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Abstract

Behavioral cloning reduces policy learning to supervised learning by training a dis-
criminative model to predict expert actions given observations. Such discriminative
models are non-causal: the training procedure is unaware of the causal structure of
the interaction between the expert and the environment. We point out that ignoring
causality is particularly damaging because of the distributional shift in imitation
learning. In particular, it leads to a counter-intuitive “causal misidentification”
phenomenon: access to more information can yield worse performance. We inves-
tigate how this problem arises, and propose a solution to combat it through targeted
interventions—either environment interaction or expert queries—to determine the
correct causal model. We show that causal misidentification occurs in several
benchmark control domains as well as realistic driving settings, and validate our
solution against DAgger and other baselines and ablations.

1 Introduction
Imitation learning allows for control policies to be learned directly from example demonstrations
provided by human experts. It is easy to implement, and reduces or removes the need for extensive
interaction with the environment during training [58, 41, 4, 1, 20].

However, imitation learning suffers from a fundamental problem: distributional shift [9, 42]. Training
and testing state distributions are different, induced respectively by the expert and learned policies.
Therefore, imitating expert actions on expert trajectories may not align with the true task objective.
While this problem is widely acknowledged [41, 9, 42, 43], yet with careful engineering, naïve
behavioral cloning approaches have yielded good results for several practical problems [58, 41, 44,
36, 37, 4, 33, 3]. This raises the question: is distributional shift really still a problem?

In this paper, we identify a somewhat surprising and very problematic effect of distributional shift:
“causal misidentification.” Distinguishing correlates of expert actions in the demonstration set from
true causes is usually very difficult, but may be ignored without adverse effects when training and
testing distributions are identical (as assumed in supervised learning), since nuisance correlates
continue to hold in the test set. However, this can cause catastrophic problems in imitation learning
due to distributional shift. This is exacerbated by the causal structure of sequential action: the very
fact that current actions cause future observations often introduces complex new nuisance correlates.

To illustrate, consider behavioral cloning to train a neural network to drive a car. In scenario A, the
model’s input is an image of the dashboard and windshield, and in scenario B, the input to the model
(with identical architecture) is the same image but with the dashboard masked out (see Fig 1). Both
cloned policies achieve low training loss, but when tested on the road, model B drives well, while
model A does not. The reason: the dashboard has an indicator light that comes on immediately when
the brake is applied, and model A wrongly learns to apply the brake only when the brake light is on.
Even though the brake light is the effect of braking, model A could achieve low training error by
misidentifying it as the cause instead.

1Work mostly done while at Berkeley AI Research.
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Scenario A: Full Information Scenario B: Incomplete Information

policy attends to brake indicator

Figure 1: Causal misidentification: more information yields worse imitation learning performance. Model A
relies on the braking indicator to decide whether to brake. Model B instead correctly attends to the pedestrian.

This situation presents a give-away symptom of causal misidentification: access to more information
leads to worse generalization performance in the presence of distributional shift. Causal misidentifi-
cation occurs commonly in natural imitation learning settings, especially when the imitator’s inputs
include history information.

In this paper, we first point out and investigate the causal misidentification problem in imitation
learning. Then, we propose a solution to overcome it by learning the correct causal model, even when
using complex deep neural network policies. We learn a mapping from causal graphs to policies,
and then use targeted interventions to efficiently search for the correct policy, either by querying an
expert, or by executing selected policies in the environment.

2 Related Work
Imitation learning. Imitation learning through behavioral cloning dates back to Widrow and Smith,
1964 [58], and has remained popular through today [41, 44, 36, 37, 4, 13, 33, 56, 3]. The distributional
shift problem, wherein a cloned policy encounters unfamiliar states during autonomous execution,
has been identified as an issue in imitation learning [41, 9, 42, 43, 25, 19, 3]. This is closely tied
to the “feedback” problem in general machine learning systems that have direct or indirect access
to their own past states [47, 2]. For imitation learning, various solutions to this problem have been
proposed [9, 42, 43] that rely on iteratively querying an expert based on states encountered by some
intermediate cloned policy, to overcome distributional shift; DAgger [43] has come to be the most
widely used of these solutions.

