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ABSTRACT

We hypothesize that end-to-end neural image captioning systems work seemingly
well because they exploit and learn ‘distributional similarity’ in a multimodal fea-
ture space, by mapping a test image to similar training images in this space and
generating a caption from the same space. To validate our hypothesis, we focus
on the ‘image’ side of image captioning, and vary the input image representation
but keep the RNN text generation model of a CNN-RNN constant. We propose
a sparse bag-of-objects vector as an interpretable representation to investigate our
distributional similarity hypothesis. We found that image captioning models (i)
are capable of separating structure from noisy input representations; (ii) experi-
ence virtually no significant performance loss when a high dimensional represen-
tation is compressed to a lower dimensional space; (iii) cluster images with similar
visual and linguistic information together; (iv) are heavily reliant on test sets with
a similar distribution as the training set; (v) repeatedly generate the same captions
by matching images and ‘retrieving’ a caption in the joint visual-textual space.
Our experiments all point to one fact: that our distributional similarity hypothesis
holds. We conclude that, regardless of the image representation, image captioning
systems seem to match images and generate captions in a learned joint image-text
semantic subspace.

1 INTRODUCTION

Image description generation, or image captioning (IC), is the task of automatically generating a
textual description for a given image. The generated text is expected to describe, in a single sentence,
what is visually depicted in the image, for example the entities/objects present in the image, their
attributes, the actions/activities performed, entity/object interactions (including quantification), the
location/scene, etc. (e.g. “a man riding a bike on the street”).

Significant progress has been made with end-to-end approaches to tackling this problem, where
large-scale parallel image–description datasets such as Flickr30k (Young et al., 2014) and
MSCOCO (Chen et al., 2015b) are used to train a CNN-RNN based neural network IC sys-
tem (Vinyals et al., 2016; Karpathy & Fei-Fei, 2015; Xu et al., 2015). Such systems have demon-
strated impressive performance in the COCO captioning challenge1 according to automatic metrics,
seemingly even surpassing human performance in many instances (e.g. CIDEr score > 1.0 vs. hu-
man’s 0.85) (Chen et al., 2015a). However, in reality, the performance of end-to-end systems is still
far from satisfactory according to metrics based on human judgement2. Thus, despite the progress,
this task is currently far from being a solved problem.

In this paper, we challenge the common assumption that end-to-end IC systems are able to achieve
strong performance because they have learned to ‘understand’ and infer semantic information from
visual representations, i.e. they can for example deduce that “a boy is playing football” purely by
learning directly from mid-level image features and the corresponding textual descriptions in an im-
plicit manner, without explicitly modeling the presence of boy, ball, green field, etc. in the image.
It is believed that the IC system has managed to infer that the phrase green field is associated with
some ‘green-like’ area in the image and is thus generated in the output description, or that the word
boy is generated because of some CNN activations corresponding to a young person. However, there
seems to be no concrete evidence that this is the case. Instead, we hypothesize that the apparently

1http://cocodataset.org/#captions-challenge2015
2http://cocodataset.org/#captions-leaderboard
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strong performance of end-to-end systems is attributed to the fact that they are exploiting the distri-
butional similarity in the multimodal feature space. To our best knowledge, our paper gives the first
empirical analysis on visual representations for the task of image captioning.

What we mean by ‘distributional similarity’ is that IC systems essentially attempt to match images
from the training set that is most similar to a test image, and generate a caption from the most similar
training instances (or generate a ‘novel’ description from a combination of training instances, for
example by ‘averaging’ the descriptions). Previous work has alluded to this observation (Karpathy,
2016; Vinyals et al., 2016), but it has not been thoroughly investigated. This phenomena could also
be in part attributed to the fact that the datasets are repetitive and simplistic, with an almost constant
and predictable linguistic structure (Lebret et al., 2015; Devlin et al., 2015; Vinyals et al., 2016).

In this paper we investigate the hypothesis of distributional similarity in IC by focusing on the image
side of image captioning. Most previous work has concentrated on the text side of image captioning,
e.g. by optimizing the language modelling capabilities of the RNN (Rennie et al., 2016; Liu et al.,
2017) to improve its performance on automatic metrics. While there have been efforts on improving
IC by utilizing or modeling images more effectively, for example by using attention over mid-level
image features (Xu et al., 2015) and high-level object proposals (Anderson et al., 2017), in this work
we are specifically interested in interpretability and we focus on using a simpler (and faster) model
for empirical evaluation. We explore the basic yet effective CNN-RNN model (Karpathy & Fei-Fei,
2015), and investigate the representational contributions while keeping the RNN generator constant.
More advanced models can be considered specific variants of Karpathy & Fei-Fei (2015).

It is worth noting that we are interested in demonstrating the phenomenon of distributional similar-
ity in IC, rather than achieving or improving state-of-the-art performance, As such, we do not resort
to fine-tuning or extensive hyperparameter optimization or ensembles. Therefore, our model is not
comparable to state-of-the-art models such as Vinyals et al. (2016), which optimize IC by fine-tuning
the image representations, exploring beam size, scheduled sampling, and using ensemble models.
Instead, we vary only the image representation to demonstrate that end-to-end IC systems utilize dis-
tributional similarity on the image side to generate captions, regardless of the image representation
used.

