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Abstract

Translating natural language to SQL
queries for table-based question answer-
ing has recently attracted more research
attention. Previous approaches develop
models whose architecture is specifically
tuned to the structure of the task, such
as separately predicting the arguments
of the SELECT clause. In this work,
we show that a more general attention-
based sequence-to-sequence model out-
performs more specialized state-of-the-art
approaches by only adapting the input
and output layers. In particular, we ex-
tend it with on-the-fly embedding and out-
put vectors as well as an input copying
mechanism, which are used throughout the
whole decoding process. We also inves-
tigate the potential order-matters problem
that could arise due to having multiple cor-
rect decoding paths and investigate the use
of a dynamic oracle in this context.

1 Introduction

Semantic parsing, the task of converting natu-
ral language utterances to their representation in
a formal language, is a fundamental problem in
NLP and has many applications, including Ques-
tion Answering (QA) over structured data. In
this work, we focus on QA over tabular data
(NL2SQL), which recently attracted research ef-
forts (Zhong et al., 2017; Xu et al., 2017; Nee-
lakantan et al., 2017). As in many other semantic
parsing tasks, in this task, we are confronted with
tree-structured decoding targets and challenging
output vocabularies. In NL2SQL, we must handle
table columns, which may be different for every
example and unseen during testing. We also need
to handle other rare words that refer to values in

the tables and thus are essential for building the
correct query.

We develop a SEQ2SEQ-based approach that
outperforms the state-of-the-art on the recently in-
troduced WIKISQL (Zhong et al., 2017) dataset.
With 80654 examples annotated with their logical
forms, WIKISQL is, to the best of our knowledge,
the largest fully annotated and manually verbal-
ized dataset for semantic parsing and question an-
swering with complex questions1. In contrast to
previous works on WIKISQL (Zhong et al., 2017;
Xu et al., 2017) that adapt the architecture of their
models to the structure of the data, our approach
is more general as it only adapts the input and out-
put layers of a standard SEQ2SEQ model to better
suit the task of generating SQL queries. In par-
ticular, we add on-the-fly embeddings (Bahdanau
et al., 2017; Hill et al., 2016) and on-the-fly output
vectors and incorporate a pointer-based (Vinyals
et al., 2015) copying mechanism as part of the out-
put layer. In contrast to previous works on WIK-
ISQL, which used separate losses for SQL gener-
ation subtasks, our approach can be trained using
normal sequence supervision.

The order of decoding of unordered sets using
SEQ2SEQ models can have a significant impact on
performance (Vinyals et al., 2016), as mentioned
by previous works on WIKISQL (Zhong et al.,
2017; Xu et al., 2017). We investigate the use of a
dynamic oracle (Goldberg and Nivre, 2012) in an
effort to improve the generation of logical forms
with unordered children (in our case conditions in
the WHERE clause).

To summarize, our contributions are as follows:

1. We outperform the state-of-the-art on the
WIKISQL task using a SEQ2SEQ architec-
ture with specialized input and output layers.

1Complex questions are those containing more than a sin-
gle condition.
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The devised model is more extensible to tasks
with a different structure than previous work.

2. We investigate the potential order-matters
problem (Vinyals et al., 2016) when hav-
ing multiple correct decoding paths. In this
context, we also investigate two types of dy-
namic oracle in training semantic parsers in-
stead of teacher forcing. To the best of our
knowledge, dynamic oracles have not been
investigated for neural network-based seman-
tic parsing before.

The paper is structured as follows: First, we
illustrate the task with an example (Section 2).
Then, we describe our model (Section 3), followed
by a description of the training methods (Sec-
tion 4). We then present our experimental setup
and results in Section 5 and provide an extensive
discussion in Section 6 that goes deeper into the
most related work. We conclude with an overview
of other related work (Section 7) and a conclusion
(Section 8).

2 Queries, Trees and Linearizations

As an illustration, consider the question

“Which L1 Cache can we get with an
FSB speed of 800MHz and a clock speed
of 1.2GHz?”,

which should be mapped to the following query:
SELECT L1 Cache
WHERE FSB Speed = 800 (Mhz)

AND Clock Speed = 1.0 (GHz)
This query will be executed over a table listing
processors, the sizes of their caches, their clocks
speeds, etc.