We show evidence that the distributional shift problem in imitation learning is often due to causal
misidentification, as illustrated schematically in Fig 1. We propose to address this through targeted
interventions on the states to learn the true causal model to overcome distributional shift. As we
will show, these interventions can take the form of either environmental rewards with no additional
expert involvement, or of expert queries in cases where the expert is available for additional inputs. In
expert query mode, our approach may be directly compared to DAgger [43]: indeed, we show that we
successfully resolve causal misidentification using orders of magnitude fewer queries than DAgger.

We also compare against Bansal et al. [3]: to prevent imitators from copying past actions, they train
with dropout [53] on dimensions that might reveal past actions. While our approach seeks to find
the true causal graph in a mixture of graph-parameterized policies, dropout corresponds to directly
applying the mixture policy. In our experiments, our approach performs significantly better.

Causal inference. Causal inference is the general problem of deducing cause-effect relationships
among variables [52, 38, 40, 50, 10, 51]. “Causal discovery” approaches allow causal inference from
pre-recorded observations under constraints [54, 17, 29, 15, 30, 31, 26, 14, 34, 57]. Observational
causal inference is known to be impossible in general [38, 39]. We operate in the interventional
regime [55, 11, 49, 48] where a user may “experiment” to discover causal structures by assigning
values to some subset of the variables of interest and observing the effects on the rest of the system.
We propose a new interventional causal inference approach suited to imitation learning. While
ignoring causal structure is particularly problematic in imitation learning, ours is the first effort
directly addressing this, to our knowledge.

3 The Phenomenon of Causal Misidentification
In imitation learning, an expert demonstrates how to perform a task (e.g., driving a car) for the benefit
of an agent. In each demo, the agent has access both to its n-dim. state observations at each time t,
Xt = [Xt

1, X
t
2, . . . X

t
n] (e.g., a video feed from a camera), and to the expert’s actionAt (e.g., steering,
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acceleration, braking). Behavioral cloning approaches learn a mapping π from Xt to At using all
(Xt, At) tuples from the demonstrations. At test time, the agent observes Xt and executes π(Xt).

Figure 2: Causal dynamics of imitation. Par-
ents of a node represent its causes.

The underlying sequential decision process has complex
causal structures, represented in Fig 2. States influence
future expert actions, and are also themselves influenced
by past actions and states.

In particular, expert actions At are influenced by some
information in state Xt, and unaffected by the rest. For
the moment, assume that the dimensions Xt

1, X
t
2, X

t
3, . . .

of Xt represent disentangled factors of variation. Then
some unknown subset of these factors (“causes”) affect
expert actions, and the rest do not (“nuisance variables”).
A confounder Zt = [Xt−1, At−1] influences each state variable in Xt, so that some nuisance
variables may still be correlated with At among (Xt, At) pairs from demonstrations. In Fig 1, the
dashboard light is a nuisance variable.

A naïve behavioral cloned policy might rely on nuisance correlates to select actions, producing low
training error, and even generalizing to held-out (Xt, At) pairs. However, this policy must contend
with distributional shift when deployed: actions At are chosen by the imitator rather than the expert,
affecting the distribution of Zt and Xt. This in turn affects the policy mapping from Xt to At,
leading to poor performance of expert-cloned policies. We define “causal misidentification" as the
phenomenon whereby cloned policies fail by misidentifying the causes of expert actions.

3.1 Robustness and Causality in Imitation Learning

Intuitively, distributional shift affects the relationship of the expert action At to nuisance variables,
but not to the true causes. In other words, to be maximally robust to distributional shift, a policy
must rely solely on the true causes of expert actions, thereby avoiding causal misidentification. This
intuition can be formalized in the language of functional causal models (FCM) and interventions [38].

Functional causal models: A functional causal model (FCM) over a set of variables {Yi}ni=1
is a tuple (G, θG) containing a graph G over {Yi}ni=1, and deterministic functions fi(·; θG) with
parameters θG describing how the causes of each variable Yi determine it: Yi = fi(YPa(i;G), Ei; θG),
where Ei is a stochastic noise variable that represents all external influences on Yi, and Pa(i;G)
denote the indices of parent nodes of Yi, which correspond to its causes.

