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ABSTRACT

Su et al. (2014) made a connection between Nesterov’s method and an ordinary
differential equation (ODE). We show if a Hessian damping term is added to the
ODE from Su et al. (2014), then Nesterov’s method arises as a straightforward
discretization of the modified ODE. Analogously, in the strongly convex case, a
Hessian damping term is added to Polyak’s ODE, which is then discretized to
yield Nesterov’s method for strongly convex functions. Despite the Hessian term,
both second order ODEs can be represented as first order systems.
Established Liapunov analysis is used to recover the accelerated rates of conver-
gence in both continuous and discrete time. Moreover, the Liapunov analysis can
be extended to the case of stochastic gradients which allows the full gradient case
to be considered as a special case of the stochastic case. The result is a unified
approach to convex acceleration in both continuous and discrete time and in both
the stochastic and full gradient cases.

1 INTRODUCTION

Su et al. (2014) made a connection between Nesterov’s method for a convex, L-smooth function, f ,
and the second order, ordinary differential equation (ODE)

ẍ+
3

t
ẋ+∇f(x) = 0 (A-ODE)

However Su et al. (2014) did not show that Nesterov’s method arises as a discretization of (A-ODE).
In order to obtain such a discretization, we consider the following ODE, which has an additional
Hessian damping term with coefficient 1/

√
L.

ẍ+
3

t
ẋ+∇f(x) = − 1√

L

(
D2f(x) · ẋ+

1

t
∇f(x)

)
(H-ODE)

Notice that (H-ODE) is a perturbation of (A-ODE), and the perturbation goes to zero as L →
∞. Similar ODEs have been studied by Alvarez et al. (2002), they have been shown to accelerate
gradient descent in continuous time in (Attouch et al., 2016).

Next, we consider the case where f is also µ-strongly convex, and writeCf := L/µ for the condition
number of f . Then Nesterov’s method in the strongly convex case arises as discretization of the
following second order ODE

ẍ+ 2
√
µẋ+∇f(x) = − 1√

L

(
D2f(x) · ẋ+

√
µ∇f(x)

)
(H-ODE-SC)

(H-ODE-SC) is a perturbation of Polyak’s ODE (Polyak, 1964)

ẍ+ 2
√
µẋ+∇f(x) = 0

which is accelerates gradient when f is quadratic see (Scieur et al., 2017).

In each case, both continuous and discrete, as well and convex and strongly convex, it is possible to
provide a proof of the rate using a Liapunov function. These proofs are already established in the
literature: we give citations below, and also provide proof in the Appendix.
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Moreover, the analysis for Nesterov’s method in the full gradient can be extended to prove accel-
eration in the case of stochastic gradients. Acceleration of stochastic gradient descent has been
established by Lin et al. (2015) and Frostig et al. (2015), see also Jain et al. (2018). A direct accel-
eration method with a connection to Nestero’v method was done by Allen-Zhu (2017). Our analysis
unifies the continuous time ODE with the algorithm, and includes full gradient acceleration as a
special case. The analysis proceeds by first rewriting (H-ODE) (and (H-ODE-SC)) as first order
systems involving ∇f , and then replacing the ∇f with g = ∇f + e. Both the continuous and
discrete time methods achieve the accelerated rate of convergence, provided |e| goes to zero quickly
enough. The condition on |e|, is given below in (12) and (13) - it is faster than the corresponding
rate for stochastic gradient descent. When e = 0 we recover the full gradient case.

The renewed interested in the continuous time approach began with the work of Su et al. (2014) and
was followed Wibisono et al. (2016); Wilson et al. (2016). Continuous time analysis also appears in
Flammarion & Bach (2015), Lessard et al. (2016), and Krichene et al. (2015). However, continuous
time approaches to optimization have been around for a long time. Polyak’s method Polyak (1964)
is related to successive over relaxation for linear equations (Varga, 1957) which were initially used
to accelerate solutions of linear partial differential equations (Young, 1954). A continuous time
interpretation of Newton’s method can be found in (Polyak, 1987) or Alvarez et al. (2002). The
mirror descent algorithm of Nemirovskii et al. (1983) has a continuous time interpretation (Bubeck
et al., 2015). The Liapunov approach for acceleration had already appeared in Beck & Teboulle
(2009) for FISTA.

The question of when discretizations of dynamical systems also satisfy a Liapunov function has
been studied in the context of stabilization in optimal control Levant (1993). More generally, Stuart
& Humphries (1996) studies when a discretization of a dynamical system preserves a property such
as energy dissipation.

2 AN ODE REPRESENTATION FOR NESTEROV’S METHOD

2.1 CONVEX CASE

Despite the Hessian term, (H-ODE-SC) can be represented as the following first order system.

Lemma 2.1. The second order ODE (H-ODE) is equivalent to the first order system{
ẋ = 2

t (v − x)−
1√
L
∇f(x),

v̇ = − t
2∇f(x).

(1st-ODE)

Proof. Solve for v in the first line of (1st-ODE)

v =
t

2
(ẋ+

1√
L
∇f(x)) + x

differentiate to obtain

v̇ =
1

2
(ẋ+

1√
L
∇f(x)) + t

2
(ẍ+

1√
L
D2f(x) · ẋ) + ẋ.

