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ABSTRACT

Recent advances in Neural Variational Inference allowed for a renaissance in la-
tent variable models in a variety of domains involving high-dimensional data. In
this paper, we introduce two generic Variational Inference frameworks for gener-
ative models of Knowledge Graphs; Latent Fact Model and Latent Information
Model. While traditional variational methods derive an analytical approximation
for the intractable distribution over the latent variables, here we construct an infer-
ence network conditioned on the symbolic representation of entities and relation
types in the Knowledge Graph, to provide the variational distributions. The new
framework can create models able to discover underlying probabilistic semantics
for the symbolic representation by utilising distributions which permit training
by back-propagation in the context of neural variational inference, resulting in a
highly-scalable method. Under a Bernoulli sampling framework, we provide an
alternative justification for commonly used techniques in large-scale stochastic vari-
ational inference, which drastically reduces training time at a cost of an additional
approximation to the variational lower bound. The generative frameworks are flexi-
ble enough to allow training under any prior distribution that permits application
of the re-parametrisation trick, as well as under any scoring function that permits
maximum likelihood estimation of the parameters. Experimental results display the
potential and efficiency of this framework by improving upon multiple benchmarks
with Gaussian prior representations. Code publicly available on Github.

1 INTRODUCTION

In many fields, including physics and biology, being able to represent uncertainty is of crucial
importance (Ghahramani, 2015). For instance, when link prediction in Knowledge Graphs is used for
driving expensive pharmaceutical experiments (Bean et al., 2017), it would be beneficial to know what
is the confidence of a model in its predictions. However, a significant shortcoming of current neural
link prediction models (Dettmers et al., 2017; Trouillon et al., 2016a) – and for the vast majority of
neural representation learning approaches – is their inability to express a notion of uncertainty.

Furthermore, Knowledge Graphs can be very large and web-scale (Dong et al., 2014) and often suffer
from incompleteness and sparsity (Dong et al., 2014). In a generative probabilistic model, we could
leverage the variance in model parameters and predictions for finding which facts to sample during
training, in an Active Learning setting (Kapoor et al., 2007; Gal et al., 2017).(Gal & Ghahramani,
2016) use dropout for modelling uncertainty, however, this is only applied at test time.

However, current neural link prediction models typically only return point estimates of parameters and
predictions (Nickel et al., 2016), and are trained discriminatively rather than generatively: they aim at
predicting one variable of interest conditioned on all the others, rather than accurately representing
the relationships between different variables (Ng & Jordan, 2001), however, (Gal & Ghahramani,
2016) could still be applied to get uncertainty estimates for these models. The main argument of
this article is that there is a lack of methods for quantifying predictive uncertainty in a knowledge
graph embedding representation, which can only be utilised using probabilistic modelling, as well as
a lack of expressiveness under fixed-point representations. This constitutes a significant contribution
to the existing literature because we introduce a framework for creating a family of highly scalable
probabilistic models for knowledge graph representation, in a field where there has been a lack of this.
We do this in the context of recent advances in variational inference, allowing the use of any prior
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distribution that permits a re-parametrisation trick, as well as any scoring function which permits
maximum likelihood estimation of the parameters.

2 BACKGROUND

In this work, we focus on models for predicting missing links in large, multi-relational networks such
as FREEBASE. In the literature, this problem is referred to as link prediction. We specifically focus
on knowledge graphs, i.e., graph-structured knowledge bases where factual information is stored in
the form of relationships between entities. Link prediction in knowledge graphs is also known as
knowledge base population. We refer to Nickel et al. (2016) for a recent survey on approaches to this
problem.

A knowledge graph G , {(r, a1, a2)} ⊆ R × E × E can be formalised as a set of triples (facts)
consisting of a relation type r ∈ R and two entities a1, a2 ∈ E , respectively referred to as the subject
and the object of the triple. Each triple (r, a1, a2) encodes a relationship of type r between a1 and
a2, represented by the fact r(a1, a2).

Link prediction in knowledge graphs is often simplified to a learning to rank problem, where the
objective is to find a score or ranking function φΘ

r : E × E 7→ R for a relation r that can be used for
ranking triples according to the likelihood that the corresponding facts hold true.

