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Abstract

Recent findings suggest that humans deploy cognitive mechanism of physics
simulation engines to simulate the physics of objects. We propose a frame-
work for bots to deploy similar tools for interacting with intuitive physics
environments. The framework employs a physics simulation in a probabilis-
tic way to infer about moves performed by an agent in a setting governed
by Newtonian laws of motion. However, methods of probabilistic programs
can be slow in such setting due to their need to generate many samples.
We complement the model with a model-free approach to aid the sampling
procedures in becoming more efficient through learning from experience
during game playing. We present an approach where a myriad of model-free
approaches (a convolutional neural network in our model) and model-based
approaches (probabilistic physics simulation) is able to achieve what nei-
ther could alone. This way the model outperforms an all model-free or all
model-based approach. We discuss a case study showing empirical results
of the performance of the model on the game of Flappy Bird.

1 Introduction

The last few years have been marked with exceptional progress in the field of Artificial
Intelligence (AI). Much of the progress has come from recent advances in deep learning.
Models employing deep neural networks achieved remarkable performance in many areas
including speech recognition, object recognition and reinforcement learning (LeCun et al.,
2015; Mnih et al., 2016; 2015; Gu et al., 2016). In reinforcement learning, Mnih et al.
proposed a deep learning approach to estimate Q-learning function of state and action tuples
in Atari games to achieve human-level performance (Mnih et al., 2015; 2013; Guo et al.,
2014). Silver et al. applied a similar approach of deep learning to learn policy and value
functions of states and action in the complex game of AlphaGo (Silver et al., 2016).

Another front where AI is progressing exceptionally is approaching AI through drawing
inspiration from human cognitive processes (Lake et al., 2016; Kim et al., 2017). Lake et al.
developed a model for human-level concept learning through probabilistic induction (Lake
et al., 2015). The approach deploys methods of probabilistic programming (Ghahramani,
2015; Goodman & Tenenbaum, 2016) to construct computational frameworks that capture
human learning abilities in forming concepts. The construction of computational frameworks
was used to draw insights on human cognition in other areas, Battaglia et al. proposed a
model based on an intuitive physics engine as a cognitive mechanism humans use to make
robust inferences in complex natural scenes (Battaglia et al., 2013; 2016).

In human development, infants have primitive concepts of how objects move in their envi-
ronments, this is observed through their ability to track moving objects around them. It
is through these primitive concepts infants grow to learn faster and make more accurate
predictions (McCloskey et al., 1983; Lake et al., 2016). Experiments on humans cognitive
processes of intuitive physics inference show that as tasks of inference are harder, the response
time of humans increases (Hamrick et al., 2015). This is due to a trade off between response
time and number of physics simulations performed, and the harder the task gets, the more
simulation runs humans seem to perform.

1



Under review as a conference paper at ICLR 2019

Several attempts proposed models for agents to develop a sense of intuitive physics that
humans possess. Agrawal et al. approached the problem by reverse engineering intuitive
physics (Agrawal et al., 2016). Using robot arms, the agent performed enormous number of
actions (i.e. pokes) on objects placed on a table to understand the process by how objects
move. The approach is inspired by how infants develop their physics intuition. The model is
then tested by requiring an agent to move objects on a table to match a given final state
of object positions on the table. Wu et al. proposed a model capable of predicting the
movement of objects placed on an inclined surface given image pixel data (Wu et al., 2015).
The model incorporates deep learning methods to learn physical features of objects and a
3D physics simulation to predict their trajectories and where an object will most likely stop,
the approach was capable of achieving an accuracy comparable to human subjects.

In this paper, we propose a framework for bots to deploy tools for interacting with the physics
of their environments. The bots employ a coupling of a probabilistic program with a physics
simulation engine to do inference of moving objects in a setting governed by Newtonian laws
of motion. However, methods of probabilistic programs can be slow in such setting due to
their need to generate many samples. Hence we complement our approach with a model free
component to aid the sampling procedures in becoming more efficient through learning from
experience during game playing. We present a case where a myriad of model-free approaches
(CNN in our model) and model-based approaches (probabilistic programming and physics
simulation) is able to achieve what neither could alone. The performance of the model
outperforms an all model-free or model-based approach (Evans & Grefenstette, 2018). It
has been evident that such approaches combine the best of both worlds (Battaglia et al.,
2018). The case study shows empirical results of the performance of the model on the game
of Flappy Bird, a game of a bird in free fall and required to avoid obstacles by jumping
through openings. Our model exhibits similar patterns in behavior of humans when it comes
to the trade off between sampling time versus accuracy of decisions (Hamrick et al., 2015)
and the ability to learn through experience of game play.

