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Abstract

Support vector machine models are typically built using all possible pairs of SVM in one-
against-one fashion. This requires too much computation for datasets with hundreds or
thousands of classes, which motivates the search for multi-class models with a smaller num-
ber of edges in the underlying model graph. We conduct experiments to uncover metrical
and topological properties that impact the accuracy of a multi-class SVM model. Based
on these results we propose two ways to build smaller multi-class SVM models. The key
insight is that for model graphs of diameter two, we can estimate missing pairwise probabili-
ties from known ones thus transforming the computation of posteriors to the usual complete
(maximal) case. The first approach is incremental starting from a star graph. The second
approach uses complete bipartite graphs. These approaches allow one to reduce computa-
tional effort by 50-90% while keeping accuracy near, or even above that of a complete model.
Finally, we study how the choice of the coupling method impacts classification errors. We
find that the currently used method of Wu-Lin-Weng relies mostly on the decision of the so-
called critical SVM, similarly to a newly proposed stratified coupling method. This provides
a partial explanation for its success in practice and suggests that it is a suitable method
for element-wise ensemble improvement. All experiments are done using convolutional data
sets, which have multiple advantages for benchmarking methodology to build multiclass
SVM models.

1 Introduction

For almost 20 years support vector machines (SVMs) have been a popular tool for many diverse tasks in
applied machine learning (Cortes & Vapnik (1995); Nayak et al. (2015); Tian et al. (2012)). The underlying
geometric concept, division of space by a hyperplane into two halfspaces, is a natural fit for two-class
classification problems. To apply SVM to multi-class classification problems one has to construct an ensemble
of SVM for multiple two-class problems and arrive at a decision by combining the predictions of the ensemble’s
elements.

The optimization problem underlying SVM avoids modeling conditional probabilities p(c|z), where ¢ is a
class and x is the feature vector. Rather it provides a hard decision - a binary classification decision is made
according to which halfspace of the feature space an object belongs. This suggests that an ensemble decision
should be made by counting the votes of its members (see e.g. Hsu & Lin (2002)). However, voting ensembles
have drawbacks e.g. how to resolve tied votes, and have proven suboptimal in practical applications (Wu &
Weng (2004)).

An improved approach to forming a multiclass model is to convert each ensemble member to a probabilistic
soft classifier which predicts a likelihood distribution over the set of all classes. Building a multiclass model
then requires three methodological choices.

(S1) deciding on a set of binary problems that will form the multiclass ensemble’s elements, which we
call the model graph,

(S2) deciding on a way to convert each SVM in the ensemble to a soft classifier,



Under review as submission to TMLR

(S3) deciding on a way to combine predictions of the ensemble’s members.

One of the most popular libraries for SVM is LIBSVM (Chang & Lin (2011)). The library has made the
following choices. It forms a multi-class classifier by training SVM for each pair of classes, thus adopting for
(S1) so-called one-vs-one classification paradigm. For (S2) it adopts modeling of conditional probabilities
via logistic function drawing on the work of J. Platt (Platt et al. (1999); Lin et al. (2007)). For (S3) it has
chosen a combining (also called coupling) method proposed by Wu, Lin and Weng Wu & Weng (2004).

The primary aim of this work is to study the performance implications of the choice of model’s graph. One-vs-
one classification adopts complete model graphs. This is acceptable only for datasets with a modest number
of classes. The widely used Imagenet dataset is an example of when the complete model graph requiring
(10200) SVM models is utterly impractical. We thus study smaller model graphs and their properties that

affect the resulting model’s accuracy.

The secondary aim of our work is to better understand the behavior of the Wu-Lin-Weng coupling method
and compare it with newer alternatives. The alternatives are outlined in Table 1.

Methodological LIBSVM choice this paper
choice
(S1) Set of binary || maximal minimal, maximal, and intermedi-
SVM problems ate
(S2) Conversion to || Platt scaling Platt scaling
soft classifier
(S3) Combining || coupling method of Wu- « method of Wu-Lin-Weng
ensemble’s models || Lin-Weng . .
. o stratified coupling
predictions
o normal coupling
Datasets used for || various ML datasets (Dua | features provided by a convolutional
benchmarking & Graff (2017)) neural network

Table 1: A comparison of models investigated in the present paper with models formed in the LIBSVM
library.