2.1 NEURAL LINK PREDICTION

Recently, a specific class of link predictors received a growing interest (Nickel et al., 2016). These
predictors can be understood as multi-layer neural networks. Given a triple x = (s, r, o), the
associated score φΘ

r (s, o) is given by a neural network architecture encompassing an encoding layer
and a scoring layer.

In the encoding layer, the subject and object entities s and o are mapped to low-dimensional vector
representations (embeddings) hs , h(s) ∈ Rk and ho , h(o) ∈ Rk, produced by an encoder
hΓ : E → Rk with parameters Γ. Similarly, relations r are mapped to hr , h(r) ∈ Rk. This layer
can be pre-trained (Vylomova et al., 2016) or, more commonly, learnt from data by back-propagating
the link prediction error to the encoding layer (Bordes et al., 2013a; Nickel et al., 2016; Trouillon
et al., 2016a).

The scoring layer captures the interaction between the entity and relation representations hs, ho and
hr are scored by a function φΘ(hs,ho,hr), parametrised by Θ. Other work encodes the entity-pair
in one vector (Riedel et al., 2013).

Summarising, the high-level architecture is defined as:

hs,ho,hr , hΓ(s),hΓ(o),hΓ(r)

φ(s, o, r) , φΘ(hs,ho,hr)

Ideally, more likely triples should be associated with higher scores, while less likely triples should be
associated with lower scores.

While the literature has produced a multitude of encoding and scoring strategies, for brevity we
overview only a small subset of these. However, we point out that our method makes no further
assumptions about the network architecture other than the existence of an argument encoding layer.

2.2 ENCODING LAYER

Given an entity e ∈ E , the entity encoder hΓ is usually implemented as a simple embedding layer
hΓ(e) , [Γ]e, where Γ is an embedding matrix (Nickel et al., 2016). For pre-trained embeddings, the
embedding matrix is fixed. Note that other encoding mechanisms are conceivable, such as; recurrent,
graph convolution (Kipf & Welling, 2016a;b) or convolutional neural networks (Dettmers et al.,
2017).
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Figure 1: Latent Fact Model (LFM )
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Figure 2: Latent Information Model (LIM)

2.3 DECODING LAYER: SCORING FUNCTIONS

DistMult DISTMULT (Yang et al., 2015) represents each relation r using a parameter vector
Θ ∈ Rk, and scores a link of type r between (hs,ho,hr) using the following scoring function:

φΘ(hs,ho,hr) , 〈hs,ho,hr〉 ,
k∑
i=1

hs,iho,ihr,i,

where 〈·, ·, ·〉 denotes the tri-linear dot product.

ComplEx COMPLEX (Trouillon et al., 2016a) is an extension of DISTMULT using complex-valued
embeddings while retaining the mathematical definition of the dot product. In this model, the scoring
function is defined as follows:

φΘ(hr,hs,ho) , Re
(
〈hr,hs,ho〉

)
,

,< Re (es) ,Re (er) ,Re (eo) > + < Im (es) ,Re (er) , Im (eo) >

+ < Re (es) , Im (er) , Im (eo) > − < Im (es) , Im (er) ,Re (eo) >

where hs,ho,hr ∈ Ck are complex vectors, x denotes the complex conjugate of x, Re (x) ∈ Rk
denotes the real part of x and Im (x) ∈ Ck denotes the imaginary part of x.

3 GENERATIVE MODELS

Let D , {(τ1, y1), . . . , (τn, yn)} denote a set of labelled triples, where τi , 〈si, pi, oi〉, and
yi ∈ {0, 1} denotes the corresponding label, denoting that the fact encoded by the triple is either true
or false. We can assume D is generated by a corresponding generative model. In the following, we
propose two alternative generative models.

3.1 LATENT FACT MODEL

In Figure 1’s graphical model, we assume that the Knowledge Graph was generated according to the
following generative model. Let V , E ×R× E the space of possible triples. where τ , 〈s, p, o〉,
and hτ , [hs,hp,ho] denotes the sampled embedding representations of s, o ∈ E and p ∈ R.

Note that, in this model, the embeddings are sampled for each triple. As a consequence, the set of
latent variables in this model isH , {hτ | τ ∈ E ×R× E}.
The joint probability of the variables pθ(H,D) is defined as follows:

pθ(H,D) ,
∏

(τ,yτ )∈D

pθ(hτ )pθ(yτ | hτ ) (1)
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The marginal distribution over D is then bounded as follows, with respect to our variational distribu-
tion q:

pθ(D) ≥ Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )] (2)

Proposition 1 As a consequence, the log-marginal likelihood of the data, under the Latent Fact
Model, is bounded by:

log pθ(D) ≤
∑

(τ,yτ )∈D

Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )] , ELBO (3)

Proof. We refer the reader to the Appendix 6 for a detailed proof LFM’s ELBO.

