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ABSTRACT

This paper presents a method to autonomously find periodicities in a
signal. It is based on the same idea of using Fourier Transform and au-
tocorrelation function presented in|Vlachos et al.{(2005). While showing
interesting results this method does not perform well on noisy signals or
signals with multiple periodicities. Thus, our method adds several new
extra steps (hints clustering, filtering and detrending) to fix these issues.
Experimental results show that the proposed method outperforms state
of the art algorithms.

INTRODUCTION

A time series is defined by its 3 main components : the trend component, the periodic component
and the random component. Trend analysis and prediction are topics that have been greatly studied
Saad et al.| (1998)) and will not be treated in the article, therefore every time series will be assumed
stationary regarding its mean and variance, so this study focus the periodic component. The ability
to detect and find the main characteristic of this component is not as easy as the trend component.
Yet, the ability to detect periodicities in a time series is essential to make precise forecasts.

A periodicity is a pattern in a time series that occurs at regular time intervals. More precisely, the
time series is said cyclical, if the time intervals at which the pattern repeats itself can’t be precisely
defined and is not constant. On the opposite, there are seasonal time series in which the pattern re-
peats itself at constant and well defined time intervals. Thus, cyclical patterns are more difficult to
detect due to their inconsistency and the fact that they usually repeat themselves over large periods
of time and therefore require more data to be identified. Nevertheless, seasonal patterns are very
common in time series such as those related to human behaviour which usually have periodicities
like hours and calendar (time of day, day of week, month of year). This kind of feature is well
known and can be easily tested to see if they are beneficial or not. Unfortunately, when it comes
to time series related to other phenomenons, the periodicities are not trivially found. For instance,
tides level are multi-periodic time series correlated to both moon cycles and sun cycles; and females
menstrual cycles are related to hormonal changes. The ability to detect periodicity in time series is
fundamental when it comes to forecasting |[Koopman & Ooms| (2006). Once a periodic pattern has
been detected, numerous techniques can be used to model this later and improve forecasts |(Gooijer
& Hyndman|(2006). However, periodicities detection is not easy and has been greatly studied in the
existing literature, but most of current techniques are unable to detect periodicities without the need
of preprocessing data [Yuan et al.| (2017) or have trouble detecting multiple periodicities |Vlachos
et al.| (2005). This paper is organised as follow: we first present the Fourier transform and the Au-
toperiod algorithm Vlachos et al.|(2005) used to detect periodicities in a signal. Then we propose a
new fully automated method, named Clustered Filtered Detrended Autoperiod (CFD-Autoperiod),
which also combines the advantages of frequency domain and time domain while being robust to
noise and able to handle multi periodicities. Noise robustness is achieved using a density clustering
on hints provided by the frequency analysis. Multi-periodicities are more precisely detected by both
using detrending and filtering. Finally, we demonstrate that CFD-Autoperiod outperforms previous
methods.
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RELATED WORKS

Autocorrelation and Fourier transform are well known techniques used to find recurrent patterns in
a given signal.

FOURIER TRANSFORM

The Fourier transform decomposes the original signal {s(;)};c[1,n] in a linear combination of
complex sinusoids, also called a Fourier series. Let /N be the number of frequency components of
a signal, P the periodicity of the signal and c;, the k*" series coefficient then we have the Fourier
series:

N-1 z.27rkt
sn(t) = Z cp e N
k=0

Thus, the amplitude and phase of each sinusoids correspond to the main frequencies contained within
the signal. The Fourier transform can easily detect the presence of frequencies in a signal. However,
if we need the corresponding periodicities from each frequency then we have to return from the
frequency domain to the time domain. Let DF'T" be the Discrete Fourier Transform of a discrete
signal {s(¢;)}, then we can obtain the corresponding Periodogram P in the time domain as follow:

P(fr) = IDFT(fi)ll* = llcx|[* with k = 0,1, .., [#51]

where f, = % correspond to the frequency captured by each component.

However, in the frequency domain each bin is separated with a constant step of -, whereas in the

time domain bins size is ﬁ, thus the range of periods is increasingly wider. Therefore, the
Fourier transform resolution for long periods is not sufficient to provide an accurate estimation of

the periodicity.