Our work also differs in the choice of datasets. In this work, we concentrate on the problem of classifying
images based on input features to the final softmax layer of a convolutional neural network. This class of
problems has several compelling attributes, namely

o the set of classes is well defined (e.g. in comparison with much less clear phoneme classes in speech
processing),

e benchmark image datasets have been thoroughly examined for the correctness of annotation; more-
over, correctness of annotation can be easily assessed by a layperson,

o convolutional neural networks are trained with the softmax layer to high classification accuracy,
which suggests that class separation boundaries are close to linear. This simplifies training of SVM
models since linear kernel models do not require additional hyperparameters used by other kernels
such as scale parameter for radial basis functions,

« digital image classification has widespread applications, and any potential improvements would be
quite valuable,

« this class of problems has not been considered during methodological preparation for LIBSVM, nor
in the initial evaluation of the alternative coupling methods.
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2 Experimental methodology

2.1 Datasets

In sections 2-4 we have used three datasets each having ten classes: CIFAR-10 (Krizhevsky et al. (2009)),
Imagenette, and Imagewoof (Howard), the latter two being subsets of the well-known Imagenet 2012 dataset
(Russakovsky et al. (2015)).

0 | n01558993 robin 25 | n02790996 barbell

1 | n01582220 magpie 26 | n02807133 bathing cap

2 | n01622779 great_ grey_ owl 27 | n03017168 chime

3 | n01698640 | American_alligator || 28 | n03089624 confectionery

4 | n01980166 fiddler__crab 29 | n03180011 | desktop_ computer

5 | n02018795 bustard 30 | n03196217 digital_ clock

6 | n02025239 ruddy_ turnstone 31 | n03201208 dining_ table

7 | n02028035 redshank 32 | n03417042 garbage truck

8 | n02091134 whippet 33 | n03658185 letter__opener

9 | n02091244 Ibizan_ hound 34 | n03721384 marimba

10 | n02094114 Norfolk_terrier 35 | n03776460 mobile__home

11 | n02096177 cairn 36 | n03929855 pickelhaube

12 | n02096585 Boston_ bull 37 | n03950228 pitcher

13 | n02101388 Brittany_spaniel 38 | n04026417 purse

14 | n02101556 clumber 39 | n04033995 quilt

15 | n02114548 white_ wolf 40 | n04118776 rule

16 | n02119789 kit_ fox 41 | n04254120 soap__dispenser

17 | n02123045 tabby 42 | n04277352 spindle

18 | n02177972 weevil 43 | n04525038 velvet

19 | n02264363 lacewing 44 | n04589890 window__screen

20 | n02423022 gazelle 45 | n06596364 comic__book

21 | n02641379 gar 46 | n06874185 traffic_light

22 | n02655020 puffer 47 | n07730033 cardoon

23 | n02676566 acoustic__guitar 48 | n09256479 coral_ reef

24 | n02777292 balance beam 49 | n12144580 corn
Table 2: The list of 50 classes of Imagenet-50 dataset used in Sections 4
and 5.

In sections 4 and 5 we have used a subset of Imagenet created by choosing 50 classes at random among the
thousand classes in ImageNet 2012. We refer to the set as Imagenet-50 and we list the classes in Table 2.

2.2 Neural networks

For CIFAR-10 we have used a custom network designed by David C. Page, which can be quickly trained to
94 % accuracy (Page).

For Imagenette and Imagewoof datasets, we used Resnet-18 and Resnet-34 architectures (He et al. (2016)).
These architectures were designed to solve the Imagenet classification problem, which has 1000 classes. We
used multiple ways to adapt these architectures to solve classification problems with 10 classes:

o (fresh) to replace 1000 output neurons with 10 output neurons and train from scratch,

» (adapt) pretrain the network on the whole Imagenet 2012 problem, then replace 1000 output neurons
with 10 neurons and repeat the training process with only the ten classes in the dataset,

o (whole) train a network on the whole Imagenet, and use only probabilities provided by 10 output
neurons corresponding the classes in the smaller dataset.
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We have trained 20 networks of each of the three kinds (whole, fresh & adapt) for both Imagenette and
Imagewoof problems, as well as 20 network instances for CIFAR-10 dataset.

For Imagenet-50 we used Resnet-18 architecture and fine-tuned a network trained on all of Imagenet to this
dataset.

2.3 Pairwise models for convolutional data sets

Given a convolutional neural network trained on a chosen data set, we proceed by extracting the activations
of the penultimate layer. All network architectures in this paper use 512 neurons in this layer. These 512
activations constitute features of our convolutional data sets. Each training matrix had 10000 entries per
class, which included all training samples and also augmented data samples.

The next step is a computation of pairwise likelihoods for each pair of classes. One could do this by simply
training an SVM model and applying Platt’s method to estimate likelihoods on the testing test. However,
we adopt a variant of folding used inthe work Wu & Weng (2004), where we divide the training data into four
folds and train four SVM models. We apply Platt’s method to derive pairwise likelihoods for each of the four
then models and then average resulting probabilities using geometric mean. An immediate advantage is the
reduction of training time, since the training time of SVM scales superlinearly with training size (Abdiansah
& Wardoyo (2015)). Moreover, by averaging, one may expect to arrive at more precise likelihoods.