The query can be represented as a tree (see
Figure 1), where the root node has two children:
SELECT and WHERE. Note that the order of the
two conditions appearing in the WHERE clause is
arbitrary and does not have any impact on the
meaning of the query or the execution results.

Trees containing such unordered nodes can be
linearized into a sequence in different, equally
valid, ways (”FSB Speed” first or ”Clock Speed”
first in the example). We refer to the linearization
where the original order given in the data set is
preserved as the canonical linearization. The two
valid linearizations for the example are shown in
Figure 2. See Supplement A for specifics on our
implementation of tree linearization.

SELECT

QUERY

WHERE

L1_Cache COND COND

FSB_Speed = 800 Clock_Speed = 1.0

Figure 1: Example of a query tree. The blue ar-
rows indicate unordered children.

QUERY WHERE CONDCOND FSB_Speed = 800Clock_Speed = 1.0

QUERY WHERE COND CONDFSB_Speed = 800 Clock_Speed = 1.0

Figure 2: Two valid linearizations of the example
query tree in Figure 1.

3 Model

We start from a sequence-to-sequence model with
attention and extend the embedding and output
layers to better suit the task of QA over tabular
data. In particular, we compute on-the-fly em-
beddings (Bahdanau et al., 2017) and output vec-
tors for column tokens and implement a pointer-
based (Vinyals et al., 2015) mechanism for copy-
ing tokens from the question. The SEQ2SEQ

model, the embedding and output layers are de-
scribed in Sections 3.1, 3.2 and 3.3, respectively.

3.1 The SEQ2SEQ Model

The general architecture of our model follows
the standard sequence-to-sequence (SEQ2SEQ)
attention-based architecture. The SEQ2SEQ

model consists of an encoder, a decoder and an
attention mechanism.

3.1.1 Encoding

We are given a question Q = [q0, q1, . . . , qN ] of
natural language (NL) tokens qi from a set VE
(i.e., the encoder vocabulary). We first pass the to-
kens through an embedding layer that maps every
token qi to its vector representation qi ∈ Rdemb

,
that is

qi =WE · one hot(qi) , (1)



3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

where WE ∈ R|VE |×demb
is a learnable weight

matrix and one hot(·) maps a token to its one-hot
vector.

Given the token embeddings, a bidi-
rectional two-layered LSTM (Hochreiter
and Schmidhuber, 1997) (see Supple-
ment B) encoder outputs encoding vectors
[h0,h1, . . . ,hN ] = BiLSTM([q0,q1, . . . ,qN ]),
where hi ∈ Rdenc

.

3.1.2 Decoding
The decoder produces a sequence of output tokens
st from an output vocabulary VD conditioned on
the input sequence Q. It is realized by a uni-
directional multi-layered LSTM. First, the previ-
ous output st−1 is mapped to its vector representa-
tion:

st−1 = EMB(st−1) . (2)

The applied embedding function EMB(·) is de-
scribed in Section 3.2 in detail. Taking the em-
bedding as input, the multi-layered LSTM updates
the hidden states in every layer (see Supplement B
for the update equations). Finally, the probabilities
of the elements of VD are calculated based on the
output yt of the final LSTM layer and a context
vector ĥt, which is defined in Section 3.1.3:

ot = OUT(yt, ĥt) , (3)

p(st|st−1, . . . , s0, Q) = softmax(ot) . (4)

where the function OUT(·) is the output layer that
computes unnormalized scores over VD as ex-
plained in Section 3.3.

3.1.3 Attention
We use attention (Bahdanau et al., 2014) to com-
pute the context vector ĥt, that is

a
(t)
i = hi · yt , (5)

α
(t)
i = softmax(a

(t)
0 , . . . , a

(t)
i , . . . , a

(t)
N )i , (6)

ĥt =

N∑
i=0

α
(t)
i hi , (7)

where softmax()̇i denotes the i-ith element of the
output of the softmax function and h1, . . . ,hN are
the hidden vectors of the encoder described in Sec-
tion 3.1.1.

