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ABSTRACT

We propose a framework to model the distribution of sequential data coming from
a set of entities connected in a graph with a known topology. The method is
based on a mixture of shared hidden Markov models (HMMs), which are trained
in order to exploit the knowledge of the graph structure and in such a way that the
obtained mixtures tend to be sparse. Experiments in different application domains
demonstrate the effectiveness and versatility of the method.

1 INTRODUCTION AND STATE OF THE ART

Hidden Markov models (HMMs) are a ubiquitous tool for modelling sequential data. They started
by being applied to speech recognition systems and from there they have spread to almost any
application one can think of, encompassing computational molecular biology, data compression,
and computer vision. In the emerging field of cognitive radars (Greco et al., 2018), for the task of
opportunistic usage of the spectrum, HMMs have been recently used to model the occupancy of the
channels by primary users (Stinco et al., 2016).

When the expressiveness of an HMM is not enough, mixtures of HMM have been adopted. Roughly
speaking, mixtures of HMMs can be interpreted as the result of the combination of a set of indepen-
dent standard HMMs which are observed through a memoryless transformation (Couvreur, 1996;
Dias et al., 2010; Subakan et al., 2014; Helske & Helske, 2016).

In many real-life settings one does not have a single data stream but an arbitrary number of net-
work connected entities that share and interact in the same medium and generate data streams in
real-time. The streams produced by each of these entities form a set of time series with both intra
and inter relations between them. In neuroimaging studies, the brain can be regarded as a net-
work: a connected system where nodes, or units, represent different specialized regions and links,
or connections, represent communication pathways. From a functional perspective, communication
is coded by temporal dependence between the activities of different brain areas (De Vico Fallani
et al., 2014). Also team sports intrinsically involve fast, complex and interdependent events among
a set of entities (the players), which interact as a team (Tora et al., 2017; Theagarajan et al., 2018).
Thus, understanding a player’s behavior implies understanding the behavior of his teammates and
opponents over time.

The extraction of knowledge from these streams to support the decision-making process is still
challenging and the adaptation of HMM to this scenario is immature at best. Ferles & Stafylopatis
(2013) proposed a hybrid approach combining the Self-Organizing Map (SOM) and the HMM with
applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces.
Note that the model at each node is limited to a simple HMM. Wireless local area networks have
also been modeled with Markov-based approaches. For instance, Allahdadi et al. (2014) use HMMs
for outlier detection in 802.11 wireless access points. However, the typical approaches include a
common HMM model for all nodes (with strong limited flexibility) and a HMM model per node,
independent of the others (not exploring the dependencies between nodes). Bolton et al. (2018)
built a sparse coupled hidden Markov model (SCHMM) framework to parameterize the temporal
evolution of data acquired with functional magnetic resonance imaging (fMRI). The coupling is
captured in the transition matrix, which is assumed to be a function of the activity levels of all the
streams; the model per node is still restricted to a simple HMM.
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In general, in networked data streams, the stream observed in each sensor is often modeled by
HMMs but the intercorrelations between sensors are seldom explored. The proper modeling of the
intercorrelations has the potential to improve the learning process, acting as a regularizer in the
learning process. In here we propose to tackle this void, by proposing as observation model at each
node a sparse mixture of HMMs, where the dependencies between nodes are used to promote the
sharing of HMM components between similar nodes.

2 PROPOSED MODEL

The proposed model finds intersections with distributed sparse representation and multitask learning.

2.1 OVERVIEW

Sparse representation/coding expresses a signal/model f , defined over some independent variable x,
as a linear combination of a few atoms from a prespecified and overcomplete dictionary:

fpxq “
ÿ

i

siφipxq, (1)

where φipxq are the atoms and only a few of the scalars si are non-zero, providing a sparse repre-
sentation of fpxq.

Distributed sparse representation (Baron et al., 2009) is an extension of the standard version that
considers networks with K nodes. At each node, the signal sensed at the same node has its sparsity
property because of its intracorrelation, while, for networks with multiple nodes, signals received at
different nodes also exhibit strong intercorrelation. The intra- and inter-correlations lead to a joint
sparse model. An interesting scenario in distributed sparse representation is when all signals/models
share the common support but with different non-zero coefficients.

Multitask learning techniques rely on the idea that individual models for related tasks should share
some structure (parameters or hyperparameters). An interesting approach is based on adapting
knowledge instead of data, handled by parameter transfer approaches, where parameters for dif-
ferent tasks/models are shared or constrained to be similar (Fernandes & Cardoso, 2017).

Inspired by the formulation of equation 1, we propose to model the generative distribution of the
data coming from each of the K nodes of a network as a sparse mixture obtained from a dictionary
of generative distributions. Specifically, we shall model each node as a sparse HMM mixture over a
‘large’ dictionary of HMMs, where each HMM corresponds to an individual atom from the dictio-
nary. The field knowledge about the similarities between nodes is summarized in an affinity matrix.
The objective function of the learning process promotes reusing HMM atoms between similar nodes.
We formalize now these ideas.