2.4 Coupling algorithms

Consider a general multi-class classification problem of assigning to a given sample a probabilistic distribution
(p1,-..,pc) among C classes. For simplicity, we will index the C' classes by integers from one to C.

Suppose pairwise SVM models are trained for some subset E of edges of the complete graph on C' vertices
1,2,...,C. We assume that for any edge (¢,j) in E the corresponding model M; ; gives a probabilistic
prediction i.e. predicts that with probability r;; the sample belongs to the class ¢, and with the probability
1 —r;; it belongs to the class 7. We note that throughout this paper r;; will always be positive which allows
us to avoid degenerate cases.

If the model M, ; were the Bayesian classifier then the so-called Bradley-Terry equation would hold (Hastie
& Tibshirani (1998)):

Di
T = , 1
0 o (1)

which we can rewrite as a linear equation in unknowns p; and p;
pi(rij —1) +rijp; = 0, (2)

or equivalently, as
pj = ———"Di (3)

The last equation shows that if any p; is known, then we can deduce the value of any other p; for j’s that j
are connected by a path in E.

If F forms a spanning tree then, then all probabilities p; are uniquely determined by virtue of the total
probability requirement

c

i=1

The case when F forms a spanning tree is the minimal subset of SVM models required to deduce multi-class
probability distribution (p;).
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It is more common to consider the mazimal case when E corresponds to all edges of the complete graph on
C vertices. Since pairwise models M; ; will be approximations to Bayesian classifiers, one may expect that
Bradley-Terry equations will not be consistent and thus the complete set of Bradley-Terry equations will be
over-determined.

In our work, we consider three different methods to solve Bradley-Terry equations in the maximal case. The
first is the well-known method of Wu-Lin-Weng, which is commonly used via LIBSVM implementation. We
will abbreviate it as WLW2. The other two, stratified coupling and normal coupling are newer and have not
yet been thoroughly studied.

The method of Wu-Lin-Weng amounts to optimizing a quadratic functional

c
1 2
s Z Z (rjipi — TiP5)

i=1 jij#i

This method naturally leads to a system of linear equations. They note that there is a quickly converging
iterative method (similar to Jacobi’s) that allows one to solve the system quickly.

The second coupling method, the stratified coupling, aims to overcome the objection of G. Hinton, namely
that the pairwise predictors in the maximal case are expected to make meaningful predictions on objects
from classes they have not seen in training. Thus the method aims to restrict itself to using classifiers only
for the true class, although this information is not known. This aim leads to a system of C' linear equations.
The matrix of the system is Markovian, which again allows for implementing a quickly converging iterative
method.

The third coupling method, normal coupling, was proposed in 2016. It satisfies Bayes covariance requirement,
which stipulates that coupling methods should commute with change of priors according to Bayes theorem.
Computationally the method amounts to solving a set of normal equations of a special form which can be
done very quickly, and thus this method is the fastest of all three.

2.5 Software used for experiments and analysis

For computations of SVM we have used R package e1071 (R Core Team (2021); Meyer et al. (2020)). For
data processing we used tidyverse (Wickham et al. (2019)) and for visualizations packages ggplot2, tidyverse
and ggrepel (Wickham (2016); Slowikowski (2020)).

3 Comparison of minimal and maximal SVM models

We study the performance gap between minimal and maximal SVM models, showing that there is a mea-
surable gap. We will demonstrate various aspects of three, five and ten class classification problems derived
from 10 class datasets: CIFAR-10, Imagenette and ImageWoof.

3.1 Comparison of models for three class subsets of ten class datasets

We shall consider six different probabilistic SVM models, three of them minimal and another three maximal.

A minimal probabilistic model for three classes consists of the choice of two pairwise models. We expect that
their performance will vary depending on which pairwise SVM was omitted. To that end, we will order the
three classes so that d’ distances among them satisfies dj, < dj3 < db;. We will then consider the following
minimal models (see also Figure 1):

o MIN1 with edges corresponding to (1,2),(1,3),

o MIN2 with edges corresponding to (1,2),(2,3),

o MIN3 with edges corresponding to (1, 3), (2, 3).
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MIN1

MIN2
MIN3

Figure 1: Left: Ordering classes so that dj, < dj5 < ds. Right: Graphical indication of the three trees on
three vertices, where each vertex corresponds to a classification category.

The three maximal models differ only by the applied coupling method.

We evaluate all (130) three class problems and report resulting averaged errors in Table 3.