3.2 Embedding Function of the Decoder
The whole output vocabulary VD can be grouped
in three parts: (1) structure tokens from VSTR, (2)

column ids from VCOL, and (3) input words from
the encoder vocabulary VE , i.e., VD = VSTR ∪
VCOL ∪ VE . Whereas structure tokens are shared
among examples, column ids refer to columns that
can have different names in every example de-
pending on the corresponding table. In the follow-
ing paragraphs, we describe how each of the three
types of tokens is embedded in the decoder.

Structure tokens: These are tokens used to rep-
resent the structure of the query, such as SQL spe-
cific tokens like SELECT and WHERE. Since the
available tokens VSTR are the same for every ex-
ample, and their meaning stays the same across ex-
amples, we use a vanilla embedding matrix W STR

and reuse it across all examples. See Supple-
ment A for details on the used structure tokens.

Column tokens: These are column ids that are
used to refer to a certain column in the table the
question is being asked against. Since these ids
themselves are largely meaningless, we map them
to the corresponding column names to get a more
meaningful representation. We encode the column
names using a uni-directional single-layer LSTM
to get the embedding vector representing the ids in
VCOL.

Column names may consist of several words,
which are first embedded using an embedding ma-
trix WCT containing an embedding vector for ev-
ery word in VCT that occurs in any column name in
any table. The word embedding are then fed into
the LSTM and the final state of the LSTM is taken
as the embedding vector for the column id token.
This approach for computing column representa-
tions is similar in spirit to other works that encode
external information to get better representations
for rare words (Bahdanau et al., 2017; Ling et al.,
2015; Hill et al., 2016).

Input words: To represent input words in the
decoder we reuse the vectors from the embedding
matrixWE that is also used for encoding the ques-
tion.

3.3 Output Layer of the Decoder

The output layer of the decoder takes a the con-
text ĥt and the hidden state yt of the decoder’s
LSTM and produces scores over the output vocab-
ulary VD (see OUT(·) in Eq. 3). For each of the
three subsets of VD (VSTR, VCOL and VE , as de-
fined in Section 3.2), the scores are computed as
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described in the following paragraphs. The whole
output layer is visualized in Figure 3.

USQL Uk
COL H

y t  
   

   
   

 ĥ
t

max max

COLUMN 
NAMES

SOFTMAX

y t

Figure 3: The output layer and its three compo-
nents.

Structure tokens: For the structure tokens we
apply a trainable matrix USTR ∈ R|VSTR|×dout that
is shared across examples. The output scores for
tokens in VSTR are computed by the linear trans-
formation: USTR · [yt, ĥt].

Column tokens: Similarly as in the embedding
function, the output vectors for every column2

from VCOL are computed by encoding the corre-
sponding column names using an LSTM. Let the
matrix UCOL

k contain the computed vectors for ev-
ery column present in the table of the current ex-
ample. The output scores for all column id token
are then computed by UCOL

k · [yt, ĥt].

Input words: To enable our model to copy to-
kens from the input question, we follow a pointer-
based approach to compute scores over these
words. That is, we compute scores bi between yt

and the hidden state of the encoder LSTM at every
input position i:

bi = hi · yt , (8)

and then obtain the score for every token q
that occurs in the question sequence Q by tak-
ing the maximum over all positions in Q =
[q0, . . . , qi, . . . , qN ] where q occurs, i.e. the score
for q is given by:

max
i=0..N

{bi}qi=q . (9)

2Recall that each column is represent by a single column
id token in the full output vocabulary

The scores for all input tokens q ∈ VE that do not
occur in the question Q are set to −∞.

We also ran experiments without the pointer
mechanism just described to test its influence
(see “without pointer” experiment in Section 5.3).
There, we replace the pointer mechanism by a sim-
ple linear transformation UED · [ĥt,yt] with a ma-
trix UED to yield scores over the set of tokens in
the question. UED is populated using pretrained
word vectors which are kept fixed during train-
ing. The alternative, training randomly initialized
UED resulted in worse performance, and is not re-
ported.

3.4 Pretrained Embeddings and Rare Words

We initialize all NL embedding matrices3 us-
ing Glove embeddings for words covered by
Glove (Pennington et al., 2014) and use ran-
domly initialized vectors for the remaining words.
Whereas randomly initialized word embeddings
are trained together with the remaining model pa-
rameters, we keep Glove embeddings fixed, since
finetuning them led to worse results in our experi-
ments.