An “intervention” do(Yi) on Yi to set its value may now be represented by a structural change in this
graph to produce the “mutilated graph” GȲi , in which incoming edges to Yi are removed.1

Applying this formalism to our imitation learning setting, any distributional shift in the state Xt may
be modeled by intervening onXt, so that correctly modeling the “interventional query” p(At|do(Xt))
is sufficient for robustness to distributional shifts. Now, we may formalize the intuition that only a
policy relying solely on true causes can robustly model the mapping from states to optimal/expert
actions under distributional shift.

In Appendix B, we prove that under mild assumptions, correctly modeling interventional queries does
indeed require learning the correct causal graph G. In the car example, “setting” the brake light to on
or off and observing the expert’s actions would yield a clear signal unobstructed by confounders: the
brake light does not affect the expert’s braking behavior.

3.2 Causal Misidentification in Policy Learning Benchmarks and Realistic Settings

Before discussing our solution, we first present several testbeds and real-world cases where causal
misidentification adversely influences imitation learning performance.

Control Benchmarks. We show that causal misidentification is induced with small changes to
widely studied benchmark control tasks, simply by adding more information to the state, which
intuitively ought to make the tasks easier, not harder. In particular, we add information about the
previous action, which tends to correlate with the current action in the expert data for many standard
control problems. This is a proxy for scenarios like our car example, in which correlates of past actions

1For a more thorough overview of FCMs, see [38].

3



are observable in the state, and is similar to what we might see from other sources of knowledge about
the past, such as memory or recurrence. We study three kinds of tasks: (i) MountainCar (continuous
states, discrete actions), (ii) MuJoCo Hopper (continuous states and actions), (iii) Atari games: Pong,
Enduro and UpNDown (states: two stacked consecutive frames, discrete actions).

(a) Pong (b) Enduro (c) UpNDown

Figure 3: The Atari environments with indicator of
past action (white number in lower left).

For each task, we study imitation learning in
two scenarios. In scenario A (henceforth called
"CONFOUNDED"), the policy sees the augmented ob-
servation vector, including the previous action. In
the case of low-dimensional observations, the state
vector is expanded to include the previous action
at an index that is unknown to the learner. In the
case of image observations, we overlay a symbol
corresponding to the previous action at an unknown
location on the image (see Fig 3). In scenario B
("ORIGINAL"), the previous action variable is replaced with random noise for low-dimensional ob-
servations. For image observations, the original images are left unchanged. Demonstrations are
generated synthetically as described in Appendix A. In all cases, we use neural networks with
identical architectures to represent the policies, and we train them on the same demonstrations.

Fig 4 shows the rewards against varying demonstration dataset sizes for MountainCar, Hopper, and
Pong. Appendix E shows additional results, including for Enduro and UpNDown. All policies are
trained to near-zero validation error on held-out expert state-action tuples. ORIGINAL produces rewards
tending towards expert performance as the size of the imitation dataset increases. CONFOUNDED either
requires many more demonstrations to reach equivalent performance, or fails completely to do so.

Overall, the results are clear: across these tasks, access to more information leads to inferior perfor-
mance. As Fig 11 in the appendix shows, this difference is not due to different training/validation
losses on the expert demonstrations—for example, in Pong, CONFOUNDED produces lower validation
loss than ORIGINAL on held-out demonstration samples, but produces lower rewards when actually
used for control. These results not only validate the existence of causal misidentification, but also
provides us with testbeds for investigating a potential solution.

Real-World Driving. Our testbeds introduce deliberate nuisance variables to the “original”
observation variables for ease of evaluation, but evidence suggests that misattribution is pervasive
in common real-world imitation learning settings. Real-world problems often have no privileged
“original” observation space, and very natural-seeming state spaces may still include nuisance factors—
as in our dashboard light setting (Fig 1), where causal misattribution occurs when using the full image
from the camera.

In particular, history would seem a natural part of the state space for real-world driving, yet
recurrent/history-based imitation has been consistently observed in prior work to hurt performance,
thus exhibiting clear symptoms of causal misidentification [36, 56, 3]. While these histories contain
valuable information for driving, they also naturally introduce information about nuisance factors
such as previous actions. In all three cases, more information led to worse results for the behavioral
cloning policy, but this was neither attributed specifically to causal misidentification, nor tackled
using causally motivated approaches.