Model Minimal case Maximal case
dataset model  method | MIN3 MIN2 MIN1 | WLW2 stratified normal

CIFAR-10 2.3 2.1 2.0 1.9 1.9 1.9
imagenette resnetl8  whole 3.8 3.2 2.8 2.6 2.6 2.6
imagenette resnetl8 fresh 4.8 4.7 4.5 4.4 4.4 4.3
imagenette resnetl8  adapt 1.1 1.1 1.0 0.9 0.9 0.9
imagenette resnet34  whole 3.3 2.8 2.5 2.4 2.3 2.3
imagenette resnet34  fresh 5.5 5.4 5.2 4.9 4.9 5.0
imagenette resnet34  adapt 1.1 1.1 0.9 0.8 0.8 0.8
imagewoof resnetl8  whole 11.5 10.7 10.2 9.8 9.8 9.7
imagewoof resnetl8  fresh 8.0 7.6 7.5 7.3 7.2 7.2
imagewoof resnetl8  adapt 3.5 3.5 3.4 3.2 3.2 3.2
imagewoof resnet34  whole 11.0 10.5 10.0 9.7 9.7 9.5
imagewoof resnet34  fresh 10.0 9.4 9.1 8.9 8.9 8.9
imagewoof resnet34  adapt 3.3 34 34 3.1 3.1 3.1

Table 3: Accuracies of minimal and maximal models trained on triplets of classes.

We can see that the maximal models are consistently more accurate than the minimal models. Among
minimal models, MIN1 is the most accurate and MIN3 the least accurate model. The differences among
maximal models are negligible.

3.2 Comparison of models for five class subsets of ten class datasets

We shall again consider six different probabilistic SVM models, three of them minimal and another three
maximal. The maximal models differ only by the choice of a coupling method.

The differences among the three minimal models are topological. There are three nonisomorphic trees on 5
vertices with diameters 2, 3 and 4. We shall name the corresponding models G2, G3, G4. These are drawn
in Figure 2.

In Table 4 we report on average errors made by the various models for 500 randomly selected 5-class subsets
of the ten classes.

We can again see that maximal models are consistently more accurate. Among the minimal models, the
one corresponding to a star on five vertices (G2) is the most accurate. Among the maximal models, the
performance is approximately equal, with only two exceptions, when the normal coupling yields noticeably
more accurate models on the imagewoof dataset.
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Figure 2: Trees on five vertices
Model Minimal case Maximal case
dataset architecture method | G4 G3 G2 | WLW2 stratified normal
CIFAR-10 46 44 4.0 3.4 3.4 3.4
imagenette resnet18 whole 71 6.7 6.2 4.3 4.2 4.3
imagenette resnet18 fresh 78 76 7.2 6.4 6.4 6.3
imagenette resnet18 adapt 2.6 2.2 1.9 14 14 1.4
imagenette resnet34 whole 6.4 6.0 5.5 3.9 3.9 3.8
imagenette resnet34 fresh 9.2 89 85 7.4 7.4 74
imagenette resnet34 adapt 3.0 24 1.9 1.2 1.2 1.2
imagewoof resnet18 whole | 19.7 19.3 18.6 15.8 15.8 15.4
imagewoof resnet18 fresh 13.8 13,5 13.1 11.9 11.9 11.8
imagewoof resnet18 adapt 6.3 6.1 58 5.3 5.3 5.2
imagewoof resnet34 whole | 18.8 183 17.7 15.3 15.3 14.8
imagewoof resnet34 fresh 16.8 16.4 16.0 14.1 14.1 14.2
imagewoof resnet34 adapt 64 6.1 5.7 5.1 5.1 5.1

Table 4: Comparison of average error rates of minimal and maximal models on five class subsets.

3.3 Models for ten class problems

In this section we compare models for the complete ten class datasets: CIFAR-10, ImageWoof and Ima-
genette. We compare two minimal models, and three maximal models with the neural network models.

Based on the results of the previous two sections we compare two minimal models. The first one, named
MST, is motivated by results of the section 3.1, in which spanning trees with minimal length yielded better
accuracy. Thus MST model is constructed by computing the minimal spanning tree for edges weighted by
d’ metric. The second one, named star, corresponds to the star, a spanning tree graph of diameter which
was shown in 3.2 to be the most accurate topology. The center the star is chosen so that the total sum of d’

corresponding to the edges of the tree is minimal.