Our main contributions are:

• An IC experiment where we vary the input image representation but keep the RNN text
generation model constant (Section 3). This experiment demonstrates that regardless of the
image representation (a continuous image embedding or a sparse, low-dimensional vector),
end-to-end IC systems seem to utilize a visual-semantic subspace for IC.

• The introduction of a simple, sparse bag-of-objects representation that contains informa-
tion about the presence of objects in the images. We use this as a tool to investigate the
contribution of images in the image captioning framework.

• The introduction of pseudo-random vectors derived from object-level representations as a
means to evaluate IC systems. Our results show that end-to-end models in this framework
are remarkably capable of separating structure from noisy input representations.

• An experiment where IC models are conditioned on image representations factorized and
compresssed to a lower dimensional space (Section 4.1). We show that high dimensional
image embeddings that are factorized to a lower dimensional representation and used as in-
put to an IC model result in virtually no significant loss in performance, further strengthen-
ing our claim that IC models perform similarity matching rather than image understanding.

• An analysis of different image representations and their transformed representations
(Sections 4.2 and 4.3). We visualize the initial visual subspace and the learned joint visual
semantic subspace and observe that the visual semantic subspace has learned to cluster
images with similar visual and linguistic information together, further validating our claims
of distributional similarity.

• An experiment where the IC model is tested on an out-of-domain dataset (Section 4.4),
which has a slightly different image distribution. We observe that models, including the
state-of-the-art models, show a better performance on test sets that have a similar distri-
bution as the training. However, their performance deteriorates when the distributions are
slightly different.

• An analysis on the uniqueness of captions generated by IC models using different im-
age representations (Section 4.5). We hypothesize that the captions are often repeated as
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they are usually generated by matching images in the joint space and retrieving a relevant
caption. Our experiments validate this claim.

Overall, the study suggests that regardless of the representation used, end-to-end IC models implic-
itly learn and exploit multimodal similarity spaces rather than performing actual image understand-
ing.

This study is in line with the recent work that explore understanding of deep learning models and the
representational interpretations (Papernot et al., 2016; Szegedy et al., 2013; Sturm, 2014) and works
that have tried to delve into the image captioning task (Devlin et al., 2015; Vinyals et al., 2016). To
the best of our knowledge, ours is the first work that investigates IC focusing specifically on image
representations and their effects.

2 MODEL SETTING

For the experiments in Section 3, we base our implementation on a simple end-to-end approach
by Karpathy & Fei-Fei (2015). We use the LSTM (Hochreiter & Schmidhuber, 1997) based lan-
guage model as described in Zaremba et al. (2014).

To condition the image information, we first perform a linear projection of the image representation
followed by a non-linearity:

Imfeat = σ(W ·Im)

Here, Im ∈ Rd is the d-dimensional initial image representation, W ∈ Rn×d is the linear transfor-
mation matrix, σ is the non-linearity. We use Exponential Linear Units (Clevert et al., 2015) as the
non-linear activation in all our experiments. Following Vinyals et al. (2015), we initialize the LSTM
based caption generator with the projected image feature.

Training and Inference The caption generator is trained to generate sentences conditioned on the
image representation. We train the model by minimizing the cross-entropy, i.e., the sentence-level
loss corresponds to the sum of the negative log likelihood of the correct word at each time step:

Pr(S|Imfeat; θ) =
∑
t

log(Pr(wt|wt−1..w0; Imfeat)) (1)

where Pr (S|Imfeat; θ) is the sentence-level loss conditioned on the image feature Imfeat and
Pr(wt) is the probability of the word at time step t. This is trained with standard teacher forcing as
described in Sutskever et al. (2014) where the correct word information is fed to the next state in the
LSTM.

Inference is typically performed with approximation techniques like beam search or sam-
pling (Karpathy & Fei-Fei, 2015; Vinyals et al., 2015). In this paper, as we are mainly interested
in the studying effect of different image representations, we focus on the language output that the
models can most confidently produce. Therefore, in order to isolate any other variables from the
experiments, we generate captions using a greedy argmax based approach for consistency (unless
stated otherwise, we always use greedy decoding).

3 IMAGE CAPTIONING WITH DIFFERENT IMAGE REPRESENTATIONS

In this section, we verify our hypothesis that a ‘distributional similarity’ space exist in end-to-end
IC systems. Such systems attempt to match image representations in order to condition the RNN
decoder to generate captions that are similar to the closest images, rather than actually understand-
ing the image in order to describe the image. We keep the IC model constant (Section 2) across
experiments, and vary only the image representation used.
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3.1 IMAGE REPRESENTATIONS

3.1.1 LOWER-BOUND REPRESENTATION

Random: We condition the LSTM with a 300-dimensional vector comprising random values sam-
pled uniformly between [0, 1)3. This feature essentially gives us a worst case image feature and
provides an artificial lower bound.