Insert into the second line of (1st-ODE)

1

2
(ẋ+

1√
L
∇f(x)) + t

2
(ẍ+

1√
L
D2f(x) · ẋ) + ẋ = − t

2
∇f(x).

Simplify to obtain (H-ODE).

The system (1st-ODE) can be discretized using the forward Euler method with a constant time step,
h, to obtain Nesterov’s method.

Definition 2.2. Define yk as the following convex combination of xk and vk.

yk =
kxk + 2vk
k + 2

. (1)
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Let h > 0 be a given small time step/learning rate and let tk = h(k+2). The forward Euler method
for (1st-ODE) with gradients evaluated at yk is given by

xk+1 − xk =
2h

tk
(vk − xk)−

h√
L
∇f(yk),

vk+1 − vk = −htk
2
∇f(yk)

(FE-C)

Remark 2.3. The forward Euler method simply comes from replacing ẋ with (xk+1 − xk)/h and
similarly for v. Normally the velocity field is simply evaluated at xk, vk. The only thing different
about (FE-C) from the standard forward Euler method is that ∇f is evaluated at yk instead of xk.
However, this is still an explicit method. More general multistep methods and one leg methods in
this context are discussed in Scieur et al. (2017).

Recall the standard Nesterov’s method from Nesterov (2013, Section 2.2)
xk+1 = yk −

1

L
∇f(yk)

yk = xk+1 +
k

k + 3
(xk+1 − xk)

(Nest)

Theorem 2.4. The discretization of (H-ODE) given by (FE-C)(1) with h = 1/
√
L and tk = h(k+2)

is equivalent to the standard Nesterov’s method (Nest).

Proof. (FE-C) with h = 1/
√
L and tk = h(k + 2) becomes

xk+1 − xk =
2

k + 2
(vk − xk)−

1

L
∇f(yk)

vk+1 − vk = −k + 2

2L
∇f(yk)

Eliminate the variable v using (1) to obtain (Nest).

2.2 STRONGLY CONVEX CASE

Now we consider µ-strongly convex, and L-smooth functions, f , and write Cf := L
µ for the condi-

tion number. We first show that (H-ODE-SC) can be represented as a first order system.

Lemma 2.5. The second order ODE (H-ODE-SC) is equivalent to the first order system{
ẋ =
√
µ(v − x)− 1√

L
∇f(x),

v̇ =
√
µ(x− v)− 1√

µ∇f(x).
(1st-ODE-SC)

Proof. Solve for v in the first line of (1st-ODE-SC)

v =
1
√
µ
(ẋ+

1√
L
∇f(x)) + x

differentiate to obtain

v̇ =
1
√
µ
(ẍ+

1√
L
D2f(x) · ẋ) + ẋ.

Insert into the second line of (1st-ODE-SC)

1
√
µ
(ẍ+

1√
L
D2f(x) · ẋ) + ẋ = −ẋ−

(
1√
L

+
1
√
µ

)
∇f(x).

Simplify to obtain (H-ODE-SC).
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System (1st-ODE-SC) can be discretized using a forward Euler method with a constant time step h
to obtain Nesterov’s method. Let h > 0 be a small time step, and apply the forward Euler method
for (1st-ODE-SC) evaluated at yk:

xk+1 − xk =
h
√
µ

1 + h
√
µ
λ(vk − xk)−

h√
L
∇f(yk),

vk+1 − vk =
h
√
µ

1 + h
√
µ
(xk − vk)−

h
√
µ
∇f(yk)

(FE-SC)

where,

yk = (1− λh)xk + λhvk, λh =
h
√
µ

1 + h
√
µ
. (2)

Now we recall the usual Nesterov’s method for strongly convex functions from Nesterov (2013,
Section 2.2)

xk+1 = yk −
1

L
∇f(yk)

yk+1 = xk+1 +
1−

√
Cf
−1

1 +
√
Cf
−1

(xk+1 − xk)
(SC-Nest)

Theorem 2.6. The discretization of (H-ODE-SC) given by (FE-SC) with h = 1/
√
L is equivalent

to the standard Nesterov’s method (SC-Nest).

Proof. (FE-SC) with h = 1/
√
L becomes

xk+1 − xk =

√
Cf

−1

1+
√
Cf

−1
(vk − xk)−

1

L
∇f(yk)

vk+1 − vk =

√
Cf

−1

1+
√
Cf

−1
(xk − vk)−

1√
Lµ
∇f(yk)

Eliminate the variable vk using the definition of yk to obtain (SC-Nest).

3 LIAPUNOV ANALYSIS

3.1 CONVEX CASE: CONTINUOUS AND DISCRETE TIME

Definition 3.1. Define the continuous time Liapunov function
E(t, x, v) := t2(f(x)− f∗) + 2|v − x∗|2 (3)

Define the discrete time Liapunov function Ek by
Ek = E(tk−1, xk, vk) (4)

Proposition 3.2. Let f be a convex and L-smooth function. Let (x(t), v(t)) be a solution to
(1st-ODE), then

dE(t, x(t), v(t))

dt
≤ − t2√

L
|∇f(x)|2.

where E(t, x, v) in given by (3). In particular, for all t > 0,

f(x(t))− f∗ ≤ 2

t2
|v0 − x∗|2.