The averaged results for 20 different neural networks are shown in Table 5.
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Model Minimal case Maximal case Network
dataset model  method | star MST | WLW2 stratified normal

CIFAR-10 6.6 6.5 6.1 6.1 6.2 5.9
imagenette resnetl8  whole 9.5 9.8 7.1 7.0 7.5 9.5
imagenette resnetl8 fresh 10.7 11.1 9.4 9.3 9.2 8.6
imagenette resnetl8  adapt 2.5 4.8 2.1 2.0 2.1 1.9
imagenette resnet34  whole 8.4 9.1 6.6 6.5 6.5 8.7
imagenette resnet34 fresh 123 13.0 10.9 10.8 11.2 10.4
imagenette resnet34  adapt 2.6 5.6 1.8 1.8 1.8 1.7
imagewoof resnetl8  whole | 284 284 25.3 25.2 24.6 27.2
imagewoof resnetl8 fresh 209 216 19.8 19.8 19.8 19.4
imagewoof resnetl8  adapt 9.8 12.9 9.2 9.2 9.0 9.3
imagewoof resnet34  whole | 26.9  27.0 23.8 23.8 22.9 26.7
imagewoof  resnet34 fresh 25.6 254 22.8 22.8 23.2 22.6
imagewoof resnet34 adapt | 10.3 154 8.9 8.9 8.8 8.9

Table 5: Comparison of average error rates of minimal and maximal models on the ten-class dataset.

We can see that maximal models are consistently more accurate than either of the two minimal models. In
most cases

e the neural network is more accurate than the maximal models,

 all coupling methods yield similar results.

The two exceptions are imagewoof models trained using the 'whole’ methodology, where maximal models
are more accurate and the normal coupling yields noticeably better accuracy compared to other coupling
methods.

The performance of the minimal models is similar for CIFAR-10, but the star model yields better results
overall.

4 Intermediate SVM models

Training costs of maximal SVM models becomes prohibitive for datasets with thousands of classes. The
reason is that the number of pairwise SVM problems grows quadratically with the number of classes. In the
previous sections, we have seen that there is a measurable performance gap between the accuracy achieved by
minimal models compared to that of maximal models. It is therefore natural to ask whether an intermediate
model could be found, when a model requiring significantly less training time would provide most of the
accuracy benefits of maximal models.

The key problem is that the proposed coupling methods all require results for all pairwise odds. However,
one can notice that a missing odds ratio p;/p; can be estimated provided estimates oz, or; of odd ratios
pi/pr and py/p; are known for some k due to the following identity

Pi _ Pi/Pk _ Oik ()

~

pi  Pr/Pi okj

In practice there may be multiple such k yielding differing estimates for p;/p;. Therefore we will use the
estimate

Di Oik 1104
—~ ( H 0) ; (5)
p‘] kEKi]’ kj

where O;; is the set of classes k for which estimates of both p;/py and py/p; are known from a pairwise
model.
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4.1 The choice of the initial graph

Results of sections 3.1 and 3.3 indicate that to choose a minimal star graph, one should aim to minimize
an aggregate of distances of the graph edges. To verify this hypothesis we evaluated all 50 possible graphs.
To visualize them, we projected the 50 classes to two dimensions using multidimensional scaling (Gower
(2015)) with distance being d’ distance computed on pairwise logits. The results are shown in Figure 3.
The visualization shows that it is partly true that choosing an off-center class (e.g. redshank, cardoon, or
desktop computer) as the center of the star graph may yield lower initial accuracy). However, there are many
off-center classes providing high accuracy (e.g. cairn or marimba). Another example is the ’letter opener’
class which lies very close to the best class (corn), yet yields relatively poor accuracy. We conclude that the
benefit of choosing the minimal aggregate distance for the initial graph outweighs the costs of finding one,
and one may choose it simply at random.
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Figure 3: Projection of classes based on d’ distance. The colors indicate the number of correctly classified
instances in the test set (out of 2500).
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4.2 Algorithm for incremental SVM models

This key insight together with the results of previous sections allows us to formulate an incremental multiclass
SVM algorithm. It starts from a minimal model and at each step trains one more pairwise SVM which is used
to update pairwise probabilities, which are then converted by a coupling method to the final probabilistic
classification.

The key variable is F', the set of edges representing potential pairwise SVMs that could be added to an
intermediate model. It is initialized on line 17 to the complement of the initial star graph and updated
whenever a new pairwise SVM is added to the model.

The cost function is included to accommodate the findings of Section 3.1, which showed that it is preferable
to include edges with smaller d’ distances. This information may not be available, in which case one can
simply use constant function d, which amounts to choosing the edge on line 22 at random. However, one
may have an approximation available, for instance from a confusion matrix of another model. When that is
the case, it may prove advantageous to add lower-cost edges first.

The algorithm uses logit representation of pairwise probabilities stored in a tensor of shape N x N x R,
where N is the number of classes and R is the number of samples in the test dataset.

Tensor L is filled in lines 9-15 for the initial minimal model. Whenever a new SVM is added to the model,
it is updated on lines 28-29 and 31-32 according to equation (5).