AUTOCORRELATION

Another way to find the dominant periodicities in a signal consists in calculating the autocorrelation
function (ACF) of the given signal s(t). The autocorrelation is the correlation between the elements
of a series and others from the same series separated from them by a given interval At:

1 Nt

ACF(At) = > s(ty) - s(t; + At)
§=0

The ACF function provides a more accurate estimation of each periodicity, especially for longer
periods as opposed to the Fourier transform [Vlachos et al.|[(2005). However, it is not sufficient by
itself due to the difficulty to select the most predominant peaks. Indeed, for a given periodicity p;
the autocorrelation generates peaks for each p; multiple, hence the difficulty to select the relevant
peaks when multiple periodicities composed a signal.

HYBRID APPROACH

A methodology combining both techniques advantages has been introduced by|Vlachos et al.|(2005).
This method uses sequentially frequency domain (DFT) and time domain (ACF) in order to detect
periodicity. The idea is to combine both methods in such a way that they complement each other.
On the one hand, as mentioned earlier, due to its step inconstancy in the time domain, the Fourier
transform resolution becomes insufficient to provide good estimations for long periods, where the
autocorrelation has a constant resolution. On the other hand, according to|Vlachos et al.|(2005), it is
difficult to correctly detect periodicities using only the autocorrelation function.

Thus they proposed the following steps: first, noise is discarded from possible periodicity hints using
a threshold on the Periodogram. Then, these hints are refined using the ACF function. If a periodicity
hint lies on a local maximum then it can be validated, otherwise, if it lies on a local minimum this
latter is discarded. On top of that, thanks to the ACF resolution, a gradient ascent is used to refine

the remaining hints
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Figure 1: Periodicity detection methods

However, some issues such as multi-periodic signals, spectral leakage or presence of non-stationary
periodicities are not addressed by the authors.

A NEW METHODOLOGY: CFD-AUTOPERIOD

SPECTRAL LEAKAGE

The Fourier Transform is used to select periodicity hints. To do so, we use the 99% confidence
Li et al| (2010) [Li et al.|[Vlachos et al. (2005) technique to compute the threshold distinguishing
periodicity hints from noise in the Fourier transform. Firstly, it is necessary to find the maximum
amount of spectral power generated by the signal noise. Let be {s'(t;)};c1,n] @ permuted sequence
of a periodic sequence {s(t;)};e[1,n]- 8" should not exhibit any periodic pattern due to the random
permutation process. Therefore, the maximal spectral power generated by s’ should not be higher
than the spectral power generated by a true periodicity in s. Thus, we can use this value as a threshold
to eliminate the noise. To provide a 99% confidence level, this process is repeated 100 times and the
99¢h largest value recorded is used as a threshold.

Unfortunately, for a given periodicity in X, rather than finding an unique corresponding hint, spec-
tral leakage may produce multiple hints near the true periodicity. This phenomenon is due to the
finite resolution of the Fourier Transform and can only be avoided knowing in advance the true
periodicities of the signal.
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Figure 2: Illustration of spectral leakage

Spectral leakage generates points with a spectral power higher than the threshold provided by the
99% confidence method (Figure [2) and therefore generate imprecise periodicity hints. The autocor-
relation might filter most of them but every imprecise periodicity hint increase the probability of
false positives, therefore it is interesting to reduce the number of periodicity hints in order to achieve
a higher precision score.
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DENSITY CLUSTERING

Knowing that the distribution of spectral leakage is more dense around the true periodicity, perform-
ing a density clustering over periodicity hints and using the resulting centroids as periodicity hints
can reduce the number of hints. A fundamental value in density clustering algorithms is the range in
which it seeks for neighbours named e. In our case, this value is not a constant because the accuracy
of the hint is related to the resolution of the corresponding DFT bin size. A hint may have leaked
from adjacent DFT bins, thus for a given hint of periodicity N/k, € is set as the next bin value plus a
constant width of 1 to avoid numerical issues when the difference from the current bin value to the
next bin value is less than one: N
EN/k = =1 +1

The clustering is done by ascending periodicity order, hence a cluster made with small periodicities
cannot be altered by bigger periodicity clusters.