2.2 MODEL FORMULATION

2.2.1 DEFINITION

Assume we have a set of nodes Y “ t1, ...,Ku connected by an undirected weighted graph G,
expressed by a symmetric matrix G P RKˆK . These nodes thus form a network, in which the
weights are assumed to represent degrees of affinity between each pair of nodes (i.e. the greater the
edge weight, the more the respective nodes like to agree).
The nodes y in the graph produce D-dimensional sequences X “

`

xp1q, ...,xpT q
˘

, xptq P RD,
whose conditional distribution we shall model using a mixture of HMMs:

ppX|yq “
ÿ

z

ppz|yqppX|zq, (2)

where z P t1, ...,Mu is a latent random variable, being M the size of the mixture. Here, ppX|zq is
the marginal distribution of observations of a standard first-order HMM:

ppX|zq “
ÿ

h

pphp0q|zq
ź

t

pphptq|hpt´1q, zqppxptq|hptq, zq, (3)
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where h “
´

hp0q, ..., hpT q
¯

, hptq P t1, ..., Su, is the sequence of hidden states of the HMM, being S
the number of hidden states. Note that the factorization in equation 2 imposes conditional indepen-
dence between the sequence X and the node y, given the latent variable z. This is a key assumption
of this model, since this way the distributions for the observations in the nodes in Y share the same
pool of HMMs, promoting parameter sharing among the K mixtures.

2.2.2 INFERENCE

Given an observed sequence X and its corresponding node y P Y, the inference problem here con-
sists in finding the likelihood ppX “X|y “ yq (from now on, abbreviated as ppX|yq) as defined by
equations 2 and 3. The marginals ppX|zq of each HMM in the mixture may be computed efficiently,
in OpS2T q time, using the Forward algorithm (Rabiner & Juang, 1986). Then, ppX|yq is obtained
by applying equation 2, so inference in the overall model is done in at most OpMS2T q time. As we
shall see, however, the mixtures we get after learning will often be sparse (see section 2.2.3), leading
to an even smaller time complexity.

2.2.3 LEARNING

Given an i.i.d. dataset consisting of N tuples pXi, yiq of sequences of observations Xi “
´

x
p1q
i , ...,x

pTiq

i

¯

and their respective nodes yi P Y, the model defined by equations 2 and 3, may be
easily trained using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977), (locally)
maximizing the usual log-likelihood objective:

Jpθq “
ÿ

i

log ppXi|yi, θq, (4)

where θ represents all model parameters, namely:

1. the mixture coefficients, αk :“ pppz “ 1|y “ kq, ..., ppz “M |y “ kqq, for k “ 1, ...,K;

2. the initial state probabilities, πm :“
´

pphp0q “ 1|z “ mq, ..., pphp0q “ S|z “ mq
¯

, for
m “ 1, ...,M ;

3. the state transition matrices, Am, where Ams,u :“ pphptq “ u|hpt´1q
“ s, z “ mq, for

s, u “ 1, ..., S and m “ 1, ...,M ;
4. the emission probability means, µm,s P RD, for m “ 1, ...,M and s “ 1, ..., S;

5. the emission probability diagonal covariance matrices, σ2
m,sI , where σ2

m,s P R`D, for
m “ 1, ...,M and s “ 1, ..., S.

Here, we are assuming that the observations are continuous and the emission probabilities
ppxptq|hptq, zq are gaussian with diagonal covariances. This introduces almost no loss of general-
ity, since the extension of this work to discrete observations or other types of continuous emission
distributions is straightforward.

The procedure to maximize equation 4 using EM is described in Algorithm 1, in section A.1. The
update formulas follow from the standard EM procedure and can be obtained by viewing this model
as Bayesian network or by following the derivation detailed in section A.2. However, the objective
4 does not take advantage of the known structure of G. In order to exploit this information, we
introduce a regularization term, maximizing the following objective instead:

Jrpθq “
1

N

ÿ

i

log ppXi|yi, θq `
λ

2

ÿ

j,k‰j

Gj,kEz„ppz|y“j,θqrppz|y “ k, θqs, (5)

where λ ě 0 controls the relative weight of the two terms in the objective. The expectations
Ez„ppz|y“j,θqrppz|y “ k, θq have interesting properties which are enlightened and proven in Propo-
sition 1.
Proposition 1. Let P be the set of all M -nomial probability distributions. We have:

1. minp,qPP Ez„prqpzqs “ 0;
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2. argminp,qPP Ez„prqpzqs “ tp, q P P | @m P t1, ...,Mu : ppz “ mqqpz “ mq “ 0u;

3. maxp,qPP Ez„prqpzqs “ 1;

4. argmaxp,qPP Ez„prqpzqs “ tp, q P P | Dm P t1, ...,Mu : ppz “ mq “ qpz “ mq “ 1u .

Proof. By the definition of expectation,

Ez„prqpzqs “
ÿ

m

ppz “ mqqpz “ mq. (6)

Statements 1 and 2 follow immediately from the fact that every term in the right-hand side of equa-
tion 6 is non-negative.
For the remaining, we note that equation 6 may be rewritten as the dot product of twoM -dimensional
vectorsαp andαq , representing the two distributions p and q, respectively, and we use the following
linear algebra inequalities to build an upper bound for this expectation:

Ez„prqpzqs “ αᵀ
pαq ď ||αp||2||αq||2 ď ||αp||1||αq||1 “ 1, (7)

where || ¨ ||1 and || ¨ ||2 are the L1 and L2 norms, respectively. Clearly, the equality Ez„prqpzqs “ 1
holds if p and q are chosen from the set defined in statement 4, where the distributions p and q are
the same and they are non-zero for a single assignment of z. This proves statement 3.
Now, to prove statement 4, it suffices to show that there are no other maximizers. The first inequality
in equation 7 is transformed into an equality if and only ifαp “ αq , which means p ” q. The second
inequality becomes an equality when the L1 and L2 norms of the vectors coincide, which happens
if and only if the vectors have only one non-zero component, concluding the proof.