4.3 Experimental results

We have evaluated the incremental SVM algorithm with two different cost functions on pairs of classes. First
was the uniform (non-informative) cost function which is just a constant and causes one to add a random
edge to the model graph at each step. The second was confusion which for classes ¢ and j is defined as the
average of the corresponding two entries in confusion matrix as computed using the softmax layer of a neural
network. Graphs below summarize mean results after 200 repetitions.

For the first experiment, we used the 10 class datasets used in the previous section. The results are shown in
the first three rows in figure 4. We can see that the expected accuracy increases rapidly with the increasing
number of added SVM models. Except for CIFAR-10, the normal coupling yields noticeably better results,
but even for CIFAR-10, in the case of uniform cost function the normal coupling provides better accuracy
until about half of extra SVMs are added to the initial star graph.

The second experiment used a single network trained on the dataset of 50 Imagenet classes. The results
are also shown in the last row in Figure 4. We can see that the accuracy quickly increases in both settings
when using non-informative cost as well as the confusion cost. An intriguing behavior is decreasing expected
accuracy for WLW2 (and also stratified) coupling method with increasing size of the models in the case of
the uniform cost. To be sure, the decrease is not large, nevertheless, it shows that intermediate size models
may have better accuracy than the maximal models.

Using the confusion cost function proved beneficial for CIFAR-10 dataset, since accuracy increased faster
compared to the uniform cost function.

In all cases we notice that adding about half of the remaining SVM models yields almost all possible accuracy
gains, bridging the performance gap between the minimal and maximal models. The relative performance
of stratified and WLW?2 coupling is very similar. Very often, normal coupling provides an extra performance
boost, except for CIFAR-10 experiment.

4.4 Bipartite model graphs
The choice of the center of the star graph can impact the accuracy of intermediate models for a long initial

period. This is illustrated in Figure 5, comparing performance when choosing the worst (redshank) versus
the best (corn) class as the center of the initial graph.

10
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Algorithm 1 Incremental multiclass SVM model creation

1: procedure GRow SVM(S, T, d, 2)

2: # Argument S is a training dataset with N classes

3 # Argument T is a test dataset with R samples

4 # Argument d is a cost function on pairs of classes of S

5: # Argument Z is a (vectorized) coupling function

6

7 Allocate L to be a tensor of shape N x N x R

8 Choose a spanning tree with star topology. Denote by t its center, and by E the set of its edges.
9: for e := (i,j) € E with i < j do
10: Train the pairwise SVM model on S distinguishing classes i and j
11: Set Ll[i, j,:], L[J,14,:] according to logits of posterior probabilities modelled using Platt’s method
12: for 1 <i< N;i#tdo
13: for 1 <j<N;jé&{ti} do
14: L[i, j,:] < Ll[i,t,:] — L[t, 4,:]
15: L[j,i,:] < —LIi, J,:]

16: Set step <+ 1
17: Set F' to be the complement of F in the set of edges of the complete graph on IV vertices.
18: function O(a,b, F)

19: return {m in {1,..., N} — {a,b} such that (a,m) € F and (m,b) & F}

20: while F' is nonempty do

21: yield(list(step = 4, prediction = Z(L)))

22: Let f = (i,7) with ¢ < j be any edge in F' with minimal length according to the cost function d.
23: Set F « F —{f}

24: Set step < step + 1

25: Train pairwise SVM model on S distinguishing classes ¢ and j

26: Set Ll[i, j,:], L[J,14,:] according to logits of posterior probabilities modelled using Platt’s method
27 for k such that (k,j) € F do

28: Set L[k, j,:] to be the mean of L[k, m,:] — L[m, j,:] where m runs over O(k, j, F)

29: Set L[j, k,:] = —L[k,J,:]

30: for k such that (i,k) € F do

31: Set L[i, k,:] to be the mean of L[i, m,:] — L[m, k,:] where m runs over O(i, k, F')

32: Set L[k,i,:] = —Lli, k,]

Therefore we investigate an alternative approach, when the model graph is a complete bipartite graph
Kqc—q, where 1 < d < C. The key property of these graphs is that their diameter is 2, which allows for
estimation of the pairwise probabilities via (5).

Note that the graph K; c—_; i.e. the case when d = 1 is just the star graph considered previously. We
expect better performance for larger values of d. We have conducted an experiment on Imagenet-50 dataset
comparing the performance of complete bipartite graphs with incremental graphs with the same number of
edges (which equals to the number of SVM that have to be trained). Figure 6 summarizes the results of the
experiment. We can see in that bipartite graphs consistently outperform incremental models and satisfactory
performance is achieved with d values as low as five. Furthermore, bipartite graphs outperformed the maximal
model for both normal and WLW2 coupling. We attribute the excellent performance of bipartite graphs to
the increased likelihood of using SVM providing more information, and decreased likelihood of starting with
all non-informative SVM.
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5 Analysis of differences between coupling methods

In this section, we compare differences in predictions between coupling methods in an experiment on the 50
class subset of Imagenet. We concentrate on the cases when one coupling method errs, yet other yields a
correct prediction. The number of such cases is summarized in Table 6.

