
Under review as a conference paper at ICLR 2019

CONVOLUTIONAL NEURAL NETWORKS COMBINED
WITH RUNGE-KUTTA METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

A convolutional neural network for image classification can be constructed math-
ematically since it can be regarded as a multi-period dynamical system. In this
paper, a novel approach is proposed to construct network models from the dy-
namical systems view. Since a pre-activation residual network can be deemed
an approximation of a time-dependent dynamical system using the forward Eu-
ler method, higher order Runge-Kutta methods (RK methods) can be utilized to
build network models in order to achieve higher accuracy. The model constructed
in such a way is referred to as the Runge-Kutta Convolutional Neural Network
(RKNet). RK methods also provide an interpretation of Dense Convolutional Net-
works (DenseNets) and Convolutional Neural Networks with Alternately Updated
Clique (CliqueNets) from the dynamical systems view. The proposed methods are
evaluated on benchmark datasets: CIFAR-10/100, SVHN and ImageNet. The ex-
perimental results are consistent with the theoretical properties of RK methods
and support the dynamical systems interpretation. Moreover, the experimental re-
sults show that the RKNets are superior to the state-of-the-art network models on
CIFAR-10 and on par on CIFAR-100, SVHN and ImageNet.

1 INTRODUCTION

Residual Networks (ResNets) which are feed-forward network models with skip connections have
achieved great success on several vision benchmarks (He et al., 2016a). Recently, researchers have
studied the relation between ResNets and dynamical systems (Liao & Poggio, 2016; E, 2017; Haber
et al., 2017; Chang et al., 2018a;b; Lu et al., 2018). Forward Euler method, a first-order RK method,
has been employed to explain ResNets with full pre-activation (He et al., 2016b) from the dynamical
systems view (Haber et al., 2017; Chang et al., 2018b). Nevertheless, there is no firm evidence
to prove that the residual block is just forward Euler method but not any other RK method. We
regard the residual mapping as an approximation to the increment in a time-step. The accuracy
of the approximation is determined by the structure of the convolutional network. Wide residual
network (WRN) (Zagoruyko & Komodakis, 2016) has been proposed to improve the ability of the
convolutional subnetwork. However, it is not very efficient only to widen the subnetwork. The new
explanation of pre-activation ResNet and its variants which focus on improving residual mapping is
one of our contributions.

In addition, some improvements on network architecture based on ordinary differential equations
(ODEs) are proposed (Chang et al., 2018a; Lu et al., 2018; Chen et al., 2018). Under the assumption
that pre-activation ResNet is forward Euler method, Chang et al. (2018a); Lu et al. (2018) use special
linear multi-step methods (LM methods) with low order to construct the network. Chen et al. (2018)
utilize a third-party package which offers numerical ODE methods to replace residual block. There
is no efficient network architecture for systematic generalization to high order till now. Nevertheless,
a higher-order method can achieve a lower truncation error. Since a lower truncation error likely
leads to a high accuracy, it is necessary to study an efficient network architecture with a high order.

If the process of image classification is deemed a sequence of time-dependent dynamical systems,
there should be a series of ODEs to describe these systems. RK methods are widely-used procedures
to solve ODEs in numerical analysis (Butcher, 2008). They are also the building blocks of high-
order LM methods. Consequently, these methods can be used to build network models for visual
processing.

1

Under review as a conference paper at ICLR 2019

The neural network community has long been aware of the numerical methods for dynamical sys-
tems. Runge-Kutta Neural Network (RKNN) is proposed for identification of unknown dynamical
systems in high accuracy (Wang & Lin, 1998), but it has not been used to model the visual system
nor been extended to convolutional networks. Moreover, RKNNs adopt a specific RK methods by
indicating every coefficient for the RK methods. Thus, it is hard to apply high order RK methods in
RKNNs. In addition, the time-step size need to be prespecified. Hence, RKNN cannot be used in
tasks where the total time is unknown such as image classification. In contrast, we learn all the coef-
ficients and time-step sizes implicitly by training in order to avoid these difficulties. As a result, one
of the major contributions of the paper is a novel and effective neural network architecture inspired
by the RK methods.

In order to apply RK methods to the image classification problem, the following assumptions are
made throughout the paper. Firstly, the image classification procedure is multi-period and there are
transitions between adjacent periods. Secondly, each period is modeled by a time-dependent first-
order dynamical system. Based on these assumptions, a novel network model called the RKNet is
proposed.