In sections 2, 3 and 4 of the paper, we propose the framework and discuss the process of
inference and learning of parameters. Sections 5 include empirical results of the model
performance while playing Flappy Bird and discussion.

2 Methods

Given the state of an agent in an environment governed by Newtonian laws of physics, the
goal is to have an agent that predicts the desired behavior given a state. It does that by
probabilistically sampling actions most suitable to achieve the desired behavior. To illustrate,
given a bot in a state very close to hit the floor, the agent first should be able to infer that
it needs to increase altitude and then probabilistically bias the sampling process to actions
that are in line with increasing altitude to avoid collision.

The decision making pipeline of the agent includes two main subparts; the first is a convo-
lutional neural network (CNN) and the second is a probabilistic framework for sampling
actions in an intuitive physics setting. The general architecture of the pipeline is included in
figure 1. The CNN takes pixel data as inputs and produces the parameter α corresponding to
prior probabilities for the probabilistic program. The probabilistic program is parametrized
by α the prior probabilities for each action, θ the probabilities of each action, a the sampled
action, γa the velocity of the action and ch the collision state at time h.

2.1 Convolutional Neural Network (CNN)

The objective of the CNN is to make the sampling procedure of probabilistic programs
more efficient, this is done through estimate parameters of the prior probability distribution
of actions to be taken given a state of the agent. This helps the probabilistic model in
sampling more effectively through skewing a Dirichlet distribution in a manner where actions
sampled are more likely to match a desired behavior. CNN has a similar architecture to that
developed by Mnih et al. (Mnih et al., 2015).The CNN takes the last 4 frames as inputs and
outputs α parameterizing the prior for the distribution of actions probabilities. The input of
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Figure 1: The decision making pipeline, it starts with the CNN having the objective of
improving the sampling process through estimating α, then a probabilistic intuitive physics
engine samples decisions according probabilities estimated by CNN and simulates samples in
a physics simulation. The physics simulations returns the state of the agent after a period
of time ch (ch = False if unwanted collision was not observed). Flappy bird is used as an
example here to demonstrate the structure of the model, the results and discussion section
include an implementation of the model.

the neural network consists of an 80× 80× 4 frames of pixel data for the past 4 time steps
after preprocessing. Preprocessing denoted φ includes transforming the raw pixel data to
grayscale then rescaling frame size to a resolution of 80× 80. The first hidden layer convolves
32 filter of size 8× 8 with stride 4 on the input frames and applies rectifier nonlinearity. The
second hidden layer convolves 64 filters with sizes of 4× 4 with stride 2 then applies rectifier
nonlinearity. The third hidden layer convolves 64 filters with sizes of 2× 2 with stride 1 then
applies rectifier nonlinearity. The fourth layer is a fully connected 512 nodes with rectifier
nonlinearity. Then the output layer is fully connected and has as many nodes as there are
actions in the game. The output of the CNN parametrizes a Dirichlet distribution in the
probabilistic framework.

3 Learning

The model learns from experience through the data generated while game playing. Sources
of the data include positions information of objects in the environment, pixel data of the
state, actions taken by the agent and the rewards received at every time step.

The CNN learns from the pixel data of past states and actions; the inputs to the CNN are
the pixel data and the outputs are the frequencies of actions in subsequent time steps of
a predefined interval. αi is the frequency of making decision i in the future ∆ time steps
after state s. The training sample of the model has (s, α) tuples after which the model was
negatively rewarded are not included in the training of the CNN since the goal is to learn
about values of parameter α resulting in the bot being positively rewarded. The CNN is fit
through applying stochastic gradient descent on the following cost function:

L(α, φ, s, κ) =
(
α−M(φ(s), κ)

)2
Where the parameters for the neural network are denoted by κ .

4 Inference

We use probabilistic programming to perform the tasks of inference in a fashion similar to
the discussion by Gharmani et al. in (Ghahramani, 2015). This section discusses the process
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by which the data for the world of the agent and its actions are generated. We employ
control flow to sample actions resulting in no collisions.