3.1.2 REPRESENTATIONS FROM IMAGE-LEVEL CLASSIFICATION

The following pre-trained CNNs are used:

• VGG19 (Simonyan & Zisserman, 2015) pre-trained on ILSVRC (Russakovsky et al., 2015).
• ResNet152 (He et al., 2016) also pre-trained on ILSVRC.
• Places365-ResNet152 (Zhou et al., 2014), a variant of ResNet152 pre-trained on the Places2

dataset (Zhou et al., 2017). We investigate whether scene-specific categories are useful for
IC without the network being trained to classify object-specific categories.

• Hybrid1365-ResNet152 (Zhou et al., 2014), a ResNet152 variant trained on the concatena-
tion of the ILSVRC and Places2 datasets and predicts both object and scene classes.

We explore various representations derived from the CNNs above:

Penultimate layer (Penultimate): Most previous attempts for IC use the output of the penultimate
layer of a CNN pre-trained on ILSVRC. Previous work motivates using ‘off-the-shelf’ feature ex-
tractors in the framework of transfer learning (Razavian et al., 2014; Donahue et al., 2014). Such
features have often been applied to image captioning (Mao et al., 2014; Karpathy & Fei-Fei, 2015;
Xu et al., 2015; Gao et al., 2015; Vinyals et al., 2015; Donahue et al., 2015) and have been shown
to produce state-of-the-art results. Therefore, for each image, we extract the fc7 layer of VGG19
(4096D) and the pool5 layer for the ResNet152 variants (2048D) .

Class prediction vector (Softmax): We also investigate higher-level image representations, where
each element in the vector is an estimated posterior probability of object categories. Note that the
categories may not directly correspond to the captions in the dataset. While there are alternative
methods that fine-tune the image network on a new set of object classes extracted in ways that
are directly relevant to the captions (Fang et al., 2015; Wu et al., 2016), we study the impact of
off-the-shelf prediction vectors on the IC task. The intuition is that category predictions from pre-
trained CNN classifiers may also be beneficial for IC, alongside the standard approach of using mid-
level features from the penultimate layer. Therefore, for each image, we use the predicted category
posterior distributions of VGG19 and ResNet152 for 1000 object categories), Places365-ResNet152
(365 scene categories), and Hybrid-ResNet152 (1365 object and scene categories).

Object class word embeddings (Top-k): Here we experiment with a method that utilizes the
averaged word representations of top-k predicted object classes. We first obtain Softmax predictions
using ResNet152 for 1000 object categories (synsets) per image. We then select the objects that have
a posterior probability score > 5% and use the 300-dimensional pre-trained word2vec (Mikolov
et al., 2013) representations4 to obtain the averaged vector over all retained object categories. This
is motivated by the central observation that averaged word embeddings can represent semantic-level
properties and are useful for classification tasks (Arora et al., 2016).

3.1.3 REPRESENTATIONS FROM OBJECT-LEVEL DETECTIONS

We also explore representing images using information from object detectors that identifies in-
stances of object categories present in an image, rather than a global, image-level classification.
This can potentially provide for a richer and more informative image representation. For this we
use:

• ground truth (Gold) region annotations for instances of 80 pre-defined categories provided
with MSCOCO. It is worth noting that these were annotated independently of the image

3We also tried using 1,000-dimensions, yielding similar results, albeit slightly poorer.
4https://code.google.com/archive/p/word2vec/
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captions, i.e. people writing the captions had no knowledge of the 80 categories and the
annotations. As such, there is no direct correspondence between the region annotations and
image captions.
• a state-to-the-art object detector YOLO (Redmon & Farhadi, 2016), pre-trained on

MSCOCO for 80 categories (YOLO-Coco), and on MSCOCO and ILSVRC for over 9000
categories (YOLO-9k).

We explore several representations derived from instance-level object class annotations/detectors
above:

Bag of objects (BOO): We represent each image as a sparse ‘bag of objects’ vector, where each
element represents the frequency of occurrence for each object category in the image (Counts).
We also explore an alternative representation where we only encode the presence or absence of
the object category regardless of its frequency (Binary), to determine whether it is important to
encode object counts in the image. These representations help us examine the importance of explicit
object categories and in a sense interactions between object categories (dog and ball) in the image
representation. We investigate whether such a sparse and high-level BOO representation is helpful
for IC. It is also worth noting that BOO is different from the Softmax representation above as it
encodes the number of object occurrences, not the confidence of class predictions at image level. We
compare BOO representations derived from the Gold annotations (Gold-Binary and Gold-Counts)
and both YOLO-Coco and YOLO-9k detectors (Counts only).

Pseudo-random vectors: To further probe the capacity of the model to discern image representa-
tions in an image distributional similarity space, we propose a novel experiment where we examine
a type of representation where similar images are represented using similar random vectors, which
we term as pseudo-random vectors. We form this representation from BOO Gold-Counts and BOO
Gold-Binary. Formally, Imfeat =

∑
o∈Objects f × φo, where φo ∈ Rd is an object-specific random

vector and f is a scalar representing counts of the object category. In the case of Pseudorandom-
Counts, f is the frequency counts from Gold-Counts. In the case of Pseudorandom-Binary, f is
either 0 or 1 based on Gold-Binary. We use d = 120 for these experiments.