In an RKNet, a period is composed of iterations of time-steps. A particular RK method is adopted
throughout the time-steps in a period to approximate the increment in each step. The increment in
each step is broken down to the increments in several stages according to the adopted RK method.
Each stage is approximated by a convolutional subnetwork due to the versatility of neural networks
on approximation.

Another contribution of this paper is a theoretical interpretation of DenseNets and CliqueNets from
the dynamical systems view. The dense connections in DenseNet resemble the relationship among
increments in the stages in explicit RK methods (ERK methods). Similarly, the clique blocks in
CliqueNets resemble the relationship among increments in the stages in implicit RK methods (IRK
methods). Under some conditions, DenseNets and CliqueNets can be formulated as approximating
dynamical systems using multi-stage RK methods. We also propose a method to convert a DenseNet
to an explicit RKNet (ERKNet) and a method convert a CliqueNet to an implicit RKNet (IRKNet).
Furthermore, DenseNets and CliqueNets have only one time-step in each period, whereas RKNets
are more general and can have multiple time-steps in each period.

We evaluate the performance of RKNets on benchmark datasets including CIFAR-10, CIFAR-
100 (Krizhevsky, 2009), SVHN (Netzer et al., 2011) and ILSVRC2012 classification dataset (Rus-
sakovsky et al., 2015). Experimental results show that both ERKNets and IRKNets conform to the
mathematical properties. Additionally, RKNets achieve higher accuracy than the state-of-the-art
network models on CIFAR-10 and comparable accuracy on CIFAR-100, SVHN and ImageNet.

The rest of the paper is organized as follows. The related work is reviewed in Section 2. The
architecture of RKNets, the dynamical systems interpretation of DenseNets and CliqueNets, and
the conversion from them to RKNets are described in Section 3. The performance of RKNets is
evaluated in Section 4. The conclusion and future work is described in Section 5.

2 RELATED WORK

ResNets have gained much attention over the past few years since they have obtained impressive
performance on many challenging image tasks, such as ImageNet (Russakovsky et al., 2015) and
COCO object detection (Lin et al., 2014). ResNets are deep feed-forward networks with the short-
cuts as identity mappings. ResNets with pre-activation can be regarded as an unfolded shallow RNN,
which implements a discrete dynamical system (Liao & Poggio, 2016). It provides a novel point of
view for explaining pre-activation ResNets from dynamical systems view.

Recently, more work has emerged to connect dynamical systems with deep neural networks (E,
2017) or ResNets in particular (Haber et al., 2017; Chang et al., 2018a;b; Li et al., 2018; Long et al.,
2018; Lu et al., 2018; Wang et al., 2018; Chen et al., 2018). E (2017) proposes to use continuous
dynamical systems as a tool for machine learning. Chang et al. (2018a) propose three reversible
architectures based on ResNets and ODE systems. Chang et al. (2018b) propose a novel method for
accelerating ResNets training based on the interpretation of ResNets from dynamical systems view
(Haber et al., 2017). Li et al. (2018) present a training algorithm which can be used in the context
of ResNets. Lu et al. (2018) propose a 2-step architecture based on ResNets. In addition, research

2

Under review as a conference paper at ICLR 2019

combining dynamical system identification and RK methods with neural networks for scientific
computing has emerged recently (Raissi et al., 2017a;b; Raissi, 2018), introducing physics informed
neural networks with automatic differentiation. Chen et al. (2018) utilize a third-party package
which offers some numerical methods to compute the numerical solution in each time-step.

DenseNets (Huang et al., 2017) are the state-of-the-art network models after ResNets. The dense
connection is the main difference from the previous models. There are direct connections from a
layer to all subsequent layers in a dense block in order to allow better information and gradient
flow. There is no interpretation of DenseNets from dynamical systems view yet. CliqueNets (Yang
et al., 2018) are the state-of-the-art network models based on DenseNets. They adopt the alternately
updated clique blocks to incorporate both forward and backward connections between any two layers
in the same block. However, there is no interpretation of CliqueNets from dynamical systems view
yet.

Given that the process of image classification is regarded as a sequence of time-dependent dynamical
systems, there should be a set of ODEs that describes these systems. Consequently, mathematical
tools could be employed to construct network models. RK methods are commonly used to solve
ODEs in numerical analysis (Butcher, 2008). Higher order RK methods can achieve lower trun-
cation error. Moreover, these methods are usually the building blocks of high-order LM methods.
Therefore, RK methods are ideal tools to construct network models from dynamical systems view.