WLW2 stratified normal
WLW2 - 5 20
stratified 0 - 17
normal 18 20 -

Table 6: Number of incorrectly classified samples by the method on the left, but correctly classified by the
method on top

Suppose a maximal ensemble of SVM is constructed. For an erroneous prediction by a coupling method, we
call the critical model the SVM model comparing the class incorrectly predicted by the ensemble with the
correct class.

In many cases, the critical SVM model incorrectly predicts pairwise odds > 1. But we will see that some
coupling methods can correct this misprediction.

In the subsequent subsections, we analyze the differences in more detail.

5.1 Visualization methodology

For comparison of two coupling methods we look at errors made by one, which have not been made by the
other. We randomly select 4 samples. For each of the samples, we visualize from top to bottom the following
information:

o We draw the center crop of the corresponding Imagenet picture used to provide input for the neural
network.

e We draw the pairwise likelihoods for the critical pair. Likelihoods > 1 mean incorrect decision
since we compare probabilities of the incorrect class to the correct one. In all cases, the ensemble
prediction, shown in red color above the axis, is > 1, since we visualize only incorrect predictions.
We also present the pairwise likelihoods for the critical SVM model, shown in grey color below the
axis. The axis is logarithmic.

e We visualize the probabilities for the top four predicted classes by drawing horizontal bars. If the
probability is > 5% then we also attach the textual description of the corresponding class.

o The label of the cell consists of two parts. The first is the name of the Imagenet class (directory),
and the other is the variable part of the file in the directory.

5.2 Errors made by the WLW2 method but corrected by the normal method

We can see that in each case shown in Figure 7 the ensemble with WLW2 coupling tried to correct the over-
confidence of the critical SVM model. However, it was not enough, and errors were thus made. However,
the normal method was able to arrive at the correct decision. It shows that the normal method gives more
weight to other models besides the critical one.

5.3 Errors made by the normal method but correctly predicted by the WLW2 method

In Figure 8 we can see cases where the normal method erred. In all of them, the critical SVM made the
correct decision, meaning the pairwise odds were < 1. However, as the result of the coupling of the maximal
set of SVM models, the ensemble output a decision contradicting the critical SVM. In the cases presented
in the Figure, the correct decision was made by the WLW2 model, which indicates it more closely follows
the critical SVM model.
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5.4 Errors made by the WLW2 method but correctly predicted by the stratified method

The number of differences between WLW2 method and the stratified coupling is considerably less, as seen
in Table 6. In fact, there are no errors that the stratified coupling method made, that were avoided by the
WLW2 method. The other way around, there were only 5 instances where WLW2 method erred, and the
stratified didn’t (compared to 20 where WLW2 erred, and the normal method didn’t). Four of them are
shown in Figure 9. We can see that in all cases, both the critical SVM and the ensemble predictions were
near the inter-class boundary where the odds are equal to 1.

5.5 Discussion

The first key finding of this section is that WLW2 method, similarly to the stratified method strongly relies on
the prediction of the critical SVM. A valuable practical implication is that WLW2 and stratified methods are
suitable for element-wise ensemble improvement. This is a procedure where one replaces pairwise estimates
with a better model, perhaps trained using a different cost or other hyperparameters, while keeping the
rest of SVMs in the ensemble unchanged. A method that mostly relies on the critical SVM can convert
improvements in the ensemble element to better performance of the whole ensemble.

Results of this section confirmed previous works showing that stratified and WLW2 are quite similar (Such
et al. (2015)), whereas the classification predictions of the normal method differ (Such & Barreda (2016)).
We remark that the stratified method was designed deductively. Very similar performance of WLW2 method
thus provides a theoretical basis why the WLW2 coupling method has been very successful in practice.

We should note that the performance variation among the methods is not very large. In hindsight, this
can be explained by considering the number of classification boundaries that are close to a given sample.
If there is none, then one may expect the sample to be correctly identified by any coupling method. If the
sample lies close to only one boundary, then disagreement among coupling methods may occur if the sample
is very near the boundary meaning the pairwise odds are very near 1. We can see this happening for instance
in Figure 7 (c), or Figure 9 (b). Most disagreements occur when a sample lies near two or more pairwise
boundaries as seen in Figures 7, 8 and 9. The last case is however relatively infrequent which explains the
similar performance of coupling methods. The relative frequencies of such events are illustrated in Figure
10.