We also replace rare words that do not occur in
Glove with a rare word representation in all em-
bedding matrices.

4 Training

We train our models by minimizing the cross-
entropy loss over the output probabilities:

L = −
∑

(R(k),Q(k))∈D

log(p(G(k)|Q(k))) , (10)

p(G(k), Q(k)) =

|G(k)|∏
t=0

p(g
(k)
t |g

(k)
<t , Q

(k)) , (11)

where G(k) is a sequence of tokens g(k)t ∈ VD
representing a valid linearization of the correct
tree R(k) corresponding to question Q(k) from the
training data D. The probabilities of the tokens
g
(k)
t are computed as described in Section 3.3.

For constructing the target sequence G(k) from
the tree R(k) during training we use teacher forc-
ing (TF) and also experiment with a dynamic ora-

3WE simultaneously used for question word embedding
in the encoder and input word embedding in the embed-
ding function of the decoder, the embedding matrix WCT

for words occurring in column names used in the embedding
function of the decoder, and its analogue in the output func-
tion.
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cle (Goldberg and Nivre, 2012). The dynamic or-
acle was proposed for dependency parsing, where
different sequences of actions can lead to the same
parse tree. We notice that in semantic parsing,
when the target trees contain at least some un-
ordered children, we are confronted with a simi-
lar setting where different sequences of tokens can
describe the same query. To the best of our knowl-
edge, dynamic oracles have not been applied be-
fore in training neural networks based semantic
parsers.

4.1 Teacher Forcing
Teacher forcing takes the canonical linearizations
of the query trees (as provided in the dataset) and
uses it both for supervision and as input to the de-
coder. Thus, teacher forcing does not explore any
deviations from the canonical path during training.
In the presence of different correct sequences (as
resulting from different correct linearizations in
this scenario), teacher forcing can suffer from sub-
optimal supervision order (Vinyals et al., 2016).
This might also be the case for semantic parsing,
as pointed out by previous works on WIKISQL
(Zhong et al., 2017; Xu et al., 2017).

4.2 Dynamic Oracle
Instead of forcing the model to follow the canon-
ical decoding sequence, our dynamic oracle en-
ables the exploration of alternative correct se-
quences (i.e. different valid linearizations of the
same tree) and is an adaptation of Goldberg and
Nivre’s (2012) dynamic oracle with spurious am-
biguity. It is formally described in Algorithm 1,
which is invoked at every decoding step t to get a
token gt (used for supervision) and a token xt+1

(that will be used as input to the decoder in the
next time step) from the set VNTt of possible next
tokens that would lead to a valid linearization of
the given tree. Essentially, the algorithm always
picks the best-scored correct token for supervision
and uniformly samples one of the correct tokens
to be used as decoder input in the next time step,
if the overall best-scored token (over the whole
output vocabulary) does not belong to the correct
ones. Thus, the oracle explores alternative paths if
the decoder would make a mistake in free-running
mode. Note that, for decoding steps t where VNTt

is of size one, the oracle is equivalent to teacher
forcing.

In the algorithm, pt is the decoder’s output dis-
tribution over VD at time step t. The set of valid

Algorithm 1 Computing the supervision token
and next token in dynamic oracle training.

1: function GETNEXTANDGOLD(pt, t, x≤t)
2: VNTt ← get valid next(t, x≤t)
3: xt+1 ← argmaxVD pt
4: gt ← argmaxVNTt

pt
5: if xt+1 /∈ VNTt then
6: xt+1 ← random(VNTt)

7: return gt, xt+1

next tokens VNTt ⊂ VD, from which the correct
tree can be reached, is returned by the function
get valid next(·). In order to compute VNTt,
we keep track of where in the query tree we are
and of what is left to decode, given the previ-
ously decoded tokens. The query tree can have
nodes with either ordered or unordered children
(for example, children of the WHERE clause are
unordered). If we are currently decoding the chil-
dren of a node with unordered children, all the
children that have not been decoded yet are re-
turned as VNTt. In other cases, VNTt contains
the next token according to the canonical sequence
order. See Supplement C for more details on the
construction of VNTt.