Furthermore, let xk, vk be given by (FE-C). Then for all k ≥ 0,

Ek+1 ≤ Ek − h2(f(xk)− f∗) +
(
h− 1√

L

)
t2kh|∇f(yk)|2.

In particular, if

h ≤ 1√
L

(5)

then Ek is decreasing. When equality holds in (5),

f(xk)− f∗ ≤
2

(k + 1)2
(
(f(x0)− f∗) + |v0 − x∗|2

)
.
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Most of the results stated above are already known, but for completeness we refer the proofs in
Appendix A. Since (FE-C) is equivalent to Nesterov’s method, the rate is known. The proof of the
rate using a Liapunov function can be found in Beck & Teboulle (2009). Refer to ? which shows
that we can use the constant time step. The discrete Liapunov function (4) was used in Su et al.
(2014); Attouch & Peypouquet (2016) to prove a rate.

3.2 STRONGLY CONVEX CASE: CONTINUOUS AND DISCRETE TIME

Definition 3.3. Define the continuous time Liapunov function E(x, v)

E(x, v) = f(x)− f∗ + µ

2
|v − x∗|2 (6)

Define the discrete time Liapunov function by

Ek = E(xk, vv) = f(xk)− f∗ +
µ

2
|vk − x∗|2. (7)

Proposition 3.4. Let (x, v) be the solution of (1st-ODE-SC), then

dE(x, v)

dt
≤ −√µE(x, v)− 1√

L
|∇f(x)|2 −

µ
√
µ

2
|v − x|2. (8)

In particular, for all t > 0,

E(x(t), v(t)) ≤ exp(−√µt)E(x0, v0).

Next, let xk, vk be given by (FE-SC) with initial condition (x0, v0). For h ≤ 1√
L

, we have

Ek+1 − Ek ≤ −h
√
µEk. (9)

In particular, for h = 1√
L

,

Ek+1 ≤ (1−
√
Cf
−1)Ek. (10)

The discrete Liapunov function Ek was used to prove a rate in the strongly convex case by Wilson
et al. (2016). The proof of (10) can be found in Wilson et al. (2016, Theorem 6). For completeness
we also provide the proof in Appendix E.

4 STOCHASTIC ACCELERATED METHOD

In the appendix we present results in continuous and discrete time for (non-accelerated) stochastic
gradient descent. We also present results in continuous time for the stochastic accelerated case in
the Appendix.

We present the results in discrete time here.

4.1 CONVEX STOCHASTIC CASE: DISCRETE TIME

In this section we consider stochastic gradients, which we write as a gradient plus an error term

∇̃f(yk) = ∇f(yk) + ek (11)

The stochastic gradient can be abstract, or it can error be a mini-batch gradient when f is a sum.
Moreover, we can include the case where

ek = ∇f(ỹ)−∇If(ỹ)− (∇f(yk)−∇If(yk))

corresponding to a correction by a snapshot of the full gradient at a snapshot location, which is
updated every m iterations, as inJohnson & Zhang (2013). The combination of gradient reduction
and momentum was discussed in Allen-Zhu (2017).

In order to obtain the accelerated rate, our Liapuonov analysis requires that the |ei| be decreasing
fast enough. This can also be accomplished in the minibatch setting by using larger minibatches. In
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this case, the rate of decrease of ei required gives a schedule for minibatch sizes. A similar result
was obtained in Attouch & Peypouquet (2016).

When we replace gradients with (11) the Forward Euler scheme (FE-C) becomes
xk+1 − xk =

2h

tk
(vk − xk)−

h√
L
(∇f(yk) + ek),

vk+1 − vk = −htk
2
(∇f(yk) + ek),

(Sto-FE-C)

where yk is given by (1), h is a constant time step, and tk := h(k + 2). In Appendix C, we study
the continuous version of (Sto-FE-C) and obtain a rate of convergence using a Liapunov function.
Definition 4.1. Define the discrete stochastic Liapunov function Ẽk := Ek + Ik, for k ≥ 0, where
Ek is given by (4) and and, e−1 := 0 and for k ≥ 0,

Ik := h

k∑
i=0

2ti 〈vi − x∗, ei−1〉 .

Theorem 4.2. Assume that the sequence ek satisfies
+∞∑
i=1

i|ei| < +∞ (12)

and set h = 1√
L

. Then, supi≥1 |vi − x∗| < +∞ and

Ẽk+1 ≤ Ẽk, k ≥ 0

We immediately have the following result.
Corollary 4.3. Suppose ek satisfies (12) and h = 1√

L
. Then, for k ≥ 0,

f(xk)− f∗ ≤
C

(k + 1)2
,

with

C = 2L((f(x0)− f∗) + |v0 − x∗|2) + 2 sup
i≥1
|vi − x∗|

+∞∑
i=0

(i+ 3)|ei|.

Remark 4.4. The assumption on ek is satisfied, for example, by a sequence of the form |ek| = 1/kα

for any α > 2. By comparison for SGD, the corresponding condition is satisfied by such sequences
with α > 1. Thus the norm of the noise needs to go to zero faster for accelerated SGD compared to
regular SGD (see Appendix B) in order to obtain the rate.