Metrics→ Validation Driving Performance
Methods ↓ Perplexity Distance Interventions Collisions

HISTORY 0.834 144.92 2.94 ± 1.79 6.49 ± 5.72
NO-HISTORY 0.989 268.95 1.30 ± 0.78 3.38 ± 2.55

Table 1: Imitation learning results from Wang et al. [56].
Accessing history yields better validation performance,
but worse actual driving performance.

We draw the reader’s attention to particularly
telling results from Wang et al. [56] for learning
to drive in near-photorealistic GTA-V [24] envi-
ronments, using behavior cloning with DAgger-
inspired expert perturbation. Imitation learn-
ing policies are trained using overhead image
observations with and without “history” infor-
mation (HISTORY and NO-HISTORY) about the
ego-position trajectory of the car in the past.

Similar to our tests above, architectures are identical for the two methods. And once again, like in
our tests above, HISTORY has better performance on held-out demonstration data, but much worse
performance when actually deployed. Tab 1 shows these results, reproduced from Wang et al. [56]
Table II. These results constitute strong evidence for the prevalence of causal misidentification in
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Figure 4: Diagnosing causal misidentification: net reward (y-axis) vs number of training samples (x-axis) for
ORIGINAL and CONFOUNDED, compared to expert reward (mean and stdev over 5 runs). Also see Appendix E.

realistic imitation learning settings. Bansal et al. [3] also observe similar symptoms in a driving
setting, and present a dropout [53] approach to tackle it, which we compare to in our experiments.
Subsequent to an earlier version of this work, Codevilla et al. [8] also verify causal confusion in
realistic driving settings, and propose measures to address a specific instance of causal confusion.

4 Resolving Causal Misidentification

Recall from Sec 3.1 that robustness to causal misidentification can be achieved by finding the true
causal model of the expert’s actions. We propose a simple pipeline to do this. First, we jointly learn
policies corresponding to various causal graphs (Sec 4.1). Then, we perform targeted interventions to
efficiently search over the hypothesis set for the correct causal model (Sec 4.2).

4.1 Causal Graph-Parameterized Policy Learning

Figure 5: Graph-parameterized
policy.

In this step, we learn a policy corresponding to each candidate causal
graph. Recall from Sec 3 that the expert’s actions A are based
on an unknown subset of the state variables {Xi}ni=1. Each Xi

may either be a cause or not, so there are 2n possible graphs. We
parameterize the structure G of the causal graph as a vector of n
binary variables, each indicating the presence of an arrow from Xk

to A in Fig 2. We then train a single graph-parameterized policy
πG(X) = fφ([X �G,G]), where � is element-wise multiplication,
and [·, ·] denotes concatenation. φ are neural network parameters,
trained through gradient descent to minimize:

EG[`(fφ([Xi �G,G]), Ai)], (1)

where G is drawn uniformly at random over all 2n graphs and ` is a mean squared error loss for the
continuous action environments and a cross-entropy loss for the discrete action environments. Fig 5
shows a schematic of the training time architecture. The policy network fφ mapping observations X
to actions A represents a mixture of policies, one corresponding to each value of the binary causal
graph structure variable G, which is sampled as a bernoulli random vector.

In Appendix D, we propose an approach to perform variational Bayesian causal discovery over
graphs G, using a latent variable model to infer a distribution over functional causal models (graphs
and associated parameters)—the modes of this distribution are the FCMs most consistent with the
demonstration data. This resembles the scheme above, except that instead of uniform sampling,
graphs are sampled preferentially from FCMs that fit the training demonstrations well. We compare
both approaches in Sec 5, finding that simple uniform sampling nearly always suffices in preparation
for the next step: targeted intervention.

4.2 Targeted Intervention

Having learned the graph-parameterized policy as in Sec 4.1, we propose targeted intervention to
compute the likelihood L(G) of each causal graph structure hypothesis G. In a sense, imitation
learning provides an ideal setting for studying interventional causal learning: causal misidentification
presents a clear challenge, while the fact that the problem is situated in a sequential decision process
where the agent can interact with the world provides a natural mechanism for carrying out limited
interventions.