Assumptions: LFM model assumes each fact of is a randomly generated variable, as well as a mean
field variational distribution and that each training example is independently distributed.

3.1.1 OPTIMISING THE ELBO

Note that this is an enormous sum over |D| elements. However, this can be approximated via
Importance Sampling, or Bernoulli Sampling (Botev et al., 2017).

ELBO =
∑

(τ,yτ )∈D

Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )]

= (
∑

(τ,yτ )∈D+

Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )])

+ (
∑

(τ,yτ )∈D−

Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )])

(4)

By using Bernoulli Sampling, ELBO can be approximated by:

ELBO ≈
∑

(τ,yτ )∈D

sτ
bτ

( Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )] ). (5)

where pθ(sτ = 1) = bτ can be defined as the probability that for the coefficient sτ each positive
or negative fact τ is equal to one (i.e is included in the ELBO summation). The exact ELBO can
be recovered from setting bτ = 1.0 for all τ . We can define a probability distribution of sampling
from D+ and D− – similarly to Bayesian Personalised Ranking (Rendle et al., 2009), we sample one
negative triple for each positive one — we use a constant probability for each element depending on
whether it is in the positive or negative set.

Proposition 2 The Latent Fact models ELBO can be estimated similarly using a constant probability
for positive or negative samples, we end up with the following estimate:

ELBO ≈ (
∑

(τ,yτ )∈D+

sτ
b+

( Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )] ))

+ (
∑

(τ,yτ )∈D−

sτ
b−

( Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )] ))

(6)

where b+ = |D+|/|D+| and b− = |D+|/|D−|.

3.2 LATENT INFORMATION MODEL

In Figure 2’s graphical model, we assume that the Knowledge Graph was generated according to the
following generative model. Let V , E ×R× E the space of possible triples.

Similarly, τ , 〈s, p, o〉, and hτ , [hs,hp,ho] denotes the sampled embedding representations of
s, o ∈ E and p ∈ R. The set of latent entity variables in this model isHe , {he | e ∈ E} and the set
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of latent predicate variablesHp , {hp | p ∈ R}. WithH = He ∪Hp. The joint probability of the
variables pθ(H,D) is defined as follows:

pθ(H,D) ,
∏
e∈E

pθ(he)
∏
p∈R

pθ(hp)
∏

(τ,yτ )∈D

pθ(yτ | hτ ) (7)

The marginal distribution over D is then defined as follows:

pθ(D) ,
∫ ∏

e∈E
pθ(he)

∏
p∈R

pθ(hp)
∏

(τ,yτ )∈D

pθ(yτ | hτ )dH (8)

Proposition 3 The log-marginal likelihood of the data, under the Latent Information Model, is the
following:

log pθ(D) ≥ Eqφ
[
log pθ(D | He,Hp)

]
−KL[qφ(He) || pθ(He)]−KL[qφ(Hp) || pθ(Hp)] (9)

Proof. We refer the reader to the Appendix 6 for a detailed proof LIM’s ELBO.

Assumptions: LIM assumes each variable of information is randomly generated, as well as a
mean field variational distribution and that each training example is independently distributed. This
leads to a factorisation of the ELBO that seperates the KL term from the observed triples, making
the approximation to the ELBO through Bernoulli sampling simpler, as the KL term is no longer
approximated and instead fully computed.

3.2.1 OPTIMISING THE ELBO

Similarly to Section 3.1.1, by using Bernoulli Sampling the ELBO can be approximated by:

ELBO ≈ (
∑

(τ,yτ )∈D

sτ
bτ

Eqφ
[
log pθ(yτ | hτ )

]
)− (

∑
e∈E

KL[qφ(he) || pθ(he)] )

− (
∑
p∈R

KL[qφ(hp) || pθ(hp)] ).
(10)

Which can be estimated similarly using a constant probability for positive or negative samples, we
end up with the following estimate:

Proposition 4 The Latent Information Models ELBO can be estimated similarly using a constant
probability for positive or negative samples, we end up with the following estimate:

ELBO ≈ (
∑

(τ,yτ )∈D+

sτ
b+

Eqφ
[
log pθ(yτ | hτ )

]
) + (

∑
(τ,yτ )∈D−

sτ
b−

Eqφ
[
log pθ(yτ | hτ )

]
)

− (
∑
e∈E

KL[qφ(he) || pθ(he)] )− (
∑
p∈R

KL[qφ(hp) || pθ(hp)] )
(11)

where b+ = |D+|/|D+| and b− = |D+|/|D−|.