Specifically, given two distinct nodes j, k P Y , if Gj,k ą 0, the regularization term for these nodes
is maximum (and equal to Gj,k) when the mixtures for these two nodes are the same and have
one single active component (i.e. one mixture component whose coefficient is non-zero). On the
contrary, if Gj,k ă 0, the term is maximized (and equal to zero) when the mixtures for the two
nodes do not share any active components. In both cases, though, we conclude from Proposition 1
that we are favoring sparse mixtures. We see sparsity as an important feature since: 1 – it allows the
coefficients to better capture the graph structure, which is usually sparse, and 2 – it leads to mixtures
with fewer components, yielding faster inference and (possibly) less overfitting.

By setting λ “ 0, we clearly get the initial objective 4, where inter-node correlations are modeled
only via parameter sharing. As λ Ñ 8, two interesting scenarios may be anticipated. If Gj,k ą
0, @j, k, all nodes will tend do share the same single mixture component, i.e. we would be learning
one single HMM to describe the whole network. If Gj,k ă 0, @j, k, and M ě K, each node would
tend to learn its own HMM model independently from all the others.

The objective function 5 can still be maximized via EM (see details in section A.3). However, the
introduction of the regularization term in the objective makes it impossible to find a closed form
solution for the update formula of the mixture coefficients. Thus, in the M-step, we need to resort to
gradient ascent to update these parameters. In order to ensure that the gradient ascent iterative steps
lead to admissible solutions, we adopt the following reparameterization from Yang et al. (2018):

αk,m “
σ pβk,mq

2

ř

l σ pβk,lq
2 , (8)

where σp¨q is the rectifier linear (ReLU) function. This reparameterization clearly resembles the
softmax function, but, contrarily to that one, admits sparse outputs. The squared terms in equation 8
aim only to make the optimization more stable. The optimization steps for the objective 5 using this
reparameterization are described in Algorithm 2, in section A.1.

3 EXPERIMENTAL EVALUATION

The model was developed on top of the library hmmlearn1 for Python, which implements inference
and unsupervised learning for the standard HMM using a wide variety of emission distributions.

1https://github.com/hmmlearn/hmmlearn
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Both learning and inference use the hmmlearn API, with the appropriate adjustments for our models.
For reproducibility purposes, we make our source code, pre-trained models and the datasets publicly
available2.

We evaluate four different models in our experiments: a model consisting of a single HMM (denoted
as 1-HMM) trained on sequences from all graph nodes; a model consisting of K HMMs trained
independently (denoted as K-HMM), one for each graph node; a mixture of HMMs (denoted as
MHMM) as defined in this work (equations 2 and 3), trained to maximize the usual log-likelihood
objective (equation 4); a mixture of HMMs (denoted as SpaMHMM) as the previous one, trained to
maximize our regularized objective (equation 5). Models 1-HMM, K-HMM and MHMM will be our
baselines. We shall compare the performance of these models with that of SpaMHMM and, for the
case of MHMM, we shall also verify if SpaMHMM actually produces sparser mixtures in general,
as argued in section 2.2.3. In order to ensure a fair comparison, we train models with approximately
the same number of possible state transitions. Hence, given an MHMM or SpaMHMM with M
mixture components and S states per component, we train a 1-HMM with « S

?
M states and

a K-HMM with « S
a

M{K states per HMM. We initialize the mixture coefficients in MHMM
and SpaMHMM randomly, while the state transition matrices and the initial state probabilities are
initialized uniformly. Means are initialized using k-means, with k equal to the number of hidden
states in the HMM, and covariances are initialized with the diagonal of the training data covariance.
Models 1-HMM and K-HMM are trained using the Baum-Welch algorithm, MHMM is trained
using Algorithm 1 and SpaMHMM is trained using Algorithm 2. However, we opted to use Adam
(Kingma & Ba, 2014) instead of “vanilla” gradient ascent in the inner loop of Algorithm 2, since its
per-parameter learning rate proved to be beneficial for faster convergence.

3.1 ANOMALY DETECTION IN WI-FI NETWORKS

A typical Wi-Fi network infrastructure is constituted byK access points (APs) distributed in a given
space. The network users may alternate between these APs seamlessly, usually connecting to the
closest one. There is a wide variety of anomalies that may happen during the operation of such
network and their automatic detection is, therefore, of great importance for future mitigation plans.
Some anomalous behaviors are: overloaded APs, failed or crashed APs, persistent radio frequency
(RF) interference between adjacent APs, authentication failures, etc. However, obtaining reliable
ground truth annotation of these anomalies in entire wireless networks is costly and time consuming.
Under these circumstances, using data obtained through realistic network simulations is a common
practice.

In order to evaluate our model in the aforementioned scenario, we have followed the procedure
of Allahdadi & Morla (2017), performing extensive network simulations using OMNeT++3 and
INET4. The former is a discrete event simulator for modeling communication networks that is used
in many problem domains, including wireless networks. The latter is a framework that provides
detailed models for several communication protocols (TCP, IP, IEEE 802.11, etc.). Here, we used
OMNeT++ and INET to generate traffic in a typical Wi-Fi network setup (IEEE 802.11 WLANg 2.4
GHz in infrastructure mode).

Our network consists of 10 APs and 100 users accessing it. The pairwise distances between APs
are known and fixed. Each sequence contains information about the traffic in a given AP during 10
consecutive hours and is divided in time slots of 15 minutes without overlap. Thus, every sequence
has the same length, which is equal to 40 samples (time slots). Each sample contains the following
7 features: the number of unique users connected to the AP, the number of sessions within the
AP, the total duration (in seconds) of association time of all current users, the number of octets
transmitted and received in the AP and the number of packets transmitted and received in the AP.
Anomalies typically occur for a limited amount of time within the whole sequence. However, in
this experiment, we label a sequence as “anomalous” if there is at least one anomaly period in the
sequence and we label it as “normal” otherwise. One of the simulations includes normal data only,
while the remaining include both normal and anomalous sequences. In order to avoid contamination
of normal data with anomalies that may occur simultaneously in other APs, we used the data of the

2URL available after decision
3https://www.omnetpp.org
4https://inet.omnetpp.org/
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normal simulation for training (150 sequences) and the remaining data for testing (378 normal and
42 anomalous sequences).