Zhong et al. (2017) propose policy gradient
(PG) based training for query generation. The
presented oracle is similar to PG training in that
it explores alternative paths to generate the same
query. In contrast to the oracle, a PG-based
method would sample the next token (xt+1) ac-
cording to the predictive distribution (pt) and then
use the sampled sequence to compute gradients for
policy parameters:

∇J = E[∇ log(pt(xt+1))At] (12)

Replacing argmaxVD pt in line 3 of Algorithm 1
with sampleVNTt

pt (sample a token from VNTt

according to pt) yields an algorithm equivalent to
a specific case of REINFORCE (Williams, 1992):
where At is the reward for the episode, and At is
set to +1 if the sampled sequence produces the full
correct query and 0 otherwise. With such rewards,
the resulting vanilla REINFORCE does not update
policy parameters when an incorrect query is sam-
pled, ignoring the sampled episode. In contrast,
Zhong et al. (2017) use a different reward scheme,
assigning rewards of −2 for invalid queries and
−1 if the query is valid but the execution result is
incorrect and +1 otherwise.
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5 Experiments

To evaluate our approach, we obtain the WIK-
ISQL dataset by following the instructions on the
WIKISQL website4.

5.1 Dataset
Each example in the dataset contains a NL ques-
tion, its SQL equivalent and the table against
which the SQL query should be executed. The
original training/dev/test splits of WIKISQL use
disjoint sets of tables with different schemas. This
allows to obtain a performance estimate for the de-
veloped approaches when confronted with ques-
tions over previously unseen tables.

Whereas many different tables occur in WIK-
ISQL, a single query is limited to only a single ta-
ble. Nevertheless, the data set poses a significant
challenge due to the variation of table schemata
across examples and the variable structure of ex-
pected SQL queries. In addition, the task is com-
plicated by a high occurrence of rare words, which
can not be omitted since they can be essential for
constructing the correct SQL query. However,
WIKISQL is constructed such that the values in
the conditions of the query occur as substrings in
the NL question.

For details on the construction of the dataset and
how it compares to existing datasets, we refer the
reader to the WIKISQL paper (Zhong et al., 2017).

5.2 Experimental Setup
Evaluation: We report results with the same
evaluation metrics as previous works (Zhong et al.,
2017; Xu et al., 2017) on both the development
and test sets:

• logical form accuracy AccLF = KLF /K,

• query match accuracy AccQM = KQM/K,

• query execution accuracy AccEX = KEX/K

where K is the total number of examples, KLF

the number of examples for which the predicted
sequence matched exactly the one provided by the
dataset, KQM the number of examples for which
the predicted query matched exactly (i.e. the pre-
dicted sequence is one of the correct lineariza-
tions) andKEX the number of examples for which
the execution results matched exactly. Note that
while AccLF accepts only the canonical ordering
of conditions in the WHERE clause, AccQM and
AccEX accept alternative orderings.

4http://github.com/salesforce/WikiSQL

Training details: After a hyperparameter
search, we obtained the best results by using
two layers both in the encoder and decoder
LSTMs, using ddec = 600, demb = 300 and
applying time-shared dropouts on the inputs of the
recurrent layers (dropout rate 0.2) and recurrent
connections (dropout rate 0.1). We trained using
Adam (Kingma and Ba, 2014), with a learning
rate of 0.001 and a batch size of 100, a maximum
of 50 epochs, and early stopping and clipped
gradient norms at 5.

Experimental settings: While training with an
oracle does not depend on the chosen linearization
of the query tree, training with TF does. There-
fore, for experiments with TF we explored vari-
ations in the linearizations of the query tree by
changing the order of conditions in the WHERE
clause, that is the order of conditions in the canon-
ical query linearization is (1) reversed or is (2) re-
assigned randomly.

We also run experiments with the oracle in two
variants: (1) as described in Algorithm 1 and (2)
replacing the argmax in line 3 of Algorithm 1
with sampling according to pt, which is equiva-
lent to REINFORCE with zero reward for incor-
rect queries (see Section 4.2).

For more details on the experimental setup, we
refer to Supplement D. Our preprocessed data,
code, and sample outputs will be made freely
available after the double-blind review process is
finished.

5.3 Results

We compare our obtained results under different
settings with the performance reported for previ-
ous methods in Table 1. The proposed SEQ2SEQ

model outperforms the current state-of-the-art by
at least 4% AccQM . Using a single representation
for rare words (indicated by “+ rare” in the table)
provides a small improvement.