4 RELATED WORK

Variational Deep Learning has seen great success in areas such as parametric/non-parametric doc-
ument modelling (Miao et al., 2017; Miao et al., 2016) and image generation (Kingma & Welling,
2013b). Stochastic variational inference has been used to learn probability distributions over model
weights (Blundell et al., 2015), which the authors named "Bayes By Backprop". These models have
proven powerful enough to train deep belief networks (Vilnis & McCallum, 2014), by improving
upon the stochastic variational bayes estimator (Kingma & Welling, 2013b), using general variance
reduction techniques.

Previous work has also researched word embeddings within a Bayesian framework (Zhang et al.,
2014; Vilnis & McCallum, 2014), as well as researched graph embeddings in a Bayesian framework
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(He et al., 2015). However, these methods are expensive to train due to the evaluation of complex
tensor inversions. Recent work by (Barkan, 2016; Bražinskas et al., 2017) show that it is possible to
train word embeddings through a variational Bayes (Bishop, 2006) framework.

KG2E (He et al., 2015) proposed a probabilistic embedding method for modelling the uncertainties
in KGs. However, this was not a generative model. (Xiao et al., 2016) argued theirs was the first
generative model for knowledge graph embeddings. However, their work is empirically worse than a
few of the generative models built under our proposed framework, and their method is restricted to a
Gaussian distribution prior. In contrast, we can use any prior that permits a re-parameterisation trick
— such as a Normal (Kingma & Welling, 2013a) or von-Mises distribution (Davidson et al., 2018).

Later, (Kipf & Welling, 2016b) proposed a generative model for graph embeddings. However, their
method lacks scalability as it requires the use of the full adjacency tensor of the graph as input.
Moreover, our work differs in that we create a framework for many variational generative models
over multi-relational data, rather than just a single generative model over uni-relational data (Kipf &
Welling, 2016b; Grover et al., 2018). In a different task of graph generation, similar models have
been used on graph inputs, such as variational auto-encoders, to generate full graph structures, such
as molecules (Simonovsky & Komodakis, 2018; Liu et al., 2018; De Cao & Kipf, 2018).

Recent work by (Chen et al., 2018) constructed a variational path ranking algorithm, a graph feature
model. This work differs from ours for two reasons. Firstly, it does not produce a generative model
for knowledge graph embeddings. Secondly, their work is a graph feature model, with the constraint
of at most one relation per entity pair, whereas our model is a latent feature model with a theoretical
unconstrained limit on the number of existing relationships between a given pair of entities.

5 EXPERIMENTS

EXPERIMENTAL SETUP

We run each experiment over 500 epochs and validate every 50 epochs. Each KB dataset is separated
into 80 % training facts, 10% development facts, and 10% test facts. During the evaluation, for each
fact, we include every possible corrupted version of the fact under the local closed world assumption,
such that the corrupted facts do not exist in the KB. Subsequently, we make a ranking prediction of
every fact and its corruptions, summarised by mean rank and filtered hits@m.

During training Bernoulli sampling to estimate the ELBO was used, with linear warm-up (Bowman
et al., 2016; Davidson et al., 2018), compression cost (Blundell et al., 2015), ADAM (Kingma & Ba,
2014) Glorot’s initialiser for mean vectors (Glorot & Bengio, 2010) and variance values initialised uni-
formly to embedding size−1. We experimented both with a N (0, 1) and a N (0, embedding size−1)
prior on the latent variables.

