatial reconstruction of several outputs,
corresponding to the initial division of the input volume. With this procedure, small details are not
lost, but certain contextual information is missed at the boundaries of the divided sub-volumes.

In this paper, for lung segmentation from CT scans we prefer to consider a spatial resolution
substantially greater than those employed in previous 3D deep CNN models. Therefore, to deal with
large data dimensionality while avoiding information loss, we propose a novel strategy. Specifically,
starting from the initial V-Net architecture, we introduce a max-pooling layer early in the model in
order to reduce its dimensionality from 512×512×256 to the conventional 128×128×64 of V-Net.
Then, to mitigate the information lost in this operation, we introduce a skip connection between
the input of our architecture and the last convolutional layer. We also introduce another relevant
modification to the original V-Net design, namely we reduce the number of filters in our model to
2/3 of the ones used in the original architecture. We experimentally verified that the resulting model
is less prone to overfitting the training data, while still producing highly accurate predictions. Finally,
ReLU non-linearities were replaced by PReLu [5] activation functions, and batch normalization was
also added in our architecture. An overall diagram of the proposed architectural design is represented
in Figure 2.

2.1.1 Loss Function

Similarly to the original V-Net architecture, the loss function minimized during training the proposed
model is based on the Dice coefficient. The Dice coefficient is a classical segmentation metric useful
for measuring the overlapping volume between two different three-dimensional objects. In this case,
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Figure 2: The proposed model, based on the V-Net, with the addition of an extra initial layer and skip
connections allowing to deal with 512× 512× 256 size input CT scans.

it is embedded in the loss function D(P,G), which can be written as:

D(P,G) =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

, (1)

where N is the number of voxels on each image, pi ∈ P represents a voxel pi within the predicted
segmentation P , and gi ∈ G is the binary ground-truth segmentation.

2.2 Training Set and Semi-Automatically Generated Ground-Truth

The data used for training the above model was provided by the LUNA16 challenge [8], composed
of 888 CT scans extracted from the Lung Image Database Consortium (LIDC) and Image Database
Resource Initiative (IDRI) [6]. LUNA16 is accompanied with volumetric lung segmentations for
each scan, distinguishing from left and right lung. For this work, we merged the labels from each
lung into a single ground-truth volume, resulting in data and labels similar to those depicted in Figure
3.

The lung segmentations released in [8] were generated automatically, and may contain certain amount
of errors. Accordingly, these annotations should not be used as a reference in any segmentation
study. It is important to stress that these segmentations are not used for testing our algorithm, but
only to train the model. The main hypothesis we aim to verify is that a deep CNN can be trained on
such imperfect noisy ground-truth and still learn useful representations. The model is thus trained to
generate lung segmentations that are to be validated in test time with a separate dataset of manually
delineated lung volumes, see Section 3.1.

4



(a) (b) (c)

Figure 3: Axial, Sagittal and Coronal CT scan views of a lung volume from the LUNA16 dataset and
the correspondent ground-truth employed in this work.

For training, the available data was divided into 700 scans for training and 188 for validation that
were randomly selected. The scans have a fixed spatial resolution of 512 and a slice thickness ranging
between 0.6mm to 2.5mm. Before being supplied to the proposed model, the depth resolution of the
scans was mapped to a common value of 256 voxels. In addition, it is well-known that in CT scans the
majority of the relevant information lies in the Houndsfield units range of [−1000; 400]. Accordingly,
information outside this range was omitted. After the pre-processing stage, the images are normalized
to zero mean and unit variance. Standard data augmentation techniques (spatial shifting, zooming
along the depth axis) are also applied to increase the training data.

2.3 Implementation and Training

The model was trained with standard backpropagation for 12 epochs using the Adam Optimizer [9]
and an initial learning rate of 1e−3. On each epoch, the model runs through all the training set, with
each batch constituted by a single scan due to memory constraints. The loss defined in eq. (1) was
also monitored in the validation set, and training was early-stopped when the validation loss was
not improving for a pre-determined number of epochs. The proposed method was implemented in
Python 2.7 using the PyTorch framework. The workstation has an Intel Xeon E5-2630 v4 CPU at
2.20GHz, 31 Gb of RAM and a NVIDIA Titan P100 with 16 Gb GPU.

3 Experimental Setting

3.1 Test Set

The proposed method was evaluated using data from the VESSEL12 Challenge that provided 20
CT scans of the chest. These scans are of size 512 × 512, with a variable depth resolution of a
maximum spacing of 1mm. The dataset contained both healthy and pathological lungs. The lung
volume ground-truth data was acquired and validated by an expert radiologist. It contains labels
dividing the lung volume into its different lobes in order to train lobe segmentation models [2]. In
this case, since we are only interested in the overall lung region, we merge the annotations from all
lobes into a single label. In Figure 4, a CT scan with its correspondent volumetric lung ground-truth
extracted from the VESSEL12 dataset is displayed.