Remark 4.5. In Theorem 4.2, we focus on the maximum possible time step h = 1/
√
L. The

result is still true if we shrink the time step. In this case, Ik can be defined using the tails
h
∑∞
i=k+1 2ti 〈vi − x∗, ei−1〉, see Attouch & Peypouquet (2016).

4.2 STRONGLY CONVEX STOCHASTIC CASE: DISCRETE TIME

In this section, we consider that stochastic gradient, which we write as a gradient plus an error, as in
section 4.1. In Appendix B.2, we study the Stochastic gradient descent and Appendix C.2 is devoted
to the analysis of the continuous framework of Stochastic Accelerated method. The Forward Euler
scheme (FE-SC) becomes


xk+1 − xk = λh(vk − xk)−

h√
L
(∇f(yk) + ek),

vk+1 − vk = λh(xk − vk)−
h
√
µ
(∇f(yk) + ek),

(Sto-FE-SC)

where ek is a given error and

yk = (1− λh)xk + λhvk, λh =
h
√
µ

1 + h
√
µ
.

Inspired by the continuous framework (Appendix C.2), we define a discrete Lyapunov function.
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Definition 4.6. Define Ẽk := Ek + Ik, where Ek is given by (7) and

Ik := h
√
µ (1− h√µ)k

k∑
i=0

(1− h√µ)−i 〈vi − x∗, ei−1〉,

with the convention e−1 = 0.

Then we obtain the following convergence result for sequences generated by (Sto-FE-SC).
Theorem 4.7. Let xk, vk be two sequences generated by the scheme (Sto-FE-SC) with initial con-
dition (x0, v0). Suppose that h = 1√

L
and the sequence (ek)k satisfies

+∞∑
i=0

(1−
√
Cf
−1)−iei < +∞. (13)

Then,

Ẽk+1 6 (1−
√
Cf
−1)kẼk.

In addition, supi≥0 |vi − x∗| ≤M for a positive constant M and

f(xk)− f∗ +
µ

2
|vk − x∗|2 ≤ A(1−

√
Cf
−1)k,

with

A = f(x0)− f∗ +
µ

2
|v0 − x∗|2 +M

+∞∑
i=0

(1−
√
Cf
−1)−iei−1

We include the proof of Theorem 4.7 since this result is new.

Proof of Theorem 4.7. First we prove that

Ek+1 − Ek ≤ −
√
Cf
−1Ek

−
√
Cf
−1〈λh(xk − vk)−

1
√
µ
(∇f(yk) + ek), ek〉

−
√
Cf
−1〈vk − x∗, ek〉

For the term Ik, we obtain

Ik+1 − Ik ≤
√
Cf
−1(1−

√
Cf
−1)k

(
(1−

√
Cf
−1)

k+1∑
i=0

(1−
√
Cf
−1)−i〈vi − x∗, ei−1〉

−
k∑
i=0

(1−
√
Cf
−1)−i〈vi − x∗, ei−1〉

)
= −

√
Cf
−1Ik +

√
Cf
−1〈vk+1 − x∗, ek〉.

Putting all together, we obtain

Ẽk+1 − Ẽk = Ek+1 − Ek + Ik+1 − Ik

≤ −
√
Cf
−1Ẽk

+
1

L
|ek|2 +

√
Cf
−1

√
L
〈λ(vk − xk) +

1
√
µ
∇f(yk), ek〉

+

√
Cf
−1〈vk+1 − vk, ek〉
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And by definition of vk+1 − vk, we have

Ẽk+1 − Ẽk ≤ −
√
Cf
−1〈λh(xk − vk)−

1√
Lµ

(∇f(yk) + ek), ek〉

+

√
Cf
−1〈λh(xk − vk)−

1√
Lµ

(∇f(yk) + ek), ek〉

≤ −
√
Cf
−1Ẽk.

We conclude, as in the convex case, applying discrete Gronwall Lemma and (13).
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A CONTINUOUS FRAMEWORK: ODE AND RATE

Proof of Prof 3.2. By definition of E, we have

dE

dt
≤ 2t(f(x)− f∗) + t2〈∇f(x), ẋ〉

+4〈v − x∗, v̇〉

≤ 2t(f(x)− f∗) + 2t〈∇f(x), v − x〉 − t2√
L
|∇f(x)|2

−2t〈v − x∗,∇f(x)〉

≤ 2t(f(x)− f∗ − 〈x− x∗,∇f(x)〉)− t2√
L
|∇f(x)|2.

The proof is concluded by convexity,

f(x)− f∗ − 〈x− x∗,∇f(x)〉 ≤ 0.

9
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Proof of Proposition 3.4. Using (1st-ODE-SC), we obtain

dE(x, v)

dt
= 〈∇f(x), ẋ〉+ λ

√
µ〈v − x∗, v̇〉

=
√
µ〈∇f(x), v − x〉 − 1√

L
|∇f(x)|2 − µ√µ〈v − x∗, v − x〉 − √µ〈∇f(x), v − x∗〉

= −√µ〈∇f(x), x− x∗〉 − 1√
L
|∇f(x)|2 −

µ
√
µ

2

[
|v − x∗|2 + |v − x|2 − |x− x∗|2

]
By strong convexity, we have

dE(x, v)

dt
≤ −√µ

(
f(x)− f∗ + µ

2
|x− x∗|2

)
− 1√

L
|∇f(x)|2

−
µ
√
µ

2

[
|v − x∗|2 + |v − x|2 − |x− x∗|2

]
≤ −√µE(x, v)− 1√

L
|∇f(x)|2 −

µ
√
µ

2
|v − x|2.