5



We propose two intervention modes, both of which can be carried out by interaction with the
environment via the actions:

Algorithm 1 Expert query intervention

Input: policy network fφ s.t. πG(X) = fφ([X �
G,G])
Initialize w = 0,D = ∅.
Collect states S by executing πmix, the mixture of
policies πG for uniform samples G.
For each X in S, compute disagreement score:

D(X) = EG[DKL(πG(X), πmix(X))]
Select S ′ ⊂ S with maximal D(X).
Collect state-action pairs T by querying expert on S ′.
for i = 1 . . . N do

Sample G ∼ p(G) ∝ exp〈w,G〉.
L ← Es,a∼T [`(πG(s), a)]
D ← D ∪ {(G,L)}
Fit w on D with linear regression.

end for
Return: argmaxG p(G)

Algorithm 2 Policy execution intervention

Input: policy network fφ s.t. πG(X) = fφ([X �
G,G])
Initialize w = 0,D = ∅.
for i = 1 . . . N do

Sample G ∼ p(G) ∝ exp〈w,G〉.
Collect episode return RG by executing πG.
D ← D ∪ {(G,RG)}
Fit w on D with linear regression.

end for
Return: argmaxG p(G)

Expert query mode. This is the standard in-
tervention approach applied to imitation learn-
ing: intervene on Xt to assign it a value, and
observe the expert response A. To do this, we
sample a graph G at the beginning of each in-
tervention episode and execute the policy πG.
Once data is collected in this manner, we elicit
expert labels on interesting states. This requires
an interactive expert, as in DAgger [42], but re-
quires substantially fewer expert queries than
DAgger, because: (i) the queries serve only
to disambiguate among a relatively small set
of valid FCMs, and (ii) we use disagreement
among the mixture of policies in fφ to query the
expert efficiently in an active learning approach.
We summarize this approach in Algorithm 1.

Policy execution mode. It is not always pos-
sible to query an expert. For example, for a
learner learning to drive a car by watching a
human driver, it may not be possible to put the
human driver into dangerous scenarios that the
learner might encounter at intermediate stages
of training. In cases like these where we would
like to learn from pre-recorded demonstrations
alone, we propose to intervene indirectly by
using environmental returns (sum of rewards
over time in an episode) R =

∑
t rt. The poli-

cies πG(·) = fφ([· � G,G]) corresponding
to different hypotheses G are executed in the
environment and the returns RG collected. The likelihood of each graph is proportional to the
exponentiated returns expRG. The intuition is simple: environmental returns contain information
about optimal expert policies even when experts are not queryable. Note that we do not even assume
access to per-timestep rewards as in standard reinforcement learning; just the sum of rewards for each
completed run. As such, this intervention mode is much more flexible. See Algorithm 2.

Note that both of the above intervention approaches evaluate individual hypotheses in isolation, but
the number of hypotheses grows exponentially in the number of state variables. To handle larger
states, we infer a graph distribution p(G), by assuming an energy based model with a linear energy
E(G) = 〈w,G〉 + b, so the graph distribution is p(G) =

∏
i p(Gi) =

∏
i Bernoulli(Gi|σ(wi/τ)),

where σ is the sigmoid, which factorizes in independent factors. The independence assumption is
sensible as our approach collapses p(G) to its mode before returning it and the collapsed distribution
is always independent. E(G) is inferred from linear regression on the likelihoods. This process
is depicted in Algorithms 1 and 2. The above method can be formalized within the reinforcement
learning framework [27]. As we show in Appendix H, the energy-based model can be seen as an
instance of soft Q-learning [16].

4.3 Disentangling Observations

In the above, we have assumed access to disentangled observations Xt. When this is not the case,
such as with image observations, Xt must be set to a disentangled representation of the observation
at time t. We construct such a representation by training a β-VAE [22, 18] to reconstruct the original
observations. To capture states beyond those encountered by the expert, we train with a mix of expert
and random trajectory states. Once trained,Xt is set to be the mean of the latent distribution produced
at the output of the encoder. The VAE training objective encourages disentangled dimensions in the
latent space [5, 6]. We employ CoordConv [28] in both the encoder and the decoder architectures.
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Figure 6: Reward vs. number of intervention episodes (policy execution interventions) on Atari games. UNIF-
INTERVENTION succeeds in getting rewards close to ORIGINAL W/ VAE, while the DROPOUT baseline only
outperforms CONFOUNDED W/ VAE in UpNDown.