3.2 Experimental Evaluation

To evaluate our model, the Dice coefficient was used. As observed in section 2.1.1, this metric
returns the value of the overlapping volume between the ground-truth and the binarized predicted
segmentation. Since it is an overlapping metric, when comparing very large objects errors present in
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Figure 4: a) Axial, b) Sagittal, and c) Coronal views of a CT scan from the lung, extracted from the
the VESSEL12 dataset, with corresponding lung segmentations.

Table 1: Comparison of the Dice Coefficient and Average Symmetric Surface Distance (ASD) of the
results from the proposed model and V-Net.

Dice Coefficient (%) Average Surface Distance (mm)
V-Net 97.2 2.627
Ours 98.7 0.576

the border of the prediction will not affect the value of the Dice coefficient. As such, and considering
also that the Dice coefficient is also embedded in the loss function we are minimizing, in order to
perform a more fair experimental evaluation the predicted segmentations were also assessed by the
Average Symmetric Surface Distance (ASD). ASD is a surface distance metric that measures the
average distance of all the points of the surface of the 3D segmentation with their closest points in the
surface associated to the ground-truth.

ASD =
1

|Bseg|+ |Bgt|
·

 ∑
x∈Bseg

d(x,Bgt) +
∑

x∈Bgt

d(y,Bseg)

 (2)

4 Results and Discussion

In order to evaluate our model, after training the model on the training data and semi-automatically
generated ground-truth, we produced predictions for the 20 scans on our independent test set, and
compared them with the corresponding manually generated ground-truth. In Figure 5, we show
examples of the predictions generated by our method, which in this case produces a fine lung volume
segmentation.

For comparison purposes, we trained a standard V-Net on the same dataset. The model received as
input the downsampled CT scan to 128× 128× 64. In Figure 6 we present a prediction of the same
CT scan shown in Figure 5. In this case, the depicted segmentation was generated by the V-Net. A
more detailed visual comparison is provided in Figure 7. As can be observed, the volume in general is
well predicted by both models, although the approach introduced in this paper achieves a more finely
delineated boundary, while in the segmentation produced by the V-Net model, the precision on the
boundaries is affected by the downsampling and upsampling processes, resulting in small stair-casing
effects along the lung borders. Nevertheless, both results are relatively satisfactory, verifying this way
that a deep 3D CNN can be effectively trained on the kind of noisy ground-truth used in this work.
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Figure 5: a), b), and c): 3D segmentations produced by our model from CT scans belonging to the
test set. d), c), and f): Axial, Sagittal and Coronal views of the lung segmentation shown in a).

Finally, for a numerical comparison of both methods, we computed Dice coefficients and ASM over
the entire available test set. The results are reported in Table 1. We can observe that both methods
achieve a good Dice coefficient score in the manually-annotated test set, numerically demonstrating
that both models learned to properly segment the lung volume, even when trained on imperfect
ground-truth of our train set. Furthermore, the proposed model is shown to achieve a slightly better
Dice coefficient than the standard V-Net. This is further verified by observing the ASD values
obtained by each model. The ASD achieved by our proposed extension to V-Net seems to be capable
of better handling lung surface voxels, resulting in better segmented boundaries.

5 Conclusions and Future Work

In this paper, we have demonstrated that modern 3D segmentation methods based on Deep Convolu-
tional Neural Networks can be effectively trained on imperfect automatically generated ground-truth
for the task of lung volume segmentation from CT scans. In addition, we introduced an extension of
the well-known V-Net architecture that can handle better surface voxels inside the lung. The proposed
model can be supplied with scans of a 512 × 512 × 256 resolution, thereby avoiding any initial
information loss, and properly dealing with memory constrains. The proposed model produces highly
accurate lung volume segmentations when validated in an external test set containing ground-truth
provided by a medical expert, achieving a Dice Coefficient of 98.7% and an Average Surface Distance
of 0.576mm. which are superior to results produced by a standard V-Net.

In future work, we will explore certain modification to the loss function driving the optimization
process, in order to dedicate more attention to boundary errors. Another interesting research direction
is the potential extension of the segmentation method to other pulmonary regions for which manual
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Figure 6: a) Axial, b) Sagittal, and c) Coronal views of the Segmentation from a CT scan produced
by a standard V-Net model.

(a) (b) (c)

Figure 7: Visual comparison between a) the considered manual ground-truth, b) the segmentation
produced by the proposed model, and c) the segmentation generated by a standard V-Net model.

ground-truth is hard to acquire, based on automatically generated segmentations that may be used for
training such models.
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