In a Wi-Fi network, as users move in the covered area, they disconnect from one AP and they
immediately connect to another in the vicinity. As such, the traffic in adjacent APs may be expected
to be similar. Following this idea, the weight Gj,k, associated with the edge connecting nodes j
and k in graph G, was set to the inverse distance between APs j and k and normalized so that
maxj,kGj,k “ 1. As in Allahdadi & Morla (2017), sequences were preprocessed by subtracting the
mean and dividing by the standard deviation and applying PCA, reducing the number of features to
3. For MHMM, we did 3-fold cross validation of the number of mixture components M and hidden
states per component S. We ended up using M “ 10 and S “ 10. We then used the same values of
M and S for SpaMHMM and we did 3-fold cross validation for the regularization hyperparameter
λ in the range r10´4, 1s. The value λ “ 10´1 was chosen. We also cross-validated the number of
hidden states in 1-HMM and K-HMM around the values indicated in section 3. Every model was
trained for 100 EM iterations or until the loss plateaus. For SpaMHMM, we did 100 iterations of
the inner loop on each M-step, using a learning rate ρ “ 10´3.

Models were evaluated by computing the average log-likelihood per sample on normal and anoma-
lous test data, plotting the receiver operating characteristic (ROC) curves and computing the re-
spective areas under the curves (AUCs). Figure 1 shows that the ROC curves for MHMM and
SpaMHMM are very similar and that these models clearly outperform 1-HMM and K-HMM. This
is confirmed by the AUC and log-likelihood results in table 1. Although K-HMM achieved the best
(lowest) average log-likelihood on anomalous data, this result is not relevant, since it also achieved
the worst (lowest) average log-likelihood on normal data. This is in fact the model with the worst
performance, as shown by its ROC and respective AUC.

The bad performance of K-HMM likely results mostly from the small amount of data that each of the
K models is trained with: in K-HMM, each HMM is trained with the data from the graph node (AP)
that it is assigned to. The low log-likelihood value of the normal test data in this model confirms
that the model does not generalize well to the test data and is probably highly biased towards the
training data distribution. On the other hand, in 1-HMM there is a single HMM that is trained with
the whole training set. However, the same HMM needs to capture the distribution of the data coming
from all APs. Since each AP has its own typical usage profile, these data distributions are different
and one single HMM may not be sufficiently expressive to learn all of them correctly. MHMM and
SpaMHMM combine the advantages and avoid the disadvantages of both previous models. Clearly,
since the mixtures for each node share the same pool of HMMs, every model in the mixture is
trained with sequences from all graph nodes (at least in the first few training iterations). Thus,
at this stage, the models may capture behaviors that are shared by all APs. As mixtures become
sparser during training, mixture components specialize on the distribution of a few APs. This avoids
the problem observed in 1-HMM, which is unaware of the AP where a sequence comes from. We
would also expect SpaMHMM to be sparser and have better performance than MHMM, but only the
former supposition was true (see figure 2) and by a small difference. The inexistence of performance
gains in SpaMHMM might be explained from the fact that this dataset consists of simulated data,
where users are static (i.e. they do not swap between APs unless the AP where they are connected
stops working) and so the assumption that closer APs have similar distributions does not bring any
advantage.

3.2 HUMAN MOTION FORECASTING

The human body is constituted by several interdependent parts, which interact as a whole producing
sensible global motion patterns. These patterns may correspond to multiple activities like walking,
eating, etc. Here, we use our model to make short-time prediction of sequences of human joint
positions, represented as motion capture (mocap) data. The current state of the art methodologies use
architectures based on deep recurrent neural networks (RNNs), achieving remarkable results both
in short-time prediction (Fragkiadaki et al., 2015; Martinez et al., 2017) and in long-term motion
generation (Jain et al., 2016; Pavllo et al., 2018).

Our experiments were conducted on the Human3.6M dataset from Ionescu et al. (2011; 2014), which
consists of mocap data from 7 subjects performing 15 distinct actions. In this experiment, we have
considered only 4 of those actions, namely “walking”, “eating”, “smoking” and “discussion”. There,
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Figure 1: ROC curves for each model on the Wi-Fi dataset.

Avg. log-likelihood
AUC Normal data Anom. data

1-HMM 0.808 -6.28 -112.75
K-HMM 0.786 -21.01 -136.24
MHMM 0.842 -3.07 -11.99
SpaMHMM 0.839 -3.06 -14.57

Table 1: AUC and average log-
likelihood per sample for each model in
the Wi-Fi dataset. Best results are in
bold.

the human skeleton is represented with 32 joints whose position is recorded at 50 Hz. We build our
32x32-dimensional symmetric matrixG representing the graph G in the following sensible manner:
Gj,k “ 1, if there is an actual skeleton connection between joints j and k (e.g. the elbow joint is
connected to the wrist joint by the forearm); Gj,k “ 1, if joints j and k are symmetric (e.g. left and
right elbows); Gj,k “ 0, otherwise.