RK methods have been adopted to construct neural networks, which are known as RKNN, for iden-
tification of unknown dynamical systems described by ODEs (Wang & Lin, 1998). In that paper,
neural networks are classified into two categories: (1) a network that directly learns the state tra-
jectory of a dynamical system is called a direct-mapping neural network (DMNN); (2) a network
that learns the rate of change of system states is called a RKNN. Hence, AlexNet (Krizhevsky et al.,
2012), VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 2015) and ResNet (He
et al., 2016a) all belong to DMNNs. Specifically, the original ResNet (He et al., 2016a) is a DMNN
because of the ReLU layer after the addition operation. As a result, the ResNet building block learns
the state trajectory directly, not the rate of change of the system states. On the contrary, a ResNet
with pre-activation (He et al., 2016b) is an RKNN.

RKNNs are proposed to eliminate several drawbacks of DMNNs, such as the difficulty in obtaining
high accuracy for the multi-step prediction of state trajectories. It has been shown theoretically and
experimentally that the RKNN has higher prediction accuracy and better generalization capability
than the conventional DMNN (Wang & Lin, 1998).

Therefore, it is reasonable to believe that RK methods can be adopted to design effective network
architectures for image classification problems. Additionally, the RK methods might improve the
performance of image classification since the convolutional subnetworks are able to approximate
the rate of change of the dynamical system states more precisely.

3 RKNETS

The introduction to RK methods are in Section 3.1. We describe the overall structure of RKNet
in Section 3.2. The structure of subnetwork for increment in each time-step is elaborated on in
Section 3.3.

3.1 RUNGE-KUTTA METHODS

An initial value problem for a time-dependent first-order dynamical system can be described by the
following ODE (Butcher, 2008):

dy

dt
= f (t, y(t)) , y (t0) = y0. (1)

where y is a vector representing the system state. The dimension of y should be equal to the
dimension of the dynamical system. The ODE represents the rate of change of the system states.
The rate of change is a function of time and the current system state. RK methods utilize the rate
of change calculated from the ODE to approximate the increment in each time-step, and then obtain
the predicted final state at the end of each step. RK methods are numerical methods originated from

3

Under review as a conference paper at ICLR 2019

period 1 period 2 period 3

p
re

p
ro

c
e
ss

o
r

tr
a
n

si
ti

o
n
 l

a
y

e
r

1

postprocessor

tr
a
n

si
ti

o
n
 l

a
y

e
r

2

input

prediction

y0
(1) y r

(1)

y r
(1) y r

(2)

y r
(2)

y r
(3)

y0
(2) y0

(3)

time-step 1 ... time-step r

increment addition

Figure 1: Architecture of a 3-period RKNet. y(d) denotes the system state of period d. y(d)
0 is the

initial state of period d. y(d)
r is the final state after r time-steps in period d. r is the total number of

time-steps in a period. It can vary in different periods. Period 1 and time-step 1 in it are unfolded
as an example. System state changes throughout a period. The final state of a step is estimated as
the initial state of this step adding an increment. This operation originates from RK methods. To
approximate the increment is the key point in RKNet. The dotted lines are for multiscale feature
strategy.

Euler method. There are two types of RK methods: explicit and implicit. Both of them are employed
in the RKNet. The family of RK methods is given by the following equations (Sli & Mayers, 2003):

yn+1 = yn + h

s∑
i=1

bizi, tn+1 = tn + h, (2)

where

zi = f

tn + cih, yn + h

s∑
j=1

aijzj

 , 1 ≤ i ≤ s. (3)

In equation 2, yn+1 is an approximation of the solution to equation 1 at time tn+1, i.e. y(tn+1); y0 is
the input initial value; h

∑s
i=1 bizi is the increment of system state y from tn to tn+1;

∑s
i=1 bizi is

the estimated slope which is the weighted average of the slopes zi computed in different stages. The
positive integer s is the number of zi, i.e. the number of stages of the RK method. The equation 3
is the general formula of zi. h is the time-step size which can be adaptive for different time-steps
but must be fixed across stages within a time-step.