The results indicate that the order of conditions
in the linearization matters for the performance of
TF based training to a small degree. Training with
randomly reassigned order of conditions in the
WHERE clause results in a 1.5% drop in accuracy.
However, reversing the order of conditions does
not seem to affect the results. The REINFORCE-
like dynamic oracle (indicated by “oracle - sam-
ple” in the table) also does not seem to affect the
results. However, the dynamic oracle as described

http://github.com/salesforce/WikiSQL
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in Algorithm 1 seems to provide a small improve-
ment.

We can also see that AccLF for the oracle is sig-
nificantly lower compared to TF while AccQM is
on par with TF. Given that AccLF is sensitive to
the order of arbitrarily ordered clauses and AccQM

is not, this means that the oracle-trained models
effectively learned to use alternative paths.

Comparing the oracle to TF with arbitrarily re-
ordered conditions in the WHERE clause shows
that when the supervision sequences are not con-
sistently ordered, training with TF can suffer.
When training with the oracle, the order of un-
ordered nodes as provided in supervision se-
quences does not matter.

We also ran one setting (indicated by “without
pointer” in the table) without the copying mech-
anism (described in Section 3.3), where we ob-
tained significantly worse results, indicating the
benefit brought by the pointer mechanism.

See Supplement E for separate accuracies for
the WHERE and SELECT clauses.

6 Discussion

First, we discuss our model by compari-
son to Seq2SQL (Zhong et al., 2017) and
SQLNet (Xu et al., 2017), followed by a dis-
cussion of the training methodology used by
previous approaches and our approach.

6.1 Model Discussion

Seq2SQL: The baseline in Seq2SQL (Zhong
et al., 2017) was based on the earlier SEQ2SEQ

work by Dong and Lapata (2016) for seman-
tic parsing with lambda expressions. Our model
uses the same architecture (SEQ2SEQ) but in
contrast to Seq2SQL’s adaptation of Dong and
Lapata (2016) to WIKISQL, we develop task-
adapted embedding and output layers in the de-
coder. Given the poor performance of an un-
adapted SEQ2SEQ model, Zhong et al. (2017) pro-
pose an augmented pointer network that is better
suited for copying words from the input.

Seq2SQL authors obtain further improvement
by introducing separate predictors with dedicated
parameters in order to predict the two arguments
of the SELECT clause: (1) the SELECT column
and (2) the aggregator. This also requires the
addition of two losses in the final training loss.
For the WHERE clause, Seq2SQL uses the aug-
mented pointer network trained using policy gra-

dient RL. The SELECT column prediction uses
column names encoded using an LSTM, similar
to our approach. However, our approach uses
the same column name encodings throughout the
whole decoding process .

SQLNet: Similarly to Seq2SQL, SQLNet uses
dedicated networks for predicting the two parts
of the SELECT clause, using column-conditioned
question summaries and explicitly encoding
task-specific prediction dependencies into the
architecture. For the WHERE clause, SQLNet
proposes a sequence-to-set approach that essen-
tially makes a set inclusion prediction over the
set of available columns in order to avoid the
order-matters (Vinyals et al., 2016) problem.
However, in addition to producing scores for the
available columns, SQLNet needs a dedicated
network to predict the number of columns that
will ultimately be taken.

Compared to Seq2SQL and SQLNet, we be-
lieve our model is simpler and more general,
while achieving better performance. Thus, we
believe that our model can be applied to other
tasks, such as machine translation, if they can
benefit from the rare word handling extensions.

6.2 Training Discussion

The oracle we implement is similar to reinforce-
ment learning (RL) in that it explores alterna-
tive paths to generate the same query and simi-
lar to the work of Vinyals et al. (2016) in that
it’s aimed at finding and using more effective lin-
earizations during training. The dynamic oracle
with non-optimal transitions from Goldberg and
Nivre (2012) also explores incorrect paths but is
able to provide more useful supervision at every
time step on how to build the best possible tree af-
ter a mistake. Our oracle implements only the dy-
namic oracle with spurious ambiguity (Goldberg
and Nivre, 2012) and thus explores only correct
paths. We leave the oracle with non-optimal tran-
sitions for future work.