B STOCHASTIC GRADIENT DESCENT

B.1 CONVEX CASE: CONTINUOUS AND DISCRETE TIME

Let e : [0,+∞)→ Rd be a integrable function. Consider the gradient descent

ẋ = −(∇f(x) + e(t)). (14)

Then define the Lyapunov function, Ẽ, by

Ẽ(t, x) = E(t, x) + I(t),

where,

E(t, x) = t(f(x)− f∗) + 1

2
|x− x∗|2,

and,

I(t) =

∫ t

0

〈x(s)− x∗ + s∇f(x(s)), e(s)〉 ds.

Then the following result holds.
Proposition B.1. Let x be a solution of (14) with initial condition x0. Then,

dẼ(t, x)

dt
≤ −t|∇f(x)|2.

In addition, if f is L-smooth, sups≥0 |x(s)− x∗| < +∞, sups≥0 s|∇f(x(s))| < +∞ and

f(x(t))− f∗ ≤ 1

t

(
f(x0)− f∗ +

1

2
|x0 − x∗|2 + sup

s≥0
|x(s)− x∗ + s∇f(x(s))|‖e‖L1(0,+∞)

)
.

Proof. For all t > 0, we have

• dE(t,x)
dt = (f(x)− f∗ − 〈∇f(x), x− x∗〉)− t|∇f(x)| − 〈x− x∗ + t∇f(x), e〉,

• dI(t)
dt = 〈x− x∗ + t∇f(x), e〉.

Then, since f is convex, we obtain the first result. We deduce that Ẽ is decreasing. Arguing as
Attouch et al. (2016) along with the co-coercivity inequality, we prove that sups≥0 |x(s) − x∗| <
+∞, sups≥0 s|∇f(x(s))| < +∞ which concludes the proof.

10
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The discretization of (14) is

xk+1 − xk = −h(∇f(xk) + ek), (15)

where ek = e(hk).

Define Ẽk by
Ẽk = Ek + Ik,

where, for tk := hk,

Ek = tk(f(xk)− f∗) +
1

2
|xk − x∗|2,

and,

Ik = h

k−1∑
i=0

〈xi − x∗ − ti+1(∇f(xi) + ei), ei〉.

Proposition B.2. Let xk be the sequence generated by (15) with initial condition x0. Assume that
h satisfies, for all k ≥ 0,

h(Ltk+1 + 1)− 2tk+1 ≤ 0 ≡ h ≤ 1

L
. (16)

Then the Ẽk is decreasing. In addition if (ek)k and (tk+1|ek|2)k are summable, supi≥0 |xi − x∗| <
+∞, supi≥0 |ti+1∇f(xi)| < +∞ and

f(xk)− f∗ ≤
1

tk

[
1

2
|x0 − x∗|2 + sup

i≥0
|xi − x∗ + ti+1∇f(xi)|

+∞∑
i=0

(|ei|+ ti+1|ei|2)

]
.

Proof. By L-smoothness and convexity of f , we have

Ek+1 − Ek ≤ −htk+1〈∇f(xk),∇f(xk) + ek〉

+(Ltk+1 + 1)
h2

2
|∇f(xk) + ek|2

−〈xk − x∗, ek〉
+h(f(xk)− f∗ − 〈∇f(xk), xk − x∗〉)

≤ ((Ltk+1 + 1)h− 2tk+1)
h

2
|∇f(xk) + ek|2

−h〈xk − x∗, ek〉+ tk+1h〈∇f(xk) + ek, ek〉.

In addition,
Ik+1 − Ik = h〈xk − x∗ − tk+1(∇f(xk) + ek), ek〉,

therefore,

Ẽk+1 − Ẽk ≤ ((Ltk+1 + 1)h− 2tk+1)
h

2
|∇f(xk) + ek|2 ≤ 0,

when h satisfies (16). We conclude the proof with the same argument as Proposition B.1.

B.2 STRONGLY CONVEX CASE: CONTINUOUS AND DISCRETE TIME

Let us study the equation

ẋ = −(∇f(x) + e(t)), (17)

for an error function, e satisfying ∫ +∞

0

eµs|e(s)| ds < +∞. (18)

This condition on the error function is classical Robbins & Monro (1951). The case e = 0 is satisfied
trivially and corresponds to the gradient descent ODE.

11



Under review as a conference paper at ICLR 2019

We define the function E : [0,+∞)× Rd → [0,+∞) by

E(t, x) =
1

2
|x− x∗|2 + I(t),

where,

I(t) = e−µt
∫ t

0

eµs〈x(s)− x∗, e(s)〉 ds.

Then we have the following result.
Proposition B.3. Let x be a solution of (17) with initial data x0 and suppose that e satisfies (18).
Then,

dE(t, x)

dt
≤ −µE(t, x).