In numerical analysis, s, aij , bi and ci in equation 2 and equation 3 need to be prespecified for a
particular RK method. These coefficients are displayed in a Butcher tableau. The ERK methods are
those methods with aij = 0 when 1 ≤ i ≤ j ≤ s. All the RK methods other than ERK methods
are IRK methods. The algebraic relationships of the coefficients have to meet the order conditions
to reach the highest possible order. Different RK methods have different truncation errors which are
denoted by the order: an order p indicates that the local truncation error is O(hp+1). If a s-stage
ERK method has order p, then s ≥ p; if p ≥ 5, then s > p (Butcher, 2008). Furthermore, a s-stage
IRK method can has order p = 2s when its coefficients are chosen under some conditions (Butcher,
2008). Therefore, more stages may achieve higher orders, i.e. lower truncation errors. The Euler
method is a one-stage first-order RK method with b1 = 1 and c1 = 0. In other words, high-order
RK methods can be expected to achieve lower truncation errors than Euler method. Thus, the goal
of our proposed RKNets is to improve the classification accuracy by taking advantage of high-order
RK methods.

4

Under review as a conference paper at ICLR 2019

It is necessary to specify h in order to control the error of approximation in common numerical
analysis. The varying time-step size can be adaptive to the regions with different rates of change.
The truncation error is lower when the h is smaller.

3.2 FROM RK METHODS TO RKNETS

There are three components of RKNets: the preprocessor, the multi-periods and the postprocessor.
The preprocessor manipulates the raw images and passes the results to the first period. The post-
processor deals with the output from the last period or all the periods while adopting multiscale
feature strategy (Yang et al., 2018). Then, it passes the result to the classifier to make a decision.
The periods between those two components are divided by the transition layers. These periods can
be modeled by time-dependent dynamical systems. Each period of an RKNet is divided into r time-
steps as shown in Figure 1. RK methods approximate the final state of every time-step using the rate
of change of the system state. Some guiding principles when applying RK methods to RKNets are
listed as follows.

Firstly, dimensionality reduction is often carried out to simplify the system identification issue, when
the dimension of real dynamical system is too high. The dimension of y in each period in RKNet
is predefined as the multiplication of the size of feature map and the number of channels at the
beginning of a period. The dimensions of y in the same periods of different RKNets can be different
due to various degrees of dimensionality reduction. Nevertheless, the dimension of y is consistent
within a period.

Secondly, given that there is no explicit ODE for image classification, a convolutional subnetwork
is employed to approximate the increment in each time-step. The number of neurons in each hidden
layer can be more than the dimension of y.

Thirdly, the number of stages s in each period is predefined in RKNet but the other coefficients, aij ,
bi and ci in equation 2 and equation 3 are learned by training. Due to the order conditions (Butcher,
2008), the relationship among the coefficients are more important than the specific value of any indi-
vidual coefficient. Hence, the coefficients are learned implicitly but not as explicit parameters. The
optimal relationship among the coefficients with a highest possible order is obtained after training.

Lastly, the number of time-steps r in each period is predefined in RKNet, but the step size h is
learned by training. n in equation 2 and equation 3 is limited to the range [0, r). The learned h is
thus considered adaptive. In theory, the adaptive time-step size can achieve higher accuracy.

A variety of RK methods can be adopted in the different periods of RKNets, but the same RK method
is used for all time-steps within one period in an RKNet. The network models are named after the
specific method in each period, such as RKNet-3×2 4×1 2×5 1×1. The suffix in the name of an
RKNet is composed of several s× r terms; each stands for the method in corresponding period. The
number of such terms equals the total number of periods. s or r can vary in different periods. For
example, RKNet-3×2 4×1 2×5 1×1 has four periods: period one has 2 time-steps and each step
has 3 stages; period two has 1 time-step and it has 4 stages; period three has 5 time-steps and each
step has 2 stages; period four has 1 time-step and it has 1 stage. We use this notation throughout this
paper. In addition, ERKNets only adopt ERK methods and IRKNets only adopt IRK methods.

Given an RKNet model, s and r can be modified to construct more variants with the same dimen-
sions in the corresponding periods. In other words, s and r control depth of the network while
dimensionality reduction controls the width of the network. More stages, more time-steps and larger
dimensions usually lead to higher classification accuracy. However, the complexity of an ODE
increases with the increase of dimensions. As a result, the convolutional subnetwork which approxi-
mates the increment in a time-step need be more complex for larger dimensions. Hence, the accuracy
is also associated with the matching degree of the dimension and the convolutional subnetwork. The
unmatched high-dimensional network model may have lower accuracy. Additionally, the training
method might affect the classification accuracy too.