At every iteration, the agent will use a probabilistic program coupled with the physics engine
algorithm illustrated in Algorithm 1 to do inference about the physics of its future. The
Algorithm takes as inputs the state of the world defined by the past 4 frames of pixel data
and past positions data of objects in the environment. The CNN estimates the direction the
agent should be moving towards through estimating Dirichlet parameters α. An alternative
approach is to is to provide a α for a uniform Dirichlet on probabilities of actions which can
be computationally cumbersome under tight time constraints to make a decision.

Algorithm 1 Probabilistic Intuitive Physics Process
procedure GetAction(s, t,m)

Inputs are the state s, current time t and previously sampled actions m
Initialize the simulation horizon h to constant c
α←M(φ(s)) . estimate the starting α from the CNN
while elapsed time < ε do . keep sampling for a duration of ε seconds

a, ch ← SampleActions(s, t, α, h)
if ch is False then . observe when unwanted collision didn’t occur

add a to m . store samples resulting in no unwanted collisions

αi ← αi +
h∑

j=1

1aj=i . update α parameters

h← h+ δ . expand the horizon of the simulation
end if

end while
p̃(at = x|ch = False)←∑|m|

i=1 1mi,t=x . estimating the conditional from samples in m
ãt ← arg maxat

(p̃(at|ch = False))
return ãt

end procedure
procedure SampleActions(s, t, α, h)

θ ← Dirichlet(α) . sample θ, the probability of actions
at, ..., at+(h−1) ← Categorical(θ) . sample actions for timesteps t to t+ (h− 1)
γai
← Gaussian(µai

, σai
) . sample impact on the velocity

ch ← PhysicsSimulation(s, [γat
, ..., γat+(h−1)

], h) . simulate sampled plan for next h
steps

return a, ch
end procedure

The agent proceeds with an iterative process between a probabilistic program and a physics
engine simulation. The process starts with sampling probabilities for each action denoted θ
from a Dirichlet distribution. The agent samples h actions from a categorical distribution
parametrized with θ. To account for the possible stochasticity of actions, a Gaussian
distribution is fitted overs the observed change in velocities for every action type, the model
learns the distributions through the history of its position data and the actions taken in the
past. For every move the agent sampled, γai is sampled from a Gaussian corresponding to
action type ai.

After an action plan is sampled from the probabilistic program, the simulation engine will
simulate the plan. The physics simulation returns the status of the agent after h time steps.
The process continues to sample then simulate in an iterative manner for an ε milliseconds.
The physics engine estimates physics characteristics of the environment (for example the
gravitational acceleration) through the application of Newtonian laws of motion to the
historical positions data it observed.

Upon the end of the iterative sampling and simulation process, the bot is to estimate the
distribution p(at|ch = False) through the set of simulations of actions called m. Given the
samples it generated in m, the conditional density is given by:
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p(at = x|ch = False) ∝ p̃(at = x|ch = False) =

|m|∑
i=1

1mi,t=x

The decision on which action to take at the current time step denoted ãt is then given by:

ãt ∼ argmaxat
p̃(at|ch = False)

Before starting a new iteration of sampling new actions then simulating, the parameters
α are updated with the actions at, ..., at+(h−1) if a simulation results in no collision (i.e.
ch = False). If so, the process increments the simulation horizon h with δ time steps, the
strategy is to continuously expand the simulation horizon as no collisions are observed for
the bot to detect potential further away obstacles in its direction. The process of sampling
and simulation loops until ε milliseconds pass. The Algorithm returns the action providing
the highest probability for the bot to survive unwanted collisions in h time steps.

5 Experiments and Results

The approach was tested on the game of Flappy Bird, a game of inference about the
physics of the bird and its environment towards avoiding collision with obstacles. A replica
implementation of the game is available at on github along with an implementation of DQN
proposed by Mnih et al. (Mnih et al., 2015; ker, 2016; Chen, 2015). The game is available for
play at http://flappybird.io. During the game, bird is required to chose from flapping
or doing nothing to avoid collisions and pass through the openings.

Figure 2 demonstrates how CNNs aid probabilistic programs in sample more efficiently, the
task for the agent is to infer about actions with highest probability in terms of passing through
openings facing Flappy Bird. The agent is to sample action θ from a prior parametrized by
α, the α is given by the CNN to help reduce the number of samples needed to pass through
the opening. Given actions of flap and do nothing, with θ∗flap = 0.072 the agent is more
likely to sample flaps in its plan as to maintain its current height moving towards an opening.
Figure 2(a) illustrates the frames of pixel data used as inputs to estimate the Dirichlet (i.e.
Beta since two actions are offered for bird to pick from), the probability of θ > θ∗flap is
larger resulting in simulating more samples with ascending altitude. On the contrary, in (b)
the sampling distribution is skewed towards values less than θ∗ resulting in the sampling
process halting from flapping in most of its samples. Hence, the CNN skews the Dirichlet
distribution in a manner where actions sampled match the desired change in altitude.