Table 1 shows definite improvements on WN18 for Variational ComplEx compared with the initially
published ComplEX. We believe this is due to the well-balanced model regularisation induced by
the zero mean unit variance Gaussian prior. Table 1 also shows that the variational framework is
outperformed by existing non-generative models, highlighting that the generative model may be
better suited at identifying and predicting symmetric relationships. WordNet18 (Bordes et al., 2013b)
(WN18) is a large lexical database of English. WN18RR is a subset with only asymmetric relations.
FB15K is a large collaboratively made dataset which covers a vast range of relationships and entities,
with FB15K-257 (Toutanova & Chen, 2015), with 257 relations — a significantly reduced number
from FB15K due to being a similarly refined asymmetric dataset. We now compare our model to the
previous state-of-the-art multi-relational generative model TransG (Xiao et al., 2016), as well as to a
previously published probabilistic embedding method KG2E (similarly represents each embedding
with a multivariate Gaussian distribution) (He et al., 2015) on the WN18 dataset. Table 2 makes
clear the improvements in the performance of the previous state-of-the-art generative multi-relational
knowledge graph model. LFM has marginally worse performance than the state-of-the-art model on
raw Hits@10. We conjecture two reasons may cause this discrepancy. Firstly, the fact the authors
of TransG use negative samples provided only (True negative examples), whereas we generated
our negative samples using the local closed world assumption (LCWA) . Secondly, we only use
one negative sample per positive to estimate the Evidence Lower Bound using Bernoulli sampling,
whereas it is likely they used significantly more negative samples.
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Dataset Scoring Function MR Hits @
Filter Raw 1 3 10

WN18 V DistMult ( LIM) 786 798 0.671 0.931 0.947
DistMult 813 827 0.754 0.911 0.939

V ComplEx ( LIM) 753 765 0.934 0.945 0.952
ComplEx* - - 0.939 0.944 0.947

WN18
RR V DistMult ( LIM) 6095 6109 0.357 0.423 0.440

DistMult 8595 8595 0.367 0.390 0.412
V ComplEx ( LFM ) 6500 6514 0.385 0.446 0.489

ComplEx** 5261 - 0.41 0.46 0.51
FB15K

-257 V DistMult ( LIM) 679 813 0.171 0.271 0.397
DistMult 355 501 0.187 0.282 0.400

V ComplEx ( LIM) 1221 1347 0.168 0.260 0.369
ComplEx** 339 - 0.159 0.258 0.417

Table 1: Filtered and Mean Rank (MR) for the models tested on the WN18, WN18RR, and FB15K
datasets. Hits@m metrics are filtered. Variational written with a "V". *Results reported from
(Trouillon et al., 2016b) and **Results reported from (Dettmers et al., 2017) for ComplEx model.
"-" in a table cell equates to that statistic being un-reported in the models referenced paper.

Dataset Scoring Function MR Raw Hits@ Filtered Hits @
Raw Filter 10 1 3 10

WN18 KG2E (He et al., 2015) 362 345 0.805 - - 0.932
TransG (Generative) (Xiao et al., 2016) 345 357 0.845 - - 0.949
Variational ComplEx ( LFM ) 753 765 0.836 0.934 0.945 0.952

Table 2: Variational Framework vs. Generative Modles

5.0.1 LINK PREDICTION ANALYSIS

Section 5.1 and Section 5.2 explores the predictions made by Latent Information Model with ComplEx
scoring function, trained with Bernoulli sampling to estimate the ELBO on the WN18RR dataset,
then Section 5.3 will analyse the values of embeddings learnt for this task. Lastly, Section 5.3.1
will perform an extrinsic evaluation on learnt embedding representations for the more accessible to
interpret Nations dataset.

We split the analysis into the predictions of subject ((?, r, o)) or object ((s, r, ?)) for each test fact.
Note all results are filtered predictions, i.e., ignoring the predictions made on negative examples
generated under LCWA — using a randomly corrupted fact (subject or object corruption) as a negative
example.

5.1 SUBJECT PREDICTION

Table 3 shows that the relation "_derivationally_related_form", comprising 34% of test subject
predictions, was the most accurate relation to predict for Hits@1 when removing the subject from the
tested fact. Contrarily, "_member_of_domain_region" with zero Hits@1 subject prediction, making
up less than 1% of subject test predictions. However, "_member_meronym " was the least accurate
and prominent (8% of the test subject predictions) for subject Hits@1. We learn from this that even
for a near state-of-the-art model there is a great deal of improvement to be gained among asymmetric
modelling.