In addition, supt≥0 |x− x∗| < +∞ and

1

2
|x− x∗|2 ≤ e−µt

(
1

2
|x0 − x∗|2 + sup

s≥0
|x(s)− x∗|

∫ +∞

0

eµs|e(s)| ds
)
.

Proof. For all t > 0,

dE(t, x)

dt
= −〈x− x∗,∇f(x)〉 − 〈x− x∗, e〉 − µI(t) + 〈x− x∗, e〉

≤ −µ
2
|x− x∗|2 − µI(t) = −µE(t, x).

Therefore E(t, x(t)) is decreasing and then for all t > 0,

1

2
|x(t)− x∗|2 ≤ 1

2
|x0 − x∗|+

∫ t

0

|x(s)− x∗|eµs|e(s)| ds.

By Gronwall Lemma and (18), we deduce that supt≥0 |x− x∗| < +∞ and the proof is concluded.

The discretization of (17) is

xk+1 − xk = −h(∇f(xk) + ek),

where ek = e(hk). We define Ek, for k ≥ 1, by

Ek =
1

2
|xk − x∗|2 + Ik,

where,

Ik = (1− hµ)kh
k∑
i=0

(1− hµ)−i〈xi − x∗, ei−1〉,

with the notation e−1 = 0.
Proposition B.4. Assume that h ≤ 1

L . Then,

Ek+1 − Ek ≤ −hµEk.
In addition, if the sequence (1− hµ)−i|ei| is summable, supi≥1 |xi − x∗| < +∞ and we deduce,

1

2
|xk − x∗|2 ≤ (1− hµ)k

(
1

2
|x0 − x∗|2 + h sup

i≥1
|xi − x∗|

+∞∑
i=0

(1− hµ)−i−1|ei|

)
.

Proof. First, as usual, we have

1

2
|xk+1 − x∗|2 −

1

2
|xk − x∗|2 = −h〈∇f(xk), xk − x∗〉 − h〈ek, xk − x∗〉+

h2

2
|∇f(xk) + ek|2

≤ −hµ
2
|xk − x∗|2 + h(f∗ − f(xk)) +

h2

2
|∇f(xk) + ek|2

≤ −hµ
2
|xk − x∗|2 −

h

2L
|∇f(xk)|2 +

h2

2
|∇f(xk) + ek|2.

12
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In addition,

Ik+1 − Ik = h(1− hµ)k
(
(1− hµ)

k+1∑
i=0

(1− hµ)−i〈xi − x∗, ei−1〉 −
k∑
i=0

(1− hµ)−i〈xi − x∗, ei−1〉

)
= −hµIk + h〈xk+1 − x∗, ek〉.

Combining these two inequalities,

Ek+1 − Ek ≤ −hµEk + h〈xk+1 − xk, ek〉 −
h

2L
|∇f(xk)|2 +

h2

2
|∇f(xk) + ek|2

≤ −hµEk +
h

2

(
h− 1

L

)
|∇f(xk)|2 −

h2

2
|ek|2

≤ −hµEk,

when h ≤ 1
L .

In order to conclude, we also need to establish that Ek is bounded below. That follows from discrete
Gronwall’s inequality, as was already done in the continuous case in Proposition B.3.

C STOCHASTIC ACCELERATED CONTINUOUS TIME

In this section, we consider that an error e(t) is made in the calculation of the gradient.

C.1 CONVEX CASE

We study the following perturbation of system (1st-ODE),{
ẋ = 2

t (v − x)−
1√
L
(∇f(x) + e(t)),

v̇ = − t
2 (∇f(x) + e(t)).

(Sto-1st-ODE)

where e is a function satisfying ∫ +∞

0

s|e(s)| < +∞. (19)

The corresponding ODE is

ẍ+
3

t
ẋ+

1√
L
D2f(x) · ẋ+

(
1

t
√
L

+ 1

)
∇f(x) = −

(
1

t
√
L

+ 1

)
e(t)− 1√

L
e′(t).

We follow the argument from Attouch et al. (2016, section 5) to define a Lyapunov function for this
system. Let Ẽ be defined by

Ẽ(t, x, v) = E(t, x, v) + I(t, x, v),

where,
E(t, x, v) = t2(f(x)− f∗) + 2|v − x∗|2,

and

I(t, x, v) =

∫ t

0

s〈2(v − x∗) + s√
L
∇f(x), e(s)〉 ds.

Lemma C.1. Let (x, v) be a solution of (Sto-1st-ODE) with initial condition (x(0), v(0)) =
(x0, v0) and suppose that e satisfies (19). Then

dẼ

dt
(t, x, v) ≤ − t2√

L
|∇f(x)|2.

In addition, supt≥0 |v(t)− x∗| < +∞ and supt≥0 |t∇f(x)| < +∞.

13
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Proof. Following the proof of Proposition 3.2, we have
dE

dt
(t, x, v) ≤ − t2√

L
|∇f(x)|2 − t2√

L
〈∇f(x), e(t)〉 − 2t〈v − x∗, e(t)〉.

In addition,
dI

dt
(t, x, v) =

t2√
L
〈∇f(x), e(t)〉+ 2t〈v − x∗, e(t)〉.