3.3 ERKNETS AND IRKNETS

In this section, we introduce the architecture of RKNets. As shown in equation 2, the sum of hbizi
represents the increment in a time-step. It is crucial to approximate this increment in RKNet. For

5

Under review as a conference paper at ICLR 2019

yn yn

hb1z1

yn

..
.

identity

conv ...

..
.

ms

yn+1

mk channels compose a group to represent hb1z1

yn

mk channels

k channels growth

mk channels represent hbizi

yn

hb1z1

hb2z2

yn

concatenate

... ...

yn

hb1z1

..
.

hb2z2

hbszs

m

add

Figure 2: Architecture of one time-step in ERKNet using an s-stage ERK method. yn is the approx-
imation of y(tn). A dense block grows every m times at a growth rate of k to form a convolutional
subnetwork for generating each hbizi. Here, h is time-step size, bi is coefficient of ERK method,
and zi is the slope of each stage in ERK method. The total number of growth is ms in a dense block
in order to generate hbizi for i = 1, . . . , s. An explicit summation layer is added after a dense
block to complete a time-step.

the purpose of constructing an RKNet, it is necessary to hide the time-step size and the coefficients
in RK methods. hbizi can be described as follows according to equation 3:

hbizi = hbif

tn + cih, yn + h

s∑
j=1

aijzj


= gi

 yn + h

s∑
j=1

aijzj


= Fi (yn, hai1z1, . . . , haiszs) .

(4)

The above transformation first changes the explicit dependence on the time in equation 3 to an
implicit one. Since the time parameter tn+cih is different for the different stages, it can be absorbed
into gi(·), which implicitly depends on time for stage i. Afterward, the summation in the input
parameter of gi(·) is split into separate terms. Fi(·) denotes the function of these terms for each
stage. We verify that Fi(·) can equal to gi(·) after training by experiment though Fi(·) is more
expressive than gi(·) in expression. Additionally, Fi(·) is more memory efficient than gi(·) because
of saving the storage for the summation inputted to gi(·).

3.3.1 CONNECT ERKNETS WITH DENSENETS

In order to construct ERKNets, hbizi can be described by the equation below, according to equa-
tion 4.

hbizi = ei
(
yn, hai1z1, . . . , hai(i−1)zi−1

)
= Ei (yn, hb1z1, . . . , hbi−1zi−1) .

(5)

The above transformation first eliminates haijzj (i ≤ j) from Fi(·) in equation 4 since aij = 0
when 1 ≤ i ≤ j ≤ s for ERK methods (See 3.1). As a result, hbizi is denoted by a function of
yn and haijzj for j = 1, . . . , i − 1. It is written as ei(·). After that, adjusting the coefficients of
each parameter from aij to bj yields another function Ei(·). It is a function of yn and hbjzj for
j = 1, . . . , i− 1.

If a convolutional subnetwork is adopted to model Ei(·) in equation 5, the most similar network
structure is the dense connections in DenseNets. To be specific, a growth in a dense block concate-
nates all the preceding layers as the input of convolutional subnetwork just like that hbizi uses yn

6

Under review as a conference paper at ICLR 2019

and all the increments in preceding stages as the input of Ei(·). For the purpose of adopting dense
block in ERKNets, the dense blocks must conform to the following rules.

Rule 1 The number of channels of yn is in the form of mk, where m and k are positive integers and
k is known as the growth rate in DenseNet literature. The dimension of yn is the multiplication of
the size of feature map and mk.

Rule 2 Every m successive growth constructs a convolutional subnetwork for Ei(·). Each subnet-
work outputs mk channels which are regarded as a group according to the number of channels of
yn. Each convolutional subnetwork concatenates yn and all the preceding groups as its input. The
ith group generated by the ith subnetwork corresponds to hbizi.

Rule 3 The total number of growth is ms, where s is number of stages of RK methods. Conse-
quently, s groups representing hbizi for i = 1, . . . , s are generated by s convolutional subnetworks
modeling Ei(·) for i = 1, . . . , s successively in a dense block.

Appending to a restricted dense block conforming to the above rules, yn and the groups hbizi for
i = 1, . . . , s are added to obtain yn+1 according to equation 2. Figure 2 illustrates one time-step of
ERKNet.

In DenseNets, every dense block together with part of the subsequent computation can be regarded
as a period using a s-stage ERK method with r = 1 time-step. The transition layers and the post-
processor contain the summation operation in equation 2. This gives an explanation of DenseNets
from the dynamical systems view.