3.2.1 FORECASTING

We reproduced as much as possible the experimental setup followed in Fragkiadaki et al. (2015).
Specifically, we down-sampled the data by a factor of 2 and transformed the raw 3-D angles into
an exponential map representation. We removed joints with constant exponential map, yielding a
dataset with 22 distinct joints, and pruned our matrixG accordingly. Training was performed using
data from 6 subjects, leaving one subject (denoted in the dataset by “S5”) for testing. We did 3-fold
cross-validation on the training data of the action “walking” to find the optimal number of mixture
components M and hidden states S for the baseline mixture MHMM. Unsurprisingly, since this
model can hardly overfit in such a complex task, we ended up with M “ 18 and S “ 12, which
were the largest values in the ranges we defined. Larger values are likely to improve the results,
but the learning time would become too large to be practical. For SpaMHMM, we used these same
values of M and S and we did 3-fold cross validation on the training data of the action “walking” to
fine-tune the value of λ in the range r10´4, 1s. We ended up using λ “ 0.05. The number of hidden
states in 1-HMM was set to 51 and in K-HMM it was set to 11 hidden states per HMM. The same
values were then used to train the models for the remaining actions. Every model was trained for
100 iterations of EM or until the loss plateaus. For SpaMHMM, we did 100 iterations of the inner
loop on each M-step, using a learning rate ρ “ 10´2.

In order to generate predictions for a joint (node) y starting from a given prefix sequence Xpref,
we build the distribution ppX|Xpref, yq (see details in section A.4) and we sample sequences from
that posterior. Our evaluation method and metric again followed Fragkiadaki et al. (2015). We fed
our model with 8 prefix subsequences with 50 frames each (corresponding to 2 seconds) for each
joint from the test subject and we predicted the following 10 frames (corresponding to 400 ms).
Each prediction was built by sampling 100 sequences from the posterior and averaging. We then
computed the average mean angle error for the 8 sequences at different time horizons.

Results are in table 2. Among our models (1-HMM, K-HMM, MHMM and SpaMHMM),
SpaMHMM outperformed the remaining in all actions except “eating”. For this action in partic-
ular, MHMM was slightly better than SpaMHMM, probably due to the lack of symmetry between
the right and left sides of the body, which was one of the prior assumptions that we have used
to build the graph G. “Smoking” and “discussion” activities may also be highly non-symmetric,
but results in our and others’ models show that these activities are generally harder to predict than
“walking” and “eating’. Thus, here, the skeleton structure information encoded in G behaves as a
useful prior for SpaMHMM, guiding it towards better solutions than MHMM. The worse results for
1-HMM and K-HMM likely result from the same limitations that we have pointed out in section 3.1:
each component in K-HMM is inherently trained with less data than the remaining models, while
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Walking Eating Smoking Discussion
miliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400
1-HMM 0.91 1.04 1.22 1.31 1.00 1.08 1.15 1.21 1.45 1.55 1.70 1.75 1.19 1.42 1.55 1.56
K-HMM 1.29 1.33 1.34 1.38 1.16 1.22 1.28 1.34 1.70 1.77 1.90 1.95 1.47 1.61 1.68 1.63
MHMM 0.78 0.93 1.13 1.21 0.77 0.87 0.98 1.06 1.44 1.53 1.69 1.77 1.14 1.36 1.52 1.54
SpaMHMM 0.80 0.93 1.11 1.18 0.81 0.90 0.99 1.06 1.29 1.39 1.61 1.67 1.09 1.30 1.44 1.49
ERD (Fragkiadaki et al., 2015) 0.93 1.18 1.59 1.78 1.27 1.45 1.66 1.80 1.66 1.95 2.35 2.42 2.27 2.47 2.68 2.76
LSTM-3LR (Fragkiadaki et al., 2015) 0.77 1.00 1.29 1.47 0.89 1.09 1.35 1.46 1.34 1.65 2.04 2.16 1.88 2.12 2.25 2.23
SRNN (Jain et al., 2016) 0.81 0.94 1.16 1.30 0.97 1.14 1.35 1.46 1.45 1.68 1.94 2.08 1.22 1.49 1.83 1.93
GRU sup. (Martinez et al., 2017) 0.28 0.49 0.72 0.81 0.23 0.39 0.62 0.76 0.33 0.61 1.05 1.15 0.31 0.68 1.01 1.09
QuaterNet (Pavllo et al., 2018) 0.21 0.34 0.56 0.62 0.20 0.35 0.58 0.70 0.25 0.47 0.93 0.90 0.26 0.60 0.85 0.93

Table 2: Mean angle error for short-term motion prediction on Human3.6M for different actions
and time horizons. The results for ERD, LSTM-3LR, SRNN, GRU supervised and QuaterNet were
extracted from Pavllo et al. (2018). Best results among our models are in bold, best overall results
are underlined.
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Figure 2: Relative sparsity (number of coefficients equal to zero / total number of coefficients) of
the obtained MHMM and SpaMHMM models on the Wi-Fi dataset (left) and on the Human3.6M
dataset for different actions (right). Both models for the Wi-Fi dataset have 150 coefficients. All
models for the Human3.6M dataset have 396 coefficients.

1-HMM does not make distinction between different graph nodes. Extending the discussion to the
state of the art solutions for this problem, we note that SpaMHMM compares favorably with ERD,
LSTM-3LR and SRNN, which are all RNN-based architectures. Moreover, ERD and LSTM-3LR
were designed specifically for this task, which is not the case for SpaMHMM. This is also true for
GRU supervised and QuaterNet, which clearly outperform all remaining models, including ours.
This is unsurprising, since RNNs are capable of modeling more complex dynamics than HMMs,
due to their intrinsic non-linearity and continuous state representation. This also allows their usage
for long-term motion generation, in which HMMs do not behave well due their linear dynamics.
However, unlike GRU supervised and QuaterNet, SpaMHMM models the probability distribution
of the data directly, allowing its application in domains like novelty detection. Regarding sparsity,
the experiments confirm that the SpaMHMM mixture coefficients are actually sparser than those of
MHMM, as shown in figure 2.