5.2 OBJECT PREDICTION

Table 4 displays similar results to Table 3, as before the relation "_derivationally_related_form"
was the most accurate relation to predict Hits@1. Table 4 differs from Table 3 as it highlights the
Latent Information Model’s inability to achieve a high Hits@1 performance predicting objects for
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Proportion Hits@1 Hits@3 Hits@10

_hypernym 0.399170 0.091926 0.123102 0.162270
_derivationally_related_form 0.342693 0.947858 0.956238 0.959032
_member_meronym 0.080728 0.007905 0.019763 0.035573
_has_part 0.054882 0.011628 0.058140 0.122093
_instance_hypernym 0.038928 0.393443 0.508197 0.713115
_synset_domain_topic_of 0.036375 0.219298 0.315789 0.464912
_also_see 0.017869 0.589286 0.625000 0.625000
_verb_group 0.012444 0.743590 0.974359 0.974359
_member_of_domain_region 0.008296 0.000000 0.038462 0.115385
_member_of_domain_usage 0.007658 0.000000 0.000000 0.000000
_similar_to 0.000957 1.000000 1.000000 1.000000

Table 3: Latent Information Model with ComplEx: Subject Prediction on WN18RR. Proportion
represents the ratio of the positive examples which are of that relation’s category.

Proportion Hits@1 Hits@3 Hits@10

_hypernym 0.399170 0.000000 0.014388 0.046363
_derivationally_related_form 0.342693 0.945996 0.957169 0.959032
_member_meronym 0.080728 0.031621 0.047431 0.086957
_has_part 0.054882 0.034884 0.081395 0.139535
_instance_hypernym 0.038928 0.024590 0.081967 0.131148
_synset_domain_topic_of 0.036375 0.035088 0.043860 0.078947
_also_see 0.017869 0.607143 0.625000 0.625000
_verb_group 0.012444 0.897436 0.974359 0.974359
_member_of_domain_region 0.008296 0.038462 0.076923 0.076923
_member_of_domain_usage 0.007658 0.000000 0.000000 0.000000
_similar_to 0.000957 1.000000 1.000000 1.000000

Table 4: Latent Information Model with ComplEx: Object Prediction on WN18RR

the "_hypernym" relation, which is significantly hindering model performance as it is the most seen
relation in the test set— its involvement in 40% of object test predictions.

5.3 EMBEDDING ANALYSIS

These results hint at the possibility that the slightly stronger results of WN18 are due to covariances
in our variational framework able to capture information about symbol frequencies. We verify this by
plotting the mean value of covariance matrices, as a function of the entity or predicate frequencies
(Figure 3). The plots confirm our hypothesis: covariances for the variational Latent Information
Model grows with the frequency, and hence the LIM would put a preference on predicting relation-
ships between less frequent symbols in the knowledge graph. This also suggests that covariances
from the generative framework can capture genuine information about the generality of symbolic
representations.

5.3.1 EXTRINSIC EVALUATION: VISUAL EMBEDDING ANALYSIS

We project the high dimensional mean embedding vectors to two dimensions using Probabilistic
Principal Component Analysis (PPCA) (Tipping & Bishop, 1999) to project the variance embedding
vectors down to two dimensions using Non-negative Matrix Factorisation (NNMF) (Févotte & Idier,
2011). Once we have the parameters for a bivariate normal distribution, we then sample from the
bivariate normal distribution 1,000 times and then plot a bi-variate kernel density estimate of these
samples. By visualising these two-dimensional samples, we can conceive the space in which the
entity or relation occupies. We complete this process for the subject, object, relation, and a randomly
sampled corrupted entity (under LCWA) to produce a visualisation of a fact, as shown in Figure 4.
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Figure 3: Mean Variance vs. log frequency. From left to right: Nations Entity Analysis, Nations
Predicate Analysis, WN18RR Entity Analysis and WN18RR Predicate Analysis.

Figure 4: True Positives

Figure 4 displays three true positives from test time predictions. The plots show that the variational
framework can learn high dimensional representations which when projected onto lower (more
interpretable) dimensions, the distribution over embeddings are shaped to occupy areas at which true
facts lie.