Then,
dẼ

dt
≤ − t2√

L
|∇f(x)|2.

In particular, Ẽ is decreasing and

t2(f(x)− f∗) + 2|v − x∗|2 ≤ 2|x0 − x∗|2 −
∫ t

0

s〈2(v − x∗) + Cs∇f(x), e(s)〉 ds.

Using the inequality of co-coercitivity, we obtain
1

2L
|t∇f(x)|+ 2|v − x∗| ≤ 2|x0 − x∗|2 +

1

2L
+ 2 +

∫ t

0

(
1

L
|s∇f(x)|+ 2|v − x∗|

)
|se(s)| ds.

Using (19), we conclude applying Gronwall Lemma.

Then we deduce
Proposition C.2. Let (x, v) be a solution of (Sto-1st-ODE) with initial condition (x(0), v(0)) =
(x0, v0) and suppose that e satisfies (19). Then,

f(x(t))− f∗ ≤ 1

t2

(
2|v0 − x∗|2 + sup

s≥0

∣∣∣∣2(v(s)− x∗) + s√
L
∇f(x(s))

∣∣∣∣ ∫ +∞

0

s|e(s)| ds
)
.

C.2 STRONGLY CONVEX STOCHASTIC CASE: CONTINUOUS TIME

Define the perturbed system of (1st-ODE-SC) by{
ẋ =
√
µ(v − x)− 1√

L
(∇f(x) + e(t)),

v̇ =
√
µ(x− v)− 1√

µ (∇f(x) + e(t)).
(Sto-1st-ODE-SC)

where e is a locally integrable function.
Definition C.3. Define the continuous time Liapunov function E(x, v)

E(x, v) = f(x)− f∗ + µ

2
|v − x∗|2 (20)

Define the perturbed Liapunov function Ẽ, by
Ẽ(t, x, v) := E(x, v) + I(t, x, v),

I(t, x) := e−
√
µt

∫ t

0

e
√
µs

〈
√
µ(v(s)− x∗) + 1√

L
∇f(x), e(s)

〉
ds.

Proposition C.4. We have,
d

dt
Ẽ(t, x, v) ≤ −√µẼ − 1√

L
|∇f(x)|2 −

√
µµ

2
|v − x|2.

Proof. Using (8), we obtain
d

dt
Ẽ(t, x, v) ≤ d

dt
E(x, v)−√µI(t, x) + 〈√µ(v − x∗) + 1√

L
∇f(x), e〉

≤ −√µE(x, v)− 〈√µ(v − x∗) + 1√
L
∇f(x), e〉 − 1√

L
|∇f(x)|2 −

√
µµ

2
|v − x|2

−√µI(t, x) + 〈√µ(v − x∗) + 1√
L
∇f(x), e〉

≤ −√µẼ(t, x, v)− 1√
L
|∇f(x)|2 −

√
µµ

2
|v − x|2

14
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Lemma C.5. Suppose f is bounded from below and s 7→ e
√
µse(s) ∈ L1. Let (x, v) be a solution

of (Sto-1st-ODE-SC), then supt≥0 |v(t)− x∗| < +∞ and supt≥0 |∇f(x)| < +∞.

Proof. Same as Attouch et al. (2016, Lemma 5.2), using the fact that 1
2L |∇f(x)|

2 ≤ f(x) − f∗,
t 7→ Ẽ(x(t), v(t)) is decreasing and Gronwall’s inequality.

Then, combining the two previous result, we obtain:

Corollary C.6. Suppose that s 7→ eλse(s) is a L1(0,+∞) function. Let (x, v) be a solution of
(Sto-1st-ODE-SC) with initial condition (x(0), v(0)) = (x0, v0). Then,

f(x(t))− f∗ + µ

2
|v(t)− x∗|2 ≤ Ce−λt,

where,

C = f(x0)− f∗ +
µ

2
|v0 − x∗|2 + ‖eλse(s)‖L1(0,+∞) sup

s≥0

∣∣∣∣√µ(v(s)− x∗) + 1√
L
∇f(x)

∣∣∣∣ .
Proof. By Proposition C.4 and Gronwall’s Lemma, we have

Ẽ(t, x(t), v(t)) ≤ e−
√
µtẼ(0, x0, v0).

This is equivalent to

f(x(t))− f∗ + µ

2
|v(t)− x∗|2 ≤ e−

√
µt
[
f(x0)− f∗ +

µ

2
|v0 − x∗|2

+

∫ t

0

∣∣∣∣√µ(v(s)− x∗) + 1√
L
∇f(x)

∣∣∣∣ |e√µsg(s)|ds]
≤ Ce−

√
µt,

which concludes the proof with Lemma C.5.

D PROOF THEOREM 4.2

First, using the convexity and the L-smoothness of f , we obtain the following classical inequality
(see Attouch & Peypouquet (2016) or Su et al. (2014) in the case ek = 0),

f(xk+1)− f∗ ≤ k

k + 2
(f(xk)− f∗) +

2

k + 2
〈∇f(yk), vk − x∗〉

+
h√
L
〈ek,∇f(yk) + ek〉+

(
h2

2
− h√

L

)
|∇f(yk) + ek|2.