3.2.2 JOINT CLUSTER ANALYSIS

We may roughly divide the human body in four distinct parts: upper body (head, neck and shoul-
ders), arms, torso and legs. Joints that belong to the same part naturally tend to have coherent
motion, so we would expect them to be described by more or less the same components in our mix-
ture models (MHMM and SpaMHMM). Since SpaMHMM is trained to exploit the known skeleton
structure, this effect should be even more apparent in SpaMHMM than in MHMM.

In order to confirm this conjecture, we have trained MHMM and SpaMHMM for the action “walk-
ing” using four mixture components only, i.e. M “ 4, and we have looked for the most likely
component (cluster) for each joint:

Ck “ argmax
mPt1,2,3,4u

ppz “ m|y “ kq “ argmax
mPt1,2,3,4u

αk,m, (9)

where Ck is, therefore, the cluster assigned to joint k. The results are in figure 3. From there we can
see that MHMM somehow succeeds on dividing the body in two main parts, by assigning the joints
in the torso and in the upper body mostly to the red/’+’ cluster, while those in the hips, legs and feet
are almost all assigned to the green/’Ÿ’ cluster. Besides, we see that in the vast majority of the cases,
symmetric joints are assigned to the same cluster. These observations confirm that we have chosen
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Figure 3: Assignments of joints to clusters in MHMM (left) and SpaMHMM (right). The different
symbols (‘˝’, ‘Ÿ’, ‘x’, ‘+’) and the respective colors (blue, green, orange and red) on each joint
represent the cluster that the joint was assigned to.

the graph G for this problem in an appropriate manner. However, some assignments are unnatural:
e.g. one of the joints in the left foot is assigned to the red/‘+’ cluster and the blue/‘˝’ cluster is
assigned to one single joint, in the left forearm. We also observe that the distribution of joints per
clusters is highly uneven, being the green/‘Ÿ’ cluster the most represented by far. SpaMHMM, on
the other hand, succeeds on dividing the body in four meaningful regions: upper body and upper
spine in the green/‘Ÿ’ cluster; arms in the blue/‘˝’ cluster; lower spine and hips in the orange/‘x’
cluster; legs and feet in the red/‘+’ cluster. Note that the graph G used to regularize SpaMHMM
does not include any information about the body part that a joint belongs to, but only about the
joints that connect to it and that are symmetric to it. Nevertheless, the model is capable of using
this information together with the training data in order to divide the skeleton in an intuitive and
natural way. Moreover, the distribution of joints per cluster is much more even in this case, what
may also help to explain why SpaMHMM outperforms MHMM: by splitting the joints more or less
evenly by the different HMMs in the mixture, none of the HMM components is forced to learn too
many motion patterns. In MHMM, we see that the green/‘+’ component, for instance, is the most
responsible to model the motion of almost all joints in the legs and hips and also some joints in the
arms and the red/‘+’ component is the prevalent on the prediction of the motion patterns of the neck
and left foot, which are presumably very different.

4 CONCLUSION AND FUTURE WORK

In this work we propose a method to model the generative distribution of sequential data coming
from nodes connected in a graph with a known fixed topology. The method is based on a mixture
of HMMs where its coefficients are regularized during the learning process in such a way that affine
nodes will tend to have similar coefficients, exploiting the known graph structure. We also prove
that the proposed regularizer promotes sparsity in the mixtures, which is achieved through a fully
differentiable loss function (i.e. with no explicit L0 penalty term). We evaluate the method’s perfor-
mance in two completely different tasks (anomaly detection in Wi-Fi networks and human motion
forecasting), showing its effectiveness and versatility.

For future work, we plan to extend/evaluate the usage of SpaMHMM for sequence clustering. This
is an obvious extension that we did not explore thoroughly in this work, since its main focus was
modeling the generative distribution of data. In this context, extending the idea behind SpaMHMM
to mixtures of more powerful generative distributions is also in our plans. As is known, HMMs have
limited expressiveness due to the strong independence assumptions they rely on. Thus, we plan to
extend these ideas to develop an architecture based on more flexible generative models for sequence
modeling, like those attained using deep recurrent architectures.
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A APPENDIX

A.1 ALGORITHMS

Data: The training set, consisting of N tuples pXi, yiq, a set of initial parameters θp0q and the
number of training iterations I.

for j “ 1, ..., I do
Sufficient statistics:

1. nk :“
ř

i 1yi“k, where 1t¨u is the indicator function, for k “ 1, ...,K.

2. Obtain the mixture posteriors ηi,m :“ ppz “ m|Xi, yi, θ
pj´1qq, for i “ 1, ..., N and

m “ 1, ...,M , by computing η̃i,m :“ ppXi|z “ m, θpj´1qqppz “ m|yi, θ
pj´1qq and

normalizing it.

3. Obtain the state posteriors γi,m,sptq :“ pphptq “ s|z “ m,Xi, θ
pj´1qq and

ξi,m,s,uptq :“ pphpt´1q
“ s, hptq “ u|z “ m,Xi, θ

pj´1qq, for i “ 1, ..., N , m “ 1, ...,M
and s, u “ 1, ..., S, as done in the Baum-Welch algorithm (Baum, 1972).

M-step:

1. αk,m “
ř

i ηi,m1yi“k

nk
, for k “ 1, ...,K and m “ 1, ...,M , obtaining αk.

2. πm,s “
ř

i ηi,mγi,m,sp0q
ř

i ηi,m
, for m “ 1, ...,M and s “ 1, ..., S, obtaining πm.

3. Ams,u “
ř

i ηi,m
řTi

t“1 ξi,m,s,uptq
ř

i ηi,m
řTi´1

t“0 γi,m,sptq
, for m “ 1, ...,M and s, u “ 1, ..., S, obtainingAm.