3.2 DATASETS AND EXPERIMENTAL SETUP

Dataset We evaluate image captioning conditioned on different representations on the most widely
used dataset for IC, MSCOCO (Chen et al., 2015b). The dataset consists of 82, 783 images for
training, with at least five captions per image, totaling to 413, 915 captions. We perform model
selection on a 5000-image development set and report the results on a 5000-image test set using
standard, publicly available splits5 of the MSCOCO validation dataset as in previous work (Karpathy
& Fei-Fei, 2015).

Evaluation Metrics We evaluated system outputs using the standard evaluation metrics for im-
age captioning using the most common metrics: BLEU (Papineni et al., 2002) which is computed
from 1-gram to 4-gram precision scores (B-1 · · · B-4), Meteor (Denkowski & Lavie, 2014) (M)
and CIDEr (Vedantam et al., 2015) (C) and SPICE (Anderson et al., 2016) (S). All these metrics
are based on some form of n-gram overlap between the system output and the reference captions
(i.e. no image information is used). For each system-generated caption, we compare against five
references. We used the publicly available cocoeval script for evaluation.6

Model Settings and Hyperparameters We use a single hidden layer LSTM with 128-
dimensional word embeddings and 256-dimensional hidden dimensions. As training vocabulary
we retain only words that appear at least twice.

3.3 IMAGE CAPTIONING RESULTS

We report results of IC on MSCOCO in Table 1, where the IC model (Section 2) is conditioned
on the various image representations described in Section 3.1. As expected, using random image

5http://cs.stanford.edu/people/karpathy/deepimagesent
6https://github.com/pdollar/coco
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Representation B-1 B-2 B-3 B-4 M C S
Random 0.48 0.24 0.11 0.07 0.11 0.07 0.03

So
ft

m
ax

VGG19 0.62 0.43 0.29 0.19 0.20 0.61 0.13
ResNet152 0.62 0.43 0.29 0.19 0.20 0.62 0.12

Places365-ResNet152 0.60 0.41 0.28 0.19 0.19 0.56 0.12
Hybrid1365-ResNet152 0.60 0.41 0.27 0.18 0.19 0.60 0.12

Pe
nu

lti
m

at
e VGG19 (fc7) 0.65 0.46 0.32 0.22 0.21 0.69 0.14

ResNet152 (Pool5) 0.66 0.48 0.33 0.23 0.22 0.74 0.15
Places365-ResNet152 0.61 0.41 0.27 0.19 0.19 0.55 0.12

Hybrid1365-ResNet152 0.65 0.46 0.32 0.23 0.22 0.72 0.14

Embeddings Top-k 0.62 0.42 0.28 0.19 0.20 0.63 0.13

BOO

Gold-Binary 0.65 0.47 0.32 0.22 0.22 0.75 0.15
Gold-Counts 0.67 0.48 0.33 0.23 0.22 0.81 0.16
YOLO-Coco 0.65 0.46 0.32 0.22 0.22 0.75 0.15

YOLO-9k 0.64 0.45 0.31 0.21 0.20 0.68 0.13

Pseudo-random
Pseudorandom-Binary 0.65 0.46 0.31 0.21 0.21 0.73 0.14
Pseudorandom-Counts 0.67 0.48 0.34 0.23 0.22 0.80 0.15

Table 1: Results on the MSCOCO test split, where we vary only the image representation and keep
other parameters constant. The captions are generated with beam = 1. We report BLEU (1-4),
Meteor, CIDEr and SPICE scores.

.

embeddings clearly does not provide any useful information and performs poorly. The Softmax
representations with similar sets of object classes (VGG19, ResNet152, and Hybrid1365-ResNet152)
have very similar performance. However, the Places365-ResNet representations perform poorly. We
note that the posterior distribution may not directly correspond to captions as there are many words
and concepts that are not contained in the set of object classes. Our results differ from those by
Wu et al. (2016) and Yao et al. (2016) where the object classes have been fine-tuned to correspond
directly to the caption vocabulary. We posit that the degradation in performance is due to spurious
probability distributions over object classes for similar looking images.

The performance of the Pool5 image representations shows a similar trend for VGG19, ResNet152,
and Hybrid1365-ResNet152. ResNet152 is slightly better in performance. The Places365-ResNet
representation performs poorly. We posit that the representations from the image network trained on
object classes rather than scene classes are able to capture more fine-grained image details from the
images, whereas the image network trained with scene-based classes captures more coarse-grained
information.

The performance of the averaged top-k word embeddings is similar to that of the Softmax represen-
tation. This is interesting, since the averaged word representational information is mostly noisy: we
combine top-k synset-level information into one single vector, however, it still performs competi-
tively.