Then, we have

t2k(f(xk+1)− f∗) − t2k−1(f(xk)− f∗)

≤
(
kt2k
k + 2

− t2k−1
)
(f(xk)− f∗) +

2t2k
k + 2

〈∇f(yk), vk − x∗〉

+
ht2k√
L
〈ek,∇f(yk) + ek〉+

(
h

2
− 1√

L

)
ht2k|∇f(yk) + ek|2.

By defintion of vk+1, we have

2|vk+1 − x∗|2 − 2|vk − x∗|2 = −2htk〈vk − x∗,∇f(yk) + ek〉+
h2t2k
2
|∇f(yk) + ek|2.

In addition,

Ik+1 − Ik = 2htk〈vk+1 − x∗, ek〉.
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Combining these three previous inequalities, we obtain

Ẽk+1 − Ẽk ≤ −h2(f(xk)− f∗) +
(
h− 1√

L

)
t2kh|∇f(yk) + ek|2

+2htk〈ek, vk+1 − vk〉+
ht2k√
L
〈ek,∇f(yk) + ek〉

≤ −h2(f(xk)− f∗) +
(
h− 1√

L

)
t2kh|∇f(yk) + ek|2(

ht2k√
L
− h2t2k

)
〈ek,∇f(yk) + ek〉.

Since h = 1√
L

, we deduce that Ẽk is decreasing. In particular,

2|vk − x∗|2 ≤ 2|v0 − x∗|2 +
1

L

k−1∑
i=0

|vi − x∗|(i+ 3)|ei|.

and the discrete version of Gronwall Lemma gives the result since (i+3)|ei| is a summable sequence
due to (12).

E PROOF OF PROPOSITION 3.4

To simplify, we denote λh =
h
√
µ

1+h
√
µ . Note, however, since the gradients are evaluated at yk, not xk,

the first step is to use strong convexity and L-smoothness to estimate the differences of E in terms
of gradients evaluated at yk.
Lemma E.1. Suppose that f is a µ-stgrongly convex and L-smooth function, then

f(xk+1)− f(xk) ≤ 〈∇f(yk), yk − xk〉 −
µ

2
|yk − xk|2 +

h

2

(
h− 2√

L

)
|∇f(yk)|2. (21)

Proof. First, we remark that

f(xk+1)− f(xk) = f(xk+1)− f(yk) + f(yk)− f(xk)

≤ 〈∇f(yk), xk+1 − yk〉+
L

2
|xk+1 − yk|2

+〈∇f(yk), yk − xk〉 −
µ

2
|yk − xk|2.

Since the first line of (1st-ODE-SC) can be rewritten as

xk+1 = yk −
h√
L
∇f(yk),

we obtain (21).

Proof of Proposition 3.4. Once (9) is established, since the expression on the right hand side is
monotone in h, the largest choice of h is given by h = 1√

L
, which leads immediately to (10).

In the proof we will estimate the linear term 〈yk − xk,∇f(yk)〉 in terms of 〈yk − x∗,∇f(yk)〉 plus
a correction which is controlled by the gap (the negative quadratic) in (21) and the quadratic term
in E.

The second term in the Liapunov function gives, using 1-smoothness of the quadratic term in E.
µ

2

(
|vk+1 − x∗|2 − |vk − x∗|2

)
= µ〈vk − x∗, vk+1 − vk〉+

µ

2
|vk+1 − vk|2

= −µλh〈vk − x∗, vk − xk〉
−h√µ〈vk − x∗,∇f(yk)〉

+
µ

2
|vk+1 − vk|2.
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Before going on, using the fact from (2), that yk is a convex combination of xk and vk, we have

λh(vk−xk) =
λh

1− λh
(vk−yk) = h

√
µ(vk−yk) and vk−yk =

1− λh
λh

(yk−xk) =
1

h
√
µ
(yk−xk)

which gives
µ

2

(
|vk+1 − x∗|2 − |vk − x∗|2

)
= −hµ√µ〈vk − x∗, vk − yk〉

−h√µ〈vk − yk,∇f(yk)〉 − h
√
µ〈yk − x∗,∇f(yk)〉

µ

2
|vk+1 − vk|2

≤ −
hµ
√
µ

2

(
|vk − x∗|2 + |vk − yk|2 − |yk − x∗|2

)
−〈yk − xk,∇f(yk)〉 − h

√
µ
(
f(yk)− f∗ +

µ

2
|yk − x∗|2

)
µ

2

(
|yk − xk|2 +

2h
√
µ
〈yk − xk,∇f(yk)〉+

h2

µ
|∇f(yk)|2

)
,

by strong convexity. Then using the L-smoothness of f , we obtain
µ
2

(
|vk+1 − x∗|2 − |vk − x∗|2

)
≤ −h√µEk − 〈yk − xk,∇f(yk)〉
+
(
µ
2 +

h
√
µL

2 −
√
µ

2h

)
|yk − xk|2 + h2

2 |∇f(yk)|
2.

(22)

Combining (21) and (22), we have

Ek+1 − Ek ≤ −h√µEk +
(
h2 − h√

L

)
|∇f(yk)|2 +

(
h
√
µL

2
−
√
µ

2h

)
|xk − yk|2

which concludes the proof of (9).
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