4. µm,s “
ř

i ηi,m
řTi

t“1 γi,m,sptqx
ptq
i

ř

i ηi,m
řTi

t“1 γi,m,sptq
, for m “ 1, ...,M and s “ 1, ..., S.

5. σ2
m,s “

ř

i ηi,m
řTi

t“1 γi,m,sptq
´

x
ptq
i ´µm

s

¯2

ř

i ηi,m
řTi

t“1 γi,m,sptq
, for m “ 1, ...,M and s “ 1, ..., S.

6. θpjq “
Ť

k,m,s

 

αk,πm,A
m,µm,s,σ

2
m,s

(

.

end
Algorithm 1: EM algorithm for the mixture without regularization (MHMM).

Data: The training set, consisting of N tuples pXi, yiq, the matrixG describing the graph G, the
regularization hyperparameter λ, a set of initial parameters θp0q, the number of training
iterations I, the number of gradient ascent iterations J to perform on each M-step, the
learning rate ρ for the gradient ascent.

for j “ 1, ..., I do
Sufficient statistics: same as in Algorithm 1.
M-step:
for l “ 1, ...,J do

1. ψk,m :“ 1
N

ř

ipηi,m ´ αk,mq1yi“k, for k “ 1, ...,K and m “ 1, ...,M .

2. ωk,m :“ αk,m
ř

j‰kGj,k
`

αj,m ´α
ᵀ
jαk

˘

, for k “ 1, ...,K and m “ 1, ...,M .

3. δk,m :“ 1βk,mą0
2σ1pβk,mq

σpβk,mq
pψk,m ` λωk,mq, where σ1p¨q is the derivative of σp¨q, for

k “ 1, ...,K and m “ 1, ...,M .
4. βk,m Ð βk,m ` ρδk,m, for k “ 1, ...,K and m “ 1, ...,M .
5. Use equation 8 to obtain αk,m, for k “ 1, ...,K and m “ 1, ...,M .

end
Do steps 2) – 6) in the M-step of Algorithm 1.

end
Algorithm 2: EM algorithm for the mixture with regularization (SpaMHMM).
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A.2 PROOF OF ALGORITHM 1

Algorithm 1 follows straightforwardly from applying EM to the model defined by equations 2 and
3 with the objective 4.
Let us define the following notation: X :“ tXiu

N
i“1, y :“ tyiu

N
i“1, z :“ tziu

N
i“1 and H :“ thiu

N
i“1.

After building the usual variational lower bound for the log-likelihood and performing the E-step,
we get the following well-known objective:

J̃pθ, θ-q “
ÿ

z,H

ppX, z,H|y, θ-q log ppX, z,H|y, θq, (10)

which we want to maximize with respect to θ and where θ- are the model parameters that were
kept fixed in the E-step. Some of the parameters in the model are constrained to represent valid
probabilities, yielding the following Lagrangian:

Lpθ, θ-,λq “ J̃pθ, θ-q `
ÿ

k

λmix
k p1´ ||αk||1q

`
ÿ

m,s

λstate
m,s

˜

1´
ÿ

u

Ams,u

¸

`
ÿ

m

λini
m p1´ ||πm||1q , (11)

where λ summarizes all Lagrange multipliers used here (not to be confused with the regulariza-
tion hyperparameter λ used in equation 5). Differentiating equation 11 with respect to each model
parameter and Lagrange multiplier and solving for the critical points yields:

αk,m “

ř

i ppzi “ m|Xi, yi, θ
-q1yi“k

ř

i 1yi“k
, (12)

πm,s “

ř

i ppzi “ m|Xi, yi, θ
-qpphp0qi “ s|zi “ m,Xi, yi, θ

-q
ř

i ppzi “ m|Xi, yi, θ-q
, (13)

Ams,u “

ř

i ppzi “ m|Xi, yi, θ
-q
řTi

t“1 pph
pt´1q
i “ s, hptqi “ u|zi “ m,Xi, yi, θ

-q
ř

i ppzi “ m|Xi, yi, θ-q
řTi

t“1 pph
pt´1q
i “ s|zi “ m,Xi, yi, θ-q

, (14)

µm,s “

ř

i ppzi “ m|Xi, yi, θ
-q
řTi

t“1 pph
ptq
i “ s|zi “ m,Xi, yi, θ

-qx
ptq
i

ř

i ppzi “ m|Xi, yi, θ-q
řTi

t“1 pph
ptq
i “ s|zi “ m,Xi, yi, θ-q

, (15)

σ2
m,s “

ř

i ppzi “ m|Xi, yi, θ
-q
řTi

t“1 pph
ptq
i “ s|zi “ m,Xi, yi, θ

-q

´

x
ptq
i ´ µms

¯2

ř

i ppzi “ m|Xi, yi, θ-q
řTi

t“1 pph
ptq
i “ s|zi “ m,Xi, yi, θ-q

, (16)

@ k,m, s, u.

Defining nk, ρi,m, γi,m,s and ξi,m,s,u as in Algorithm 1 the result follows.