We observe that the performance of the Bag of Objects (BOO) sparse 80-dimensional annotation
vector is better than all other image representations judging by the CIDEr score. We remark here
again, that this is despite the fact that the annotations may not directly correspond to the semantic
information in the image or the captions. The sparse representational information is indicative of
the presence of only a subset of potentially useful objects. We notice two distinct patterns, a marked
difference with Binary and Count based representations. This takes us back to the motivation that
image captioning ideally requires information about objects, interaction between the objects with
attribute information. Although our representation is really sparse on the object interactions, it
captures the basic concept of the presence of more than one object of the same kind, and thus
provides some kind of extra information. A similar trend is observed by Yin & Ordonez (2017),
although in their models they further try to learn interactions using a specified object RNN.

We also notice that predicted objects using YOLOCoco performs better than the YOLO9k. This is
probably expected as the YOLOCoco was trained on the same dataset hence obtaining better object
proposals. We also observed that with YOLO9k, we had a significant number of objects being
predicted for the test images that were not seen with the training set (around 20%).

6



Under review as a conference paper at ICLR 2018

Method B-1 B-2 B-3 B-4 M C S
PCA 0.66 0.48 0.34 0.24 0.22 0.75 0.15
ICA 0.66 0.48 0.34 0.24 0.22 0.74 0.15

PPCA 0.66 0.48 0.34 0.24 0.22 0.76 0.15

FULL 0.66 0.48 0.33 0.23 0.22 0.74 0.15

Table 2: Performance of compressed Pool5 representations

Model B-1 B-2 B-3 B-4 M C
Pool5 0.60 0.41 0.26 0.17 0.14 0.29

SC 0.62 0.42 0.28 0.18 0.17 0.35
TDBU 0.60 0.40 0.26 0.17 0.17 0.34

Table 3: Performance of models on Flickr30k

The most surprising result is the performance of the pseudo-random vectors. We notice that both the
pseudo-random binary and the pseudo-random count based vectors perform almost as good as the
Gold objects. This suggests that the conditioned RNN is able to remove noise and learn some sort
of a common ‘visual-linguistic’ semantic subspace.

4 ANALYSIS ON DISTRIBUTIONAL SIMILARITY IN IC

We perform further analysis on the different image representations to gain a further understanding
of the representations and demonstrate our distributional similarity hypothesis.

4.1 FACTORIZING THE REPRESENTATIONS

In Section 3.3, we observed encouraging results from the bag of objects based representations de-
spite being sparse, low-dimensional, and only partially relevant to captions. Interestingly, using
pseudo-random vectors derived from bag of objects also gave excellent performance despite the
added noise. This leads to the question: are high-dimensional vectors necessary or relevant? To an-
swer this, we evaluate whether the performance of the model significantly degrades if we reduce the
dimensionality of a high dimensional representation. We experiment with three exploratory factor
analysis based methods – Principal Component Analysis (PCA) (Halko et al., 2011), Probabilis-
tic Principal Component Analysis (PPCA) (Tipping & Bishop, 1999) and Independent Component
Analysis (ICA) (Hyvärinen et al., 2004). In all cases, we obtain 80-dimensional factorized represen-
tations on ResNet152 pool5 (2048D) that is commonly used in IC. We summarize our experiment
in Table 2. We observe that, the representations obtained by all the factor models seem to retain the
necessary representational power to produce appropriate captions equivalent to the original represen-
tation. This seems contradictory as we expected a loss in the information content when compressing
to arbitrary 80-dimensions. This experiment indicates that the model is not explicitly utilizing the
full expressiveness of the full 2048-dimensional representations. We conclude that the model is able
to learn from a seemingly weak, structured information and is able to result in a performance that is
close to one that uses the full representation.

4.2 ANALYZING IMAGE REPRESENTATIONS

In this section, we investigate the distributional similarity hypothesis by inspecting the regularities
in the initial representation state for several representations from Section 3.1, using the interpretable
bag-of-objects representation. If the representation is informative for IC, then the representations
should ideally semantically related images together, and in turn allow for relevant captions to be
generated.

We compare different image representations with respect to their ability to group and distinguish
between semantically related images. For this, we selected three categories from MSCOCO (“dog”,
“person”, “toilet”) and also pairwise combinations of these (“dog+person”, “dog+toilet”, “per-
son+toilet”). Up to 25 images were randomly selected for each of these six groups (single cate-
gory or pair) such that the images are annotated with only the associated categories. Each group
is represented by the average image feature of these images. Figure 1 shows the cosine distances
between each group, for each of our image representations. The Bag of Objects model clusters these
groups the best, as expected (e.g. the average image representation of “dog” correlates with images
containing “dog” as a pair like “dog+person” and “dog+toilet”). The Softmax models seem to also
to exhibit semantic clusters, although to a lesser extent. This can be observed with “person”, where
the features are not semantically similar to any other groups. The most likely reason is that there is
no “person” category in ILSVRC. Also, Place365 and Hybrid1365 Softmax (Figure 1c) also showed
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(a) Bag of objects (b) ResNet152 Softmax (c) Places365 Softmax

(d) Hybrid1365 Softmax (e) Embeddings (f) ResNet152 Pool5

(g) Places365 Pool5 (h) Hybrid1365 Pool5 (i) Pseudorandom

Figure 1: The cosine distance matrix between six groups (three MSCOCO categories and pairwise
combinations of the three categories) from the train dataset. Each group is represented by the average
image feature of 25 randomly selected images from the category or combination of categories.

very strong similarity for images containing “toilet”, where or not they contain “dog” or “person”,
possibly because they capture scene features. On the other hand, Pool5 features seem to result in
images that are more similar to each other than Softmax overall.