Input: Hints - list of hints in ascending order
Qutput: Centroids - list of centroids
Clusters < [] ;
cluster <[] ;
€ < Hints[0].nextBinValue + 1 ;
cluster.append(Hints[0]) ;
for hint in Hints[1:] do
if hint < ¢ then
cluster.append(hint) ;
‘ € < hint.binSize ;
else
Clusters.append(cluster) ;
‘ cluster <[] ;
end
Centroids < [] ;
for cluster in Clusters do
centroid <— mean(cluster) ;
Centroids.append(centroid) ;

end
Algorithm 1: Clustering pseudocode

As shown in the results (Figure [3), the density clustering performed in the GEF dataset Hong et al.
(2016b)) drastically reduces the number of periodicity hints and the resulting centroids are close to
the true periodicities (24 and 168). Once the centroids have been found, they are used as periodicity
hints during the validation step.
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Figure 3: Density clustering results on GEF dataset. Top, before clustering and bottom, after.

HINTS VALIDATION

For the validation step, a search interval for each periodicity hint is needed to check if this latter lies
on a hill or a valley of the ACF. [Vlachos et al.| (2005) used the DFT bin size to define this search
interval but in this study we propose a different approach. A periodicity /N generates hills on the
ACF at each multiple of N and valleys at each multiple of % Therefore, we defined the search
interval R for a periodicity hint N as follow:

N N
R=|=,.,N+=
[2’ ’ +2}
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Thereafter, a quadratic function is fitted to the ACR function in the search interval. In order to
validate a hint, the function must have a negative second degree term and its derivative sign must
change along the interval.

MULTI-PERIODICITIES

The presence of multiple periodicities refutes the assumption that hills and valleys of the ACF are
sufficient to validate or discard hints. Precisely, when validating a periodicity hint, correlations gen-
erated by both higher and lower frequencies than the hint can be problematic. These two problems
are addressed in the following section.

HIGHER FREQUENCIES

On the one hand, periodicities of higher frequencies induces sinusoidal correlations which may be
in opposite phase with the correlation we are actually looking for (see Figure d). Let s be a multi-
periodic signal composed of periodicities P; and P». Let P;, a periodicity of length 20 and P, a
periodicity of length 50. The periodicity P; produces on the signal ACF sinusoidal correlations of
wavelength 20 and the periodicity P> produces sinusoidal correlations of wavelength 50. Thereby,
at 50 lags on the ACF, the P, and P, periodicities will produce correlations in opposite phases and
therefore nullify the hill at 50 used to validate or discard the periodicity hint Ps.

Signal

0.25
0.00
-0.25

ACF of the signal

0 10 20 30 40 50 60 70 80
Figure 4: Impact of multiple periodicities (20 and 50) on the ACF.

To tackle this issue, periodicity hints are analysed in ascending order. If a periodicity hint is vali-
dated, a lowpass filter with an adapted cutoff frequency is applied to the signal. Consequently, the
following autocorrelations will be computed on this new signal. Thus, the resulting autocorrela-
tions will not exhibit any correlation induced by frequencies higher than the cutoff frequency of the
lowpass filter.

The cutoff frequency must be chosen carefully. Indeed, an ideal lowpass filter is characterised by a
full transmission in the pass band, a complete attenuation in the stop band and an instant transition
between the two bands. However, in practice, filters are only an approximation of this ideal filter
and the higher the order of the filter is, the more the filter approximates the ideal filter. In our case,
we are studying the periodicities in the signal, therefore, we want a filter with a frequency response
as flat as possible to avoid any negative impact on the periodicity detection. Thereby, a Butterworth
filter has been chosen due to its flat frequency response with no ripples in the passband nor in the
stopband.

However, a Butterworth filter, despite all the good properties, has a slow roll-off attenuating frequen-
cies nearby the cutoff frequency. For the validation step, we do not want to attenuate the periodicity
hint, therefore the cutoff frequency must not be exactly equal to the frequency of the hint. For a
given periodicity %, the frequency cutoff is equal to the previous bin value minus 1, to avoid the
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Figure 5: Illustration of differents lowpass filters.

same numerical issues as described in the Density Clustering section:

LOWER FREQUENCIES

On the other hand, low frequencies may induce a local trend in the autocorrelation that can be
problematic when validating an hint. Indeed, in order to validate a periodicity hint, a quadratic
function is fitted to the ACF in the search interval as mentioned in the subsection [Hints Validationl
Sadly, a trend in the search interval may prevent the derivative sign to switch (Figure 6)), and therefore
prevent the correct validation of the corresponding hint.
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Figure 6: Hint validation using the ACF on a multi-periodic signal (30, 500).