Figure 3 demonstrates the performance of the model against alternative approaches and state
of the art techniques. Average scores are calculated after running each trained model for 10
times and observing the final score. PB-CNN is the proposed methodology and PB-Uniform
is an alternative approach where a CNN is not present, instead the Dirichlet distribution is
parametrized with all one parameter resulting in a uniform distribution over the parameter
θ. DQN is an implementation of Mnih et al. (Mnih et al., 2015) on Flappy Bird. Human
data are gathered through players on the web page in (hum, 2017).

Figure 3 (a) shows the average accuracy of PB-CNN and PB-Uniform for different ε millisec-
onds of time allowed for iterative sampling and simulation process. The advantage CNN
brings to the model is significant, this is because CNN narrows down the sampling space
significantly allowing the model to explore the conditional distribution of samples given no
collisions much faster (i.e. higher frequency of samples resulting in ch = False). In figure 3
(b) we show the average score per training epoch of the DQN approach. In figure 3 (c), the
average score of humans play is close to PB-Uniform with ε = 30ms and ε = 40ms. After
training the CNN part of PB-CNN of the model on 10000 frames of game play, the model’s
performance improves significantly. The performance of PB-CNN with ε = 1.5ms is similar
to DQN in average score. The average score is calculated for 10 times of game play.

The average score for humans was 11.27 in 47 million games played, 95% of them had a
score of 6 points or lower (hum, 2017). One possible reason why humans under-perform
could be explained by their significantly large delay in response time compared to methods

5

http://flappybird.io


Under review as a conference paper at ICLR 2019

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

D
ir

ic
h
le

t(
↵
)

(a)
(b)

(a) (b)

✓⇤flap = 0.072

Dirichlet(↵)

Figure 2: This figure demonstrates how CNN helps making the process of sampling more
efficient. Frames from the game are inputs to the CNN which outputs α parameters for the
Dirichlet distribution illustrated in the figure for the case of Flappy Bird. The dashed line of
θ∗flap = 0.072 corresponds to the probability of flap where bird maintains the same height.
In (a) bird is descending and is faced with a gap that is higher than its current altitude, a
trained CNN outputs α = (3.6, 16.8) biasing the sampling procedure to generate actions that
will more likely result in its ascending towards the opening. In (b) bird is descending where
a flap will result in its collision, the CNN outputs α = (0.7, 19.7) corresponding to values of
θ that will more likely result in its descending towards the opening.
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Figure 3: Results of models trained to play Flappy Bird. PB-CNN is the proposed model,
PB-Uniform is composed of the model proposed without the CNN where the probabilistic
program starts with an all-ones α parameter. DQN is the model proposed by (Mnih et al.,
2015), human data for game play are reported by the web page in (hum, 2017)

discussed in the paper here. Under a task of inference about the physics of the world, research
suggested that humans response rate was in between 500 and 2000 milliseconds depending
on the hardness of the inference task at hand (Hamrick et al., 2015). The urgency of making
a decision leaves no ample time for sampling and simulating the physics of the game that
could be enough for humans to perform as well as bots.

6 Conclusion and Future Work

We propose a framework for bots to maneuver in environments of intuitive physics inspired
by cognitive processes of humans. The approach draws inspiration from recent approaches
of modeling concept learning where the framework includes a coupling of a probabilistic
program with a physics simulation engine. The model was tested on the game of Flappy
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Bird and compared to state of the art techniques of model-free approaches. Advantages of
our model over model-free approaches namely DQN is the ability to learn from very few
examples relative to the number of examples DQN requires. Advantages of our model over
model-based approaches is its ability to learn from experience.

Potential future work include investigating approaches to learn about rewards structures in
games of physics intuition. This will enable bots to perform more complex moves beyond
simpler tasks such as the ones in the illustrated game of Flappy Bird where the objective is
to avoid unwanted collision. Other games such as Space Invaders involve learning strategies
of shooting and hiding that are beyond the capabilities of the model in its existing state.
Another potential future direction is to deploy neural network to detect objects in the frames
of the game rather than explicitly having access to position data of the objects in the game.
This would potentially help the framework better generalizes over other games.
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