7 Other Related Work

Some examples of semantic parsers that
do not rely on neural networks include
Zettlemoyer and Collins (2007), Berant et al.
(2013) and Reddy et al. (2014). Recently, many
neural network-based approaches emerged
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Dev Accuracies (%) Test Accuracies (%)
AccLF AccQM AccEX AccLF AccQM AccEX

Seq2Seq baseline (Zhong et al., 2017) 23.3 – 37.0 23.4 – 35.9
Aug. Ptr. Net (Zhong et al., 2017) 44.1 – 53.8 43.3 – 53.3
Seq2SQL (no RL) (Zhong et al., 2017) 48.2 – 58.1 47.4 – 57.1
Seq2SQL (RL) (Zhong et al., 2017) 49.5 – 60.8 48.3 – 59.4
*Seq2SQL (SQLNet) (Xu et al., 2017) 52.5 53.5 62.1 50.8 51.6 60.4
SQLNet (Xu et al., 2017) – 63.2 69.8 – 61.3 68.0

Seq2Seq+DP+C (TF) 65.1 67.2 74.3 64.6 66.6 73.7
Seq2Seq+DP+C (TF - reversed) 65.1 67.3 74.6 64.5 66.2 74.0
Seq2Seq+DP+C (TF - arbitrary) – 65.7 73.5 – 64.7 72.5
Seq2Seq+DP+C (TF) without pointer 60.9 62.7 69.9 60.1 61.7 69.0
Seq2Seq+DP+C (TF) + rare 66.1 68.2 75.4 65.9 67.7 75.0
Seq2Seq+DP+C (oracle) 52.8 67.9 75.2 51.8 67.2 74.6
Seq2Seq+DP+C (oracle - sample) 54.3 67.0 74.5 53.3 66.3 73.8
Seq2Seq+DP+C (oracle) + rare 53.2 68.6 75.8 52.3 68.2 75.5

Table 1: Evaluation results for our approach (bottom part) and comparison with previously reported re-
sults (top part). Our approach significantly outperforms the current state-of-the-art. Note that *Seq2SQL
is the reimplementation of Seq2SQL (Zhong et al., 2017) by SQLNet authors (Xu et al., 2017). Some
values in the table, indicated by “–”, could not be filled because the authors did not report the metric or
the metric was not applicable.

focusing on semantic parsing and question an-
swering. Works focusing on answering simple
questions (Bordes et al., 2015; Yin et al., 2016;
Lukovnikov et al., 2017; Dai et al., 2016) typically
employ a ranking approach to rank logical forms
(which always consist of 2 elements). Regarding
more complex questions, some approaches (Yih
et al., 2015; Yu et al., 2017) also rely on the
ranking of (parts of) candidate queries and
use rules to complete the query. Some other
works on complex questions use reinforcement
learning (Liang et al., 2016; Zhong et al., 2017).

Some interesting approaches for answering
questions over tables include the Neural Program-
mer (Neelakantan et al., 2016) and Neural En-
quirer (Yin et al., 2015), both of which use only
the execution results to supervise query composi-
tion, relying on end-to-end decoding and execu-
tion instead of reinforcement learning. Neelakan-
tan et al. (Neelakantan et al., 2017) further evalu-
ate the Neural Programmer on the WIKITABLE-
QUESTIONS (Pasupat and Liang, 2015) dataset.
The WIKITABLEQUESTIONS dataset is similar to
the WIKISQL dataset in that it focuses on learn-
ing to query tables, however, WIKITABLEQUES-
TIONS does not provide logical forms.

8 Conclusion

In this work we present a SEQ2SEQ model
adapted to the semantic parsing task of NL2SQL.
It outperforms the state-of-the-art on the WIK-
ISQL dataset, while being more general than pre-
vious works in the sense that we only adapt the
input and output layers of a SEQ2SEQ model. We
also investigated the order-matters problem, con-
cluding that order of conditions in the WHERE
clause matters to small degree. We also evalu-
ated two dynamic oracles for training the neural
network-based semantic parser, which in our ex-
periments revealed that the RL-like oracle does not
improve results and the oracle most similar to the
work of Goldberg and Nivre (2012) provides a
small improvement.
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