4.3 ANALYZING TRANSFORMED IMAGE REPRESENTATIONS

Considering our earlier hypothesis as proposed in Section 3.3 that the conditioned RNN is learning
some sort of a common ‘visual-linguistic’ semantic space, we explore the difference in representa-
tions in the initial representational space and the transformed representational space. The transfor-
mation is learned jointly as a subtask of the image captioning. We posit that image representations in
the transformed space will be more semantically coherent with respect to both images and captions.
To visualize the two representational spaces, we use Barnes-Hut t-SNE (Maaten & Hinton, 2008) to
compute a 2-dimensional embedding over the test split.

In general, we found that images are initially clustered by visual similarity (Pool5) and semantic sim-
ilarity (Softmax, Bag of Objects). After transformation, we observe that some linguistic information
from the captions has resulted in different types of clusters.

Figure 2 highlights some interesting observations of the changes in clustering across three different
representations. For Pool5, images seem to be clustered by their visual appearance, for example
snow scenes in Figure 2a, regardless of the subjects in the images (people or dogs). After trans-
formation, separate clusters seem to be formed for snow scenes involving a single person, groups
of people, and dogs. Interestingly, images of dogs in fields and snow scenes are also drawn closer
together.

Softmax (Figure 2b) shows many small, isolated clusters before transformation. After transforma-
tion, bigger clusters seem to be formed – suggesting that the captions have again drawn related
images together despite being different in the Softmax space.

8
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→

(a) Pool5

→

(b) Softmax

→ ...

(c) Bag of objects

→

(d) Pseudo-random

Figure 2: Visualization of the t-SNE projection of initial representational space (left) vs. the trans-
formed representational space (right). See main text for a more detailed discussion.

For bag of objects (Figure 2c), objects seem to be clustered by co-occurrence of object categories,
for example toilets and kitchens are clustered since they share sinks. Toilets and kitchens seem to
be further apart in the transformed space.

A similar observation was made by Vinyals et al. (2016) in which the authors observe that end-
to-end based image captioning models are capable of performing retrieval tasks with comparable
performance to the task specific models that are trained with the ranking loss.

We further perform a similar analysis on the pseudorandom representations (Figure 2d). We observe
that the initial representations have very little explicit information and do not cluster. The projected
representations however form clusters that mimic the projected space of the bag-of-object cluster.

Full sized version of images in Figure 2 are presented anonymously in: https://github.com/
anonymousiclr/HJNGGmZ0Z

4.4 DOMAIN DEPENDENCY

We now demonstrate that end-to-end models are heavily reliant on datasets that have a similar train-
ing and test distribution. We posit that an IC system that performs similarity matching will not
perform well on a slightly different domain for the same task. Demonstrating this will further vali-
date our hypothesis that IC systems perform image matching to generate image captions.

Thus, we evaluate several models trained on MSCOCO on 1000 test image samples from the
Flickr30k (Young et al., 2014) dataset 7. Like MSCOCO, Flickr30k is an image description dataset;
however, unlike MSCOCO, the images have a different distribution and the descriptions are slightly
longer and more descriptive.

7the test split is obtained from http://staff.fnwi.uva.nl/d.elliott/wmt16/splits.zip
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Figure 3: Distributions over train and test sets
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Figure 4: Distributions over train and Flickr test

We evaluate the captions generated by our model with Resnet152 pool5 representation and by two
other state-of-the-art models pretrained on MSCOCO: a) Self-Critical (SC) (Rennie et al., 2016)
based on self critical sequence training that uses reinforcement learning using metrics, and b) Bottom
Up and Top Down (TDBU) (Anderson et al., 2017) based on top-down and bottom-up attention using
object region proposals. Both the state-of-the-art models are much more complex than the image
conditioned RNN based language model. The results are summarized in Table 3.

We observe that the scores drop by a large margin. A similar observation was made by Vinyals
et al. (2016), and they alluded the drop in scores to the linguistic mismatch between the datasets.
However, we probed the out of training vocabulary words in the Flickr30k test set and observed that
it was around 8.6% which seems to be the usual unseen rate. This suggests that there is more to
the issue than mere vocabulary mismatch. We observe that while typical sentences on Flickr30k are
structurally different and are generally longer, the model is still unable to generate good bigrams or
even unigrams as is evident from B-1 and B-2 scores in Table 3.

We further investigated the distributions of objects in the images by using YOLO object detector
(trained on MSCOCO). We first detect objects on the MSCOCO training set and our MSCOCO test
set followed by objects on the Flickr30k test set. It Figure 3 we show the normalized frequency
versus the distribution of objects over the MSCOCO train and test sets. We notice that the distri-
butions are very similar and mostly overlap. In Figure 4 we show the normalized frequency versus
distribution of objects detected over MSCOCO train and Flickr30k test sets. We observe that the two
distributions are slightly different, they don’t overlap as closely as we see in Figure 3. We hypothe-
size that the difference in distribution is one of the difference that reflects in the lower performance
of a model that is trained on the MSCOCO dataset performing poorly on the Flickr30k test set.