A.3 PROOF OF ALGORITHM 2

Using the same notation as in section A.2, we may rewrite equation 5 as:

Jrpθq “
1

N
log

ÿ

z,H

ppX, z,H|y, θq `
λ

2

ÿ

j,k‰j

Gj,kEz„ppz|y“j,θqrppz|y “ k, θqs. (17)

Despite the regularization term, we may still lower bound this objective by introducing a variational
distribution qpz,Hq and using Jensen’s inequality in the usual way:

Jrpθq ě
1

N
Ez,H„q

„

log
ppX, z,H|y, θq

qpz,Hq



`
λ

2

ÿ

j,k‰j

Gj,kEz„ppz|y“j,θqrppz|y “ k, θqs

:“ Vrpθ, qq. (18)
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Clearly,

Jrpθq ´ Vrpθ, qq “
1

N

ˆ

log ppX|y, θq ´ Ez,H„q

„

log
ppX, z,H|y, θq

qpz,Hq

˙

“
1

N
DKL pqpz,Hq||ppz,H|X,y, θqq , (19)

which, fixing the parameters θ to some value θ- and minimizing with respect to q, yields the usual
solution q˚pz,Hq “ ppz,H|X,y, θ-q. Thus, in the M-step, we want to find:

argmax
θ

Vrpθ, q
˚q “ argmax

θ

1

N

ÿ

z,H

ppX, z,H|y, θ-q log ppX, z,H|y, θq

`
λ

2
ppX|y, θ-q

ÿ

j,k‰j

Gj,kEz„ppz|y“j,θqrppz|y “ k, θqs

“ argmax
θ

1

N
J̃pθ, θ-q ` λRpθ, θ-q (20)

:“ argmax
θ

J̃rpθ, θ
-q, (21)

where J̃pθ, θ-q is as defined in equation 10 and Rpθ, θ-q is our regularization weighted by the data
likelihood, which is simply a function of the parameters α:

Rpθ, θ-q “
1

2
ppX|y, θ-q

ÿ

j,k‰j

Gj,kEz„ppz|y“j,θqrppz|y “ k, θqs

“
1

2
ppX|y, θ-q

ÿ

j,k‰j

Gj,kα
ᵀ
jαk

“ Rpα1, ...,αk, θ
-q (22)

Now, we may build the Lagrangian as done in section A.2. Since R only depends on the α’s, the
update equations for the remaining parameters are unchanged. However, for α, it is not possible to
obtain a closed form update equation. Thus, we use the reparameterization defined in equation 8
and update the new unconstrained parameters β via gradient ascent.
We have:

BJ̃

Bαk,m
“
ppX|y, θ-q

αk,m

ÿ

i

ppzi “ m|Xi, yi, θ
-q1yi“k, (23)

BR

Bαk,m
“ ppX|y, θ-q

ÿ

j‰k

Gj,kαj,m. (24)

From equations 23 and 24, we see that the the resulting gradient ∇αk
J̃r “ ∇αk

J̃`λ∇αk
R is equal

to some vector scaled by the joint data likelihood ppX|y, θ-q, which we discard since it only affects
the learning rate, besides being usually very small and somewhat costly to compute. This option is
equivalent to using a learning rate that changes at each iteration of the outter loop of the algorithm.
Equation 8 yields the following derivatives:

Bαk,m
Bβk,m

“ 1βk,mą0
2σ1pβk,mq

σpβk,mq
αk,mp1´ αk,mq, (25)

Bαk,m
Bβk,l

“ 1βk,mą0
´2σ1pβk,mq

σpβk,mq
αk,mαk,l, for l ‰ m. (26)

14



Under review as a conference paper at ICLR 2019

Finally, by the chain rule, we obtain:

BJ̃

Bβk,m
“
ÿ

l

BJ̃

Bαk,l

Bαk,l
Bβk,m

“ 1βk,mą0
2σ1pβk,mq

σpβk,mq

ÿ

i

pppzi “ m|Xi, yi, θ
-q ´ αk,mq1yi“k, (27)

BR

Bβk,m
“
ÿ

l

BR

Bαk,l

Bαk,l
Bβk,m

“ 1βk,mą0
2σ1pβk,mq

σpβk,mq
αk,m

ÿ

j‰k

Gj,k
`

αj,m ´α
ᵀ
jαk

˘

. (28)

Defining δk,m :“ BJ̃r
Bβk,m

“ 1
N

BJ̃
Bβk,m

` λ BR
Bβk,m

and applying the gradient ascent update formula to
βk,m the result follows.

A.4 GETTING THE POSTERIOR DISTRIBUTION OF OBSERVATIONS IN SPAMHMM

In this section, we show how to obtain posterior distribution ppX|Xpref, yq of sequences X “
`

xp1q, ...,xpT q
˘

given an observed prefix sequence Xpref “
`

xp´Tpref`1q, ...,xp0q
˘

, both coming
from the graph node y. We consider the case where ppX|yq is a SpaMHMM (or MHMM) model
and so we have:

ppX|Xpref, yq “
ÿ

z

ppX|z,Xpref, yqppz|Xpref, yq “
ÿ

z

ppX|z,Xprefqppz|Xpref, yq, (29)

where the second equality follows from the fact that the observations X are independent from the
graph node y given the latent variable z. The posterior ppz|Xpref, yq may be obtained as done in
Algorithm 1, so we now focus on ppX|z,Xprefq:

ppX|z,Xprefq “
ÿ

h

pphp0q|z,Xprefq
ź

t

pphptq|hpt´1q, z,Xprefqppx
ptq|hptq, z,Xprefq

“
ÿ

h

pphp0q|z,Xprefq
ź

t

pphptq|hpt´1q, zqppxptq|hptq, zq, (30)

where we have used the independence assumptions of an HMM. Here, the initial state posteriors
pphp0q|z,Xprefq are actually the final state posteriors for the sequence Xpref for each HMM in the
mixture, so they can also be computed as indicated Algorithm 1.

Thus, we see that, in order to obtain the posterior ppX|Xpref, yq, we only need to recompute the
mixture coefficients ppz|Xpref, yq and the initial state probabilities pphp0q|z,Xprefq. All remaining
parameters are unchanged.
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