6 Conclusion

It has long been known that probabilistic SVM models perform better than voting ensembles. In this work,
we looked more closely at the performance of various probabilistic multiclass classification models built from
SVM.

In section 3 we showed that there may be a significant performance gap between the smallest and the
largest models. Two properties of the minimal models were demonstrated to influence the gap: metrical and
topological. The metrical property can be described by saying that it is beneficial to include SVM for the
pairs of classes that are hard to separate. The topological property can be summarized that model graphs
of smaller diameter exhibit better performance.

In section 4 we proposed building intermediate-size SVM models. The key insight is equation (5), which
provides a way to estimate pairwise likelihoods even when an SVM is missing in a model graph. This can be
applied straightforwardly for graphs of diameter 2. We formulated an algorithm that starts with a star tree
and adds models according to a predefined cost function. One example of a cost function is non-informative
cost function, with all edges’ costs being equal. Another cost function can be based on the confusion matrix
yielded by a neural network model. In our experiments incremental models reached almost peak accuracy
using just half of the available SVM models. The performance of incremental models may be affected by the
choice of the initial star graph. Another approach, less prone to this problem is to use complete bipartite
graphs. In our experiments, they yielded accuracy close or even above that of maximal models while using
only about 20% of pairwise SVMs.
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The differences among coupling methods were generally small, but they became more pronounced on the
challenging imagewoof dataset. In general, the coupling methods prove most useful for samples lying near
the boundary of three classes. In the most common case - when there is no doubt about classification,
coupling methods agree. Most disagreements occur when a sample lies near one or two pairwise boundaries.
For good classifiers or easily categorized datasets, this is an infrequent occurrence, which explains the similar
performance of coupling methods.

Our evaluations provide more insight into the relative performance of the coupling methods. First, our
experiments confirmed on computer vision datasets the previous findings from audio datasets that stratified
coupling follows closely the established method of Wu-Lin-Weng. Stratified coupling seems to have a slight
edge, which was most apparent in the challeging imagewoof dataset.

In section 5 we closely examined differing predictions on the 50 class subset of Imagenet. They showed that
differences may be accounted for by the tendency of Wu-Lin-Weng method and stratified coupling to rely
on the accuracy of a single SVM — the critical SVM classifier. When the critical SVM classifier errs, then
the whole ensemble errs. This is not the case for normal coupling, which balances predictions of many SVM
models, and is thus able to correct even an erroneous critical SVM.

Normal coupling shows different performance from both WLW2 and stratified coupling. Notably, we found
it to be more accurate on smaller intermediate models. Our findings also suggest a possible explanation for
the success of Wu-Lin-Weng method for SVM, since stratified coupling was devised in a deductive manner.

The results in the paper relied on Platt’s method for estimating pairwise probabilities. This method may
not be optimal and other density modeling methods could yield better results, which provides an avenue for
future research.
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Figure 4: Expected accuracy of incremental models based on the number of additional SVM models added
to an initial star model. Left, the cost matrix is uniform, right the cost matrix is defined by the confusion
matrix of a neural network. Mean is taken over 200 repetitions.
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Figure 5: Comparison of accuracy of incremental models depending on the the center of the initial star graph

(corn or redshank). Averaged over 100 runs with non-informative cost function.
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Figure 6: Comparison of accuracy of incremental models with bipartite models. Average is taken over 200
repetitions of the experiment. Incremental models used non-informative cost function and randomly chosen
center of the initial star graph. Horizontal lines indicate the performance of complete maximal pairwise SVM

model with a given coupling function.
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Figure 7: Sample of 4 images that are incorrectly classified by the WLW2 method, but correctly by the
normal method. See section 5.1 for detailed description of the figure.
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Figure 8: Sample of 4 images that are incorrectly classified by the normal method, but correctly by WLW2
method. See section 5.1 for methodology description.

19



Under review as submission to TMLR

ensemble | | | |
svia - Ui 4 1/4 ﬁ 4 1/4 1 U 4 1/4 11U g
‘tabby dié]ital_clock balance_beam soap_dispenser
kit_fox oap_dispéenser marimba pitcher
spindle bathing_cap purse

corn

(a) n02119789:00024529  (b) n04254120:00046421  (C) n03721384:00019692  (d) n03950228:00010264

Figure 9: Four of the images that are incorrectly classified by WLW2 method, but correctly by the stratified
method. See section 5.1 for detailed description of the figure.
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Figure 10: Distribution of samples in the test set across the number of categories a given sample lies near
to. This is quantified as predicted probability of a given class is bigger than 0.1 by the stratified method.
Erroneous samples are those incorrectly predicted by the stratified method, but correctly by the normal
coupling method. Note that y-scale represents square roots of actual counts.
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