4.5 UNIQUENESS OF CAPTIONS

We postulate that image captions are often repeated because they are generated by ‘retrieving’ simi-
lar images in the joint image-text semantic space and generating the relevant caption at this point in
the space.

To investigate this, we first show that, regardless of the representation, end-to-end IC systems do
not generate unique captions for every distinct image. We use the full validation portion of the
MSCOCO dataset (40,504 images) and produce captions with four types of distinct image repre-
sentations. We report the results in Table 4. We observe that in almost all cases, the produced
representations are far from unique. In most cases, there is a significant portion of the captions
that are repeated. This is also observed by Devlin et al. (2015) on different test splits, but using
retrieval-based and pipeline based methods for IC.

Intrigued by the results that almost all the representations end up with similar proportion of unique
captions, we further investigate the models using a k-nearest neighbor approach. The key idea is
that if the IC systems perform some form of image matching and a complex text retrieval from the
training set, then the nearest neighbour (from training) of a test image should have a similar caption
to the one generated by the model. We note that the model is clearly not performing text retrieval
as the LSTM does generate novel captions, possibly by aggregating or ‘averaging’ the captions of
similar images and performing some factorization.
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Model Unique (%)

Bag of Objects 29.5
Top-k Class 29.0
Softmax 28.7
ResNet Pool5 28.8
Human 99.4

Table 4: Unique captions with
beam = 1.

Type B M C S

Freq. 0.868 0.591 6.956 0.737
Proj. 0.912 0.634 7.651 0.799

Exact (2301) 1.000 1.000 10.000 1.000

Freq. (¬ Exact) 0.757 0.498 4.337 0.512
Proj. (¬ Exact) 0.837 0.560 5.638 0.628

Table 5: k-nearest neighbor experiment

To perform this experiment, we begin by generating captions for every training image using the
bag of objects model (with frequency counts). We then compute the k-nearest training images
for each given test image using both the bag of objects representation and its projection (Eq. 2).
Finally, we compute the similarity score between the generated caption of the test image against all
k-nearest captions. The similarity score measures how well a generated caption matches its nearest
neighbour’s captions. We expect the score to be high if the IC system generates an image similar to
something ‘summarized’ from the training set.

We report our results in Table 5. We observe that overall the captions seem to closely match the
captions of 5 nearest training images. Further analysis showed that 2301 captions had nearest images
at a zero distance, i.e., the same exact representation was seen during at least 5 times in training (note
that CIDEr gives a score of 10 only if the test caption and all references are the same). We found that
among the non-exact image matches, the projected image representation better captures candidates
in the training set than the bag of objects.We further analyze the captions and provide details in the
appendix.

5 CONCLUSION

We hypothesized that IC systems essentially exploit a distributional similarity space to ‘generate’
image captions, by attempting to match a test image to similar training image(s) and generate an
image caption from these similar images. Our study focused on the image side of image captioning:
We varied the image representations while keeping the text generation component of an end-to-
end CNN-RNN model constant. We found that regardless of the image representation, end-to-end
IC systems seem to match images and generate captions in a visual-semantic subspace for IC. We
conclude that:

• A sparse, low-dimensional bags-of-objects representation can be used as a tool to inves-
tigate the contribution of images in IC; we demonstrated that such a vector is sufficient for
generating good image captions;

• End-to-end IC models are remarkably capable of separating structure from noisy input
representations, as demonstrated by pseudo-random vectors;

• End-to-end IC models suffer virtually no significant loss in performance when a high di-
mensional representation is factorized to a lower dimensional space;

• End-to-end IC models have learned a joint visual-textual semantic subspace by cluster-
ing images with similar visual and linguistic information together;

• End-to-end IC models rely on test sets with a similar distribution as the training set for
generating good captions;

• End-to-end IC models repeatedly generate the same captions by matching images in the
joint visual-textual space and ‘retrieving’ a caption in the learned joint space.

All the observations above strengthen our distributional similarity hypothesis – that end-to-end IC
performs image matching and generates captions for a test image from similar image(s) from the
training set – rather than performing actual image understanding. Our findings provide novel insights
into what end-to-end IC systems are actually doing, which previous work only suggests or hints at
without concretely demonstrating the distributional similarity hypothesis. We believe our findings
are important for the IC community to further advance image captioning in a more informed manner.
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Representation CIDEr (∆) Caption
Bag of objects 2.78 (+0.00) a bird is perched on a branch in the sun .
VGG19 softmax 3.14 (+0.36) a owl is perched on a branch of a tree .
ResNet softmax 3.67 (+0.89) a owl is perched on a branch in a tree .
Places365 softmax 2.00 (-0.77) a bear is sitting on a branch in the wilderness .
Hybrid1365 soft-
max

0.01 (-2.77) a giraffe standing in a field of grass .