Consequently, to avoid this situation, the ACF is detrended by subtracting the best fitted line in the
following interval [0, % + 1] for a given period hint N/k. Thus, the resulting ACF does not
exhibit any linear trend and therefore the fitted quadratic function is able to validate or discard hint
efficiently.

RESULTS

To evaluate the performances of the proposed method it is necessary to use time series datasets with
periodicities. To do so, we perform our first evaluations on synthetic signals where the ground truth
is known in order to compare raw performances and evaluations on real time series datasets.
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SYNTHETIC SIGNALS

Signals of length 2000 with 1 to 3 periodicities have been generated. The periodicities have been
chosen in the interval [10,500] using a pseudo-random process. For multi-periodic signals, this
pseudo-random process ensures that periodicities are not overlapping each others by checking that
one is at least twice as bigger as the previous one. Finally, in order to compute precision and recall
metrics, a validation criterion has been established. We assumed that a periodicity P, detected in a
generated signal with a true periodicity P; is valid if:

10.95 x P,| < Py < [1.05 x P,

The metrics have been consolidated over 500 iterations for each generated periodicity. As shown in
for a non multi-periodic signal, autoperiod and CFD-Autoperiod method achieve high pre-
cision scores whereas the Fourier Transform achieves a high recall but a really low precision score.
Indeed, the Fourier Transform method does not filter the hints using the autocorrelation. Neverthe-
less, the autoperiod method did not detect every periodicities even for non multi-periodic signals
autoperiod. This is likely due to the absence of density clustering and the narrow interval search to
find the corresponding hill on the ACF. For multi-periodic signals, both recall and precision are dras-
tically decreasing for the autoperiod method and as it can be observed, the detrending step and the
use of a lowpass filter by the CFD-Autoperiod method lead to better scores. Regarding the Fourier
Transform scores, due to the lack of the filtering step its recall is high but its precision score is always
the lowest.

pseudo random random

Nb periods 1 2 3 1 2 3
Fourier precision 27.76 | 40.52 | 50.16 || 27.83 | 42.32 | 46.63
transform recall 80.40 | 78.20 | 85.73 || 77.80 | 75.80 | 73.40
autoperiod precision 98.47 | 64.16 | 54.42 || 98.39 | 58.05 | 53.41

recall 77.20 | 51.20 | 32.87 || 73.20 | 35.70 | 26.13
CFD-Autoperiod precision 100.00 | 91.10 | 86.93 || 100.0 | 71.78 | 68.07

recall 100.00 | 91.10 | 78.93 || 100.0 | 55.20 | 43.07

Table 1: Precision/Recall comparison for pseudo-random and random process.

Benchmarks have also been performed on synthetic signals generated via random process, without
limitations on the periodicity values (Table T). Naturally, the results with an unique periodicity are
similar. However, for multi-periodic signals the autoperiod and CFD-Autoperiod methods achieve
lower scores. This is due to the fact that both methods use the autocorrelation to filter hints and
this latter is not able to distinguish very close periodicities. Therefore, the use of autocorrelation
as a validation step does not allow the detection of periodicities near each others. Nevertheless, in
real datasets, most of the periodicities are sufficiently spaced to be detected by the autocorrelation
function and thus remains efficient as a validation step.