Figure 4 displays a clustering of the subject, object, and predicate that create a positive (true) fact. We
also observe a separation between the items which generate a fact and a randomly sampled (corrupted)
entity which is likely to create a negative (false) fact. The first test fact "(USA, Commonbloc0,
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Netherlands)" shows clear irrationality similarity between all objects in the tested fact, i.e. the vectors
are pointing towards a south-east direction. We can also see that the corrupted entity Jordan is quite a
distance away from the items in the tested fact, which is good as Jordan does not share a common
bloc either USA or Netherlands. We used scoring functions which measure the similarity between
two vectors, however, for more sophisticated scoring functions which distance/ similarity is not
important to the end result we would unlikely see such interpretable images. This analysis of the
learnt distributions is evidence to support the notion of learnt probabilistic semantics through using
this framework.

5.4 CONCLUSION

We have successfully created a framework allowing a model to learn embeddings of any prior
distribution that permits a re-parametrisation trick via any score function that permits maximum
likelihood estimation of the scoring parameters. The framework reduces the parameter by one hyper-
parameter — as we typically would need to tune a regularisation term for an l1/ l2 loss term, however
as the Gaussian distribution is self-regularising this is deemed unnecessary for matching state-of-
the-art performance. We have shown, from preliminary experiments, that these display competitive
results with current models. Overall, we believe this work will enable knowledge graph researchers
to work towards the goal of creating models better able to express their predictive uncertainty.

6 FURTHER WORK

The score we acquire at test time even through forward sampling does not seem to differ much
compared with the mean embeddings, thus using the learnt uncertainty to impact the results positively
is a fruitful path. We would also like to see additional exploration into various encoding functions,
as we used only the most basic for these experiments. We would also like to see more research into
measuring how good the uncertainty estimate is.
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APPENDIX

PROOF: LFM

The marginal distribution over D is then defined as follows:

pθ(D) ,
∫ ∏

(τ,yτ )∈D

pθ(hτ )pθ(yτ | hτ )dH (12)

The log-marginal likelihood of the data is the following:

log pθ(D) = log

∫ ∏
(τ,yτ )∈D

pθ(hτ )pθ(yτ | hτ )dH

≥
∫

log
∏

(τ,yτ )∈D

pθ(hτ )pθ(yτ | hτ )dH

=

∫ ∑
(τ,yτ )∈D

log pθ(hτ ) + log pθ(yτ | hτ )dH

=
∑

(τ,yτ )∈D

∫
log pθ(hτ ) + log pθ(yτ | hτ )dhτ

=
∑

(τ,yτ )∈D

ELBOτ

(13)

Given a triple τ , the term ELBO(τ) can be rewritten as follows:

ELBOτ =

∫
log pθ(yτ | hτ )pθ(hτ )dhτ

=

∫
log

pθ(yτ | hτ )pθ(hτ )

qφ(hτ )
qφ(hτ )dhτ

=

∫ [
log pθ(yτ | hτ ) + log pθ(hτ )− log qφ(hτ )

]
qφ(hτ )dhτ

=

∫
log pθ(yτ | hτ )qφ(hτ )dhτ +

∫
qφ(hτ ) log

pθ(hτ )

qφ(hτ )
dhτ

= Eqφ
[
log pθ(yτ | hτ )

]
−KL[qφ(hτ ) || pθ(hτ )]

(14)
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PROOF: LIM

The marginal distribution over D is then defined as follows:

pθ(D) ,
∫ ∏

e∈E
pθ(he)

∏
p∈R

pθ(hp)
∏

(τ,yτ )∈D

pθ(yτ | hτ )dH (15)

The log-marginal likelihood of the data is the following:

log pθ(D) = log

∫ ∏
e∈E

pθ(he)
∏
p∈R

pθ(hp)
∏

(τ,yτ )∈D

pθ(yτ | hτ )dHe,Hp

= log

∫
pθ(D|He,Hp)pθ(He)pθ(Hp) dHe,Hp

= log

∫
pθ(D|He,Hp)pθ(He)

qφ(He)
qφ(He)

)pθ(Hp)
qφ(Hp)

qφ(Hp)
dHe,Hp

=≥ Eqφ [log(pθ(D|He,Hp)
pθ(He)
qφ(He)

pθ(Hp)

qφ(Hp)
)]

= Eqφ [log(pθ(D|He,Hp)]− Eqφ [log(
qφ(He)
pθ(He)

)]− Eqφ [log(
qφ(Hp)

pθ(Hp)
)]

= Eqφ
[
log pθ(D | He,Hp)

]
−KL[qφ(He) || pθ(He)]−KL[qφ(Hp) || pθ(Hp)]

(16)
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