5 Experiments
We now evaluate the solution described in Sec 4 on the five tasks (MountainCar, Hopper, and 3 Atari
games) described in Sec 3.2. In particular, recall that CONFOUNDED performed significantly worse
than ORIGINAL across all tasks. In our experiments, we seek to answer the following questions: (1)
Does our targeted intervention-based solution to causal misidentification bridge the gap between
CONFOUNDED and ORIGINAL? (2) How quickly does performance improve with intervention? (3)
Do both intervention modes (expert query, policy execution) described in Sec 4.2 resolve causal
misidentification? (4) Does our approach in fact recover the true causal graph? (5) Are disentangled
state representations necessary?

In each of the two intervention modes, we compare two variants of our method: UNIF-INTERVENTION

and DISC-INTERVENTION. They only differ in the training of the graph-parameterized mixture-of-
policies fφ—while UNIF-INTERVENTION samples causal graphs uniformly, DISC-INTERVENTION uses
the variational causal discovery approach mentioned in Sec 4.1, and described in detail in Appendix D.

Baselines. We compare our method against three baselines applied to the confounded state. DROPOUT

trains the policy using Eq 1 and evaluates with the graph G containing all ones, which amounts
to dropout regularization [53] during training, as proposed by Bansal et al. [3]. DAGGER [42]
addresses distributional shift by querying the expert on states encountered by the imitator, requiring
an interactive expert. We compare DAGGER to our expert query intervention approach. Lastly, we
compare to Generative Adversarial Imitation Learning (GAIL) [19]. GAIL is an alternative to standard
behavioral cloning that works by matching demonstration trajectories to those generated by the
imitator during roll-outs in the environment. Note that the PC algorithm [26], commonly used in
causal discovery from passive observational data, relies on the faithfulness assumption, which causes
it to be infeasible in our setting, as explained in Appendix C. See Appendices B & D for details.

Intervention by policy execution. Fig 7 plots episode rewards versus number of policy execution
intervention episodes for MountainCar and Hopper. The reward always corresponds to the current
mode argmaxG p(G) of the posterior distribution over graphs, updated after each episode, as
described in Algorithm 2. In these cases, both UNIF-INTERVENTION and DISC-INTERVENTION eventually
converge to models yielding similar rewards, which we verified to be the correct causal model
i.e., true causes are selected and nuisance correlates left out. In early episodes on MountainCar,
DISC-INTERVENTION benefits from the prior over graphs inferred in the variational causal discovery
phase. However, in Hopper, the simpler UNIF-INTERVENTION performs just as well. DROPOUT does
indeed help in both settings, as reported in Bansal et al. [3], but is significantly poorer than our
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Figure 7: Reward vs. number of intervention episodes (policy execution interventions) on MountainCar and
Hopper. Our methods UNIF-INTERVENTION and DISC-INTERVENTION bridge most of the causal misidenti-
fication gap (between ORIGINAL (lower bound) and CONFOUNDED (upper bound), approaching ORIGINAL
performance after tens of episodes. GAIL [19] (on Hopper) achieves this too, but after 1.5k episodes.
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Figure 8: Reward vs. expert queries (expert query interventions) on MountainCar and Hopper. Our methods
partially bridge the gap from CONFOUNDED (lower bd) to ORIGINAL (upper bd), also outperforming DAG-
GER [43] and DROPOUT [3]. GAIL [19] outperforms our methods on Hopper, but requires a large number of
policy roll-outs (also see Fig 7 comparing GAIL to our policy execution-based approach).

approach variants. GAIL requires about 1.5k episodes on Hopper to match the performance of our
approaches, which only need tens of episodes. Appendix G further analyzes the performance of GAIL.
Standard implementations of GAIL do not handle discrete action spaces, so we do not evaluate it on
MountainCar.

As described in Sec 4.3, we use a VAE to disentangle image states in Atari games to produce 30-D
representations for Pong and Enduro and 50-D representations for UpNDown. We set this dimension-
ality heuristically to be as small as possible, while still producing good reconstructions as assessed
visually. Requiring the policy to utilize the VAE representation without end-to-end training does
result in some drop in performance, as seen in Fig 6. However, causal misidentification still causes a
very large drop of performance even relative to the baseline VAE performance. DISC-INTERVENTION

is hard to train as the cardinality of the state increases, and yields only minor advantages on Hopper
(14-D states), so we omit it for these Atari experiments. As Fig 6 shows, UNIF-INTERVENTION indeed
improves significantly over CONFOUNDED W/ VAE in all three cases, matching ORIGINAL W/ VAE on
Pong and UpNDown, while the DROPOUT baseline only improves UpNDown. In our experiments thus
far, GAIL fails to converge to above-chance performance on any of the Atari environments. These
results show that our method successfully alleviates causal misidentification within relatively few
trials.