VGG19 fc7 0.18 (-2.59) a black and white image of a bird sitting on a window sill .
ResNet pool5 0.38 (-2.40) a large black bear standing in a forest .
Places365 pool5 0.34 (-2.43) a giraffe standing in the middle of a forest .
Hybrid1365 pool5 3.03 (+0.26) a bird is perched on a branch in a tree .
Embeddings 2.38 (-0.40) a bird sitting on a branch in a window .

(a) Bag of objects: bird (1)

Representation CIDEr (∆) Caption
Bag of objects 0.09 (+0.00) a large airplane flying through a blue sky .
VGG19 softmax 0.00 (-0.09) a man in a baseball cap and sunglasses is holding a baseball bat .
ResNet softmax 0.00 (-0.09) a man is holding a baseball bat in a batting cage .
Places365 softmax 0.06 (-0.03) a dog is standing in the grass with a ball in its mouth .
Hybrid1365 soft-
max

0.00 (-0.09) a man holding a tennis racquet on a tennis court .

VGG19 fc7 0.73 (+0.63) a plane is sitting on a runway with a few people .
ResNet pool5 0.01 (-0.08) a train is on the tracks in a city .
Places365 pool5 0.00 (-0.09) a giraffe standing in a fenced in enclosure .
Hybrid1365 pool5 0.01 (-0.08) a man holding a baseball bat standing next to home plate .
Embeddings 0.01 (-0.09) a baseball player holding a bat on a field .

(b) Bag of objects: airplane (1)

Representation CIDEr (∆) Caption
Bag of objects 0.01 (+0.00) a man wearing a suit and tie standing in front of a building .
VGG19 softmax 0.04 (+0.04) a woman in a pink wig and a pink dress .
ResNet softmax 0.00 (-0.00) a man in a suit and tie is smiling .
Places365 softmax 0.13 (+0.12) a woman with a red polka dotted dress tie .
Hybrid1365 soft-
max

0.06 (+0.05) a woman in a red dress is talking on a cell phone .

VGG19 fc7 0.24 (+0.24) a woman with a cell phone in her hand .
ResNet pool5 0.08 (+0.08) a woman in a red shirt and tie .
Places365 pool5 0.10 (+0.09) a woman is holding a cell phone to her ear .
Hybrid1365 pool5 0.05 (+0.04) a woman in a dress shirt and tie holding a parasol .
Embeddings 0.00 (-0.01) a man wearing a tie and a shirt and a tie .

(c) Bag of objects: person (1), tie (1)

Figure 5: Example outputs from our system with different representations, the sub-captions indicate
the annotation along with the frequency in braces. We also show the CIDEr score and the difference
in CIDEr score relative to the Bag of Objects representation.

A ANALYSIS ON GENERATED CAPTIONS

Here, we provide a qualitative analysis of different image representations presented and gain some
insights into how they contribute to the the IC task. The Bag of Objects representation led to a strong
performance in IC despite being extremely sparse and low-dimensional (80 dimensions). Analyzing
the test split, we found that each vector consists of only 2.86 non-zero entries on average (standard
deviation 1.8, median 2). Thus, with the minimal information being provided to the generator RNN,
we find it surprising that it is able to perform so well.

We compare the output of the remaining models against the Bag of Objects representation by inves-
tigating what each representation adds to or subtracts from this simple, yet strong model. We start
by selecting images (from the test split) annotated with the exact same Bag of Objects representation
– which should result in the same caption. For our qualitative analysis, several sets of one to three
MSCOCO categories were manually chosen. For each set, images were selected such that there is
exactly one instance of each category in the set and zero for others. We then shortlisted images
where the captions generated by the Bag of Objects model produced the five highest and five lowest
CIDEr scores (ten images per set). We then compare the captions sampled for each of the other
representations.

Figure 5 shows some example outputs from this analysis. In Figure 5a, Bag of Objects achieved a
high CIDEr score despite only being given “bird” as input, mainly by ‘guessing’ that the bird will
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be perching/sitting on a branch. The object-based Softmax (VGG and ResNet) models gave an even
more accurate description as “owl” is the top-1 prediction of both representations (96% confidence
for VGG, 77% for ResNet). Places365 predicted “swamp” and “forest”. The Penultimate features
on the other hand struggled with representing the images correctly. In Figure 5b, Bag of Objects
struggled with lack of information (only “airplane” is given), the Softmax features mainly predicted
“chainlink fence”, Places365 predicted “kennel” (hence the dog description), and it most likely that
Penultimate has captured the fence-like features in the image rather than the plane. In Figure 5c, the
Softmax features generally managed to generate a caption describing a woman despite not explicitly
containing the ‘woman’ category. This is because other correlated categories were predicted, such as
“mask”, “wig”, “perfume”, “hairspray” and in the case of Places365 “beauty salon” and “dressing
room”.

B HYPERPARAMETER SETTINGS

Our model settings were:
• LSTM with 128 dimensional word embeddings and 256 dimensional hidden representa-

tions Dropout over LSTM of 0.8
• We used Adam for optimization.
• We fixed the learning rate to 4e-4

We report our results by keeping the above settings constant.
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