REAL DATASETS

Benchmarks have also been performed on real datasets (Table 2) and different types of time series
have been chosen in order to test the validity of the proposed method.

o GEF (Hong et al.|(2016b)): This dataset has been provided for the Global Energy Forecast-
ing Competition 2014 (GEFCom2014) Hong et al.|(2016al), a probabilistic energy forecast-
ing competition. The dataset is composed of 6 years of hourly load data. This time series
is multi-periodic with the following periodicities: daily (24), weekly (168) and bi-annual
(4383). The CFD-Autoperiod method has detected and validated 4 periodicities with 3 of
them correct. Whereas the autoperiod has detected 5 periodicities with only 2 valid and has
missed the long term bi-annual periodicity.

o |Great lakes: This dataset contains monthly water level of the 5 great lakes and is provided
by the National Oceanic and Atmospheric Administration |Quinn & Sellinger| (1990). This
time series is mono-periodic with a periodicity of 12 months. The autoperiod method has
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detected 4 different periodicities with only one correct. Among these latter, 24 and 72 peri-
odicities were detected and are only resulting correlations of the 12 periodicity. Whereas the
CFD-Autoperiod has successfully filtered out the correlations of the 12 one. [Parthasarathy!
et al.| (2006)) used this dataset as well but did not write the exact periodicities detected by
their method. In their plots, the segmentation for both Ontario and Clair lakes does not
correspond to a periodicity of 12.

e Pseudo periodic (Keogh & Pazzani): These datasets contain 10 pseudo periodic time
series generated from 10 different simulation runs. The data appears to be highly periodic,
but never exactly repeats itself. [Parthasarathy et al.| (2006) did not write their exact results
but the segmentation shown on their plot seems to correspond to a detected periodicity of
155. The CFD-Autoperiod method found a periodicity of 144 and the exact true periodicity
seems to be 142.

e Boston Tides: This dataset contains water level records of Boston, MA from July 01 to
August 31, with 6 minutes as sampling interval. It has been recently used by Yuan et al.
(2017) to evaluate their method. They successfully detected 2 periodicities but their method
required a preprocessing step whereas the CFD-Autoperiod method does not require any.
The first detected periodicity is 12,4 hours corresponding to the semi-diurnal constituent
of 12 hours and 25.2 minutes. They have also detected 28,5 days and 29 days periodicities
which correspond to a lunar month. The CFD-Autoperiod method detected a periodicity of
24 hours and 50 minutes whereas the autoperiod did not detect it. This value is interesting
because it corresponds to the behaviour of a mixed tide (when there is a high high tide, a
high low tide followed by a low high tide and a low low tide, in 24hour ans 50 minutes).
However, it has not detected the lunar month periodicity but this might be due to the lack of
data used. Indeed, [Yuan et al.| (2017)) used 2 months of data and the CFD-Autoperiod can
only detect periodicities of a length inferior or equal to the half of the signal length.

Detected periodicities
Values Nb
Fourier transform 5.99, 11.99,... 44
GEF autoperiod 24,168, 192, 288, 528 5
CFD-Autoperiod 24,171, 496, 4118 4
Great lakes Fourier transform 12.19, 23.27, 28.44,... 7
Clair autoperiod 12,24, 35,72 4
CFD-Autoperiod 12, 505 2
Fourier transform 12.2,28.4,36.6, ... 6
Great lakes . 3
Ontohoio autoperiod . 12, 35,72 3
CFD-Autoperiod 12 I
Fourier transform | 18.7, 35.1, 74.1, 142.9, ... 4
pseudo 1 autoperiod 74, 146 2
CFD-Autoperiod 144 1
Fourier transform 120.0, 120.9, 121.9, ... 11
Boston -
Tide autoperiod . 124 1
CFD-Autoperiod 125, 246 2

Table 2: Detected periodicities on real Dataset

CONCLUSION AND FUTURE WORK

This paper describes an algorithm called CFD-Autoperiod detecting periodicities in time series and
improving the autoperiod method proposed in Vlachos et al.|(2005). CFD-Autoperiod can be applied
on noisy time series containing multiple periodicities and output raw periodicities that can later be
refined by external domain specific knowledge (for instance 24h for human daily activities). One
case not treated in this study concerns non-stationary series. A possible technique would consists in
tracking the evolution of the periodicities through time and using a Kalman filter to track the appari-
tion, disappearance or evolution of the detected periodicities. Using the confidence of the Kalman
filter we could decide whether to continue considering the presence of a particular periodicity in
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the signal even if it is not detected for a while. This would strengthen the results obtained by CFD-
Autoperiod and give more reliable periodicities. Thus, even more complex machine learning models
can be built on top of them.
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