Intervention by expert queries. Next, we perform direct intervention by querying the expert on
samples from trajectories produced by the different causal graphs. In this setting, we can also directly
compare to DAGGER [43]. Fig 8 shows results on MountainCar and Hopper. Both our approaches
successfully improve over CONFOUNDED within a small number of queries. Consistent with policy
execution intervention results reported above, we verify that our approach again identifies the true
causal model correctly in both tasks, and also performs better than DROPOUT in both settings. It also
exceeds the rewards achieved by DAGGER, while using far fewer expert queries. In Appendix F, we
show that DAGGER requires hundreds of queries to achieve similar rewards for MountainCar and tens
of thousands for Hopper. Finally, GAIL with 1.5k episodes outperforms our expert query interventions
approach. Recall however from Fig 8 that this is an order of magnitude more than the number of
episodes required by our policy intervention approach.

Once again, DISC-INTERVENTION only helps in early interventions on MountainCar, and not at all on
Hopper. Thus, our method’s performance is primarily attributable to the targeted intervention stage,
and the exact choice of approach used to learn the mixture of policies is relatively insignificant.

Overall, of the two intervention approaches, policy execution converges to better final rewards.
Indeed, for the Atari environments, we observed that expert query interventions proved ineffective.
We believe this is because expert agreement is an imperfect proxy for true environmental rewards.

Interpreting the learned causal graph. Our method labels each dimension of the VAE encoding
of the frame as a cause or nuisance variable. In Fig 9, we analyze these inferences in the Pong
environment as follows: in the top row, a frame is encoded into the VAE latent, then for all nuisance
dimensions (as inferred by our approach UNIF-INTERVENTION), that dimension is replaced with a
sample from the prior, and new samples are generated. In the bottom row, the same procedure is
applied with a random graph that has as many nuisance variables as the inferred graph. We observe
that in the top row, the causal variables (the ball and paddles) are shared between the samples, while
the nuisance variables (the digit) differ, being replaced either with random digits or unreadable digits.
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Figure 9: Samples from (top row) learned causal graph and (bottom row) random causal graph. (See text)

In the bottom row, the causal variables differ strongly, indicating that important aspects of the state
are judged as nuisance variables. This validates that, consistent with MountainCar and Hopper, our
approach does indeed identify true causes in Pong.

Mode Representation Reward

Policy execution Disentangled -137
Entangled -145

Expert queries Disentangled -140
Entangled -165

Table 2: Intervention on (dis)entangled MountainCar.

Necessity of disentanglement. Our interven-
tion method assumes a disentangled representa-
tion of state. Otherwise, each of the n individ-
ual dimensions in the state might capture both
causes as well as nuisance variables and problem
of discovering true causes is no longer reducible
to searching over 2n graphs.

To test this empirically, we create a variant of
our MountainCar CONFOUNDED testbed, where the 3-D past action-augmented state vector is rotated
by a fixed, random rotation. After training the graph-conditioned policies on the entangled and
disentangled CONFOUNDED state, and applying 30 episodes of policy execution intervention or
20 expert queries, we get the results shown in Tab 2. The results are significantly lower in the
entangled than in the disentangled (non-rotated) setting, indicating disentanglement is important for
the effectiveness of our approach.

6 Conclusions

We have identified a naturally occurring and fundamental problem in imitation learning, “causal
misidentification”, and proposed a causally motivated approach for resolving it. While we observe
evidence for causal misidentification arising in natural imitation learning settings, we have thus far
validated our solution in somewhat simpler synthetic settings intended to mimic them. Extending
our solution to work for such realistic scenarios is an exciting direction for future work. Finally,
apart from imitation, general machine learning systems deployed in the real world also encounter
“feedback” [47, 2], which opens the door to causal misidentification. We hope to address these more
general settings in the future.
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