3.3.2 CONNECT IRKNETS WITH CLIQUENETS

hbizi for IRK methods can be described by the equation below, according to equation 4.

hbizi = Hi (yn, hb1z1, . . . , hbszs)

= Gi (hb1z1, . . . , hbi−1zi−1, hbi+1zi+1, . . . , hbszs)

= Ii (hb1z1, . . . , hbi−1zi−1, vi+1, . . . , vs)

(6)

where

vj = Vj(hbjzj)

= Jj (yn, v1, . . . , vj−1) .
(7)

The above transformation first adjusts the coefficients of each parameter of Fi(·) in equation 4 from
aij to bj . It yields another function Hi(·). As a result, every hbizi is a function of yn. Thus, hbizi
can be denoted by a function of hbjzj for j = 1, . . . , s, j 6= i. This function is written as Gi(·).
Inspired by Newton method which is used to implement IRK methods (Butcher, 2008), hbizi is
initialized using all available information firstly and then updated alternately. Given vj is the initial
value of hbjzj , the relationship between them is denoted by the function Vj(·). Therefore, hbizi can
be denoted by a function of hbjzj for j = 1, . . . , i− 1 and vj for j = i+ 1, . . . , s. This function
is written as Ii(·). It is the update function of hbizi. Since every hbjzj is a function of yn, every vj

is also a function of yn. Thus, vj can be denoted by a function of yn and vq for q = 1, . . . , j − 1.
This function is written as Jj(·). It is the initialization function of hbjzj .

The update process is a sequence of iterations till convergence in Newton method. In other words,
vj is updated for many times to approach hbjzj . During updating, Gi(·) with the biased input is
used as the update function since Ii(·) is unknown. If using convolutional subnetwork to model
each Ii(·), these functions can be learned under the help of training. As a result, each vj needs to be
updated only once. Therefore, the computational cost is reduced remarkably.

If a convolutional subnetwork is adopted to model Jj(·) in equation 7 and Ii(·) in equation 6, the
most similar network structure is the clique block in CliqueNets. To be specific, a clique block is
composed of Stage-I and Stage-II in CliqueNet literature. Stage-I which initializes all layers in a
clique block is regarded as a sequence of Jj(·). Then, Stage-II for updating all layers alternately
corresponds to all Ii(·). In CliqueNet literature, all layers in a clique block except the top layer to
be updated are concatenated as the bottom layer, i.e. the input of a convolutional subnetwork for
updating. It is just like Ii(·) uses hbjzj for j = 1, . . . , i− 1 and vj for j = i+ 1, . . . , s as input.
In order to adopt clique block in IRKNets, the clique blocks must conform to the following rules.

7

Under review as a conference paper at ICLR 2019

yn yn

v1

identity

conv

s

yn+1yn

k channels

to grow k channels to

compose a group to

represent the initial value

of increment hbizi

yn

v1

v2

concatenate

v3

v1

v2

hb1z1

hb2z2

hb3z3

to update hbizi alternately by convolution

hb1z1

v2

v3

hb1z1

hb2z2

v3

yn

to initialize each hbizi

add

Figure 3: Architecture of one time-step in IRKNet using a 3-stage IRK method. yn is the approx-
imation of y(tn). A dense block, which is Stage-I of a clique block, grows k channels every time
to generate the initial value of each hbizi, written as vi. Here, h is time-step size, bi is coefficient
of IRK method, and zi is the slope of each stage in IRK method. In Stage-II of a clique block, the
convolutional subnetwork concatenating the current values of hbjzj for j = 1, . . . , 3, j 6= i to up-
date every hbizi alternately. An explicit summation layer is added after a clique block to complete
a time-step.

Rule 1 The number of channels of yn is k, which is the growth rate in Stage-I since Stage-I is a
dense block. The dimension of yn is the multiplication of the size of feature map and k.

Rule 2 Every growth in Stage-I constructs a convolutional subnetwork. Each subnetwork outputs k
channels which are regarded as a group according to the number of channels of yn. Each convolu-
tional subnetwork concatenates yn and all the preceding groups as its input. The ith group generated
by the ith subnetwork is vi.

Rule 3 The total number of growth in Stage-I is s, which is number of stages of RK methods. Con-
sequently, s groups representing vi for i = 1, . . . , s are generated by s convolutional subnetworks
successively in Stage-I. s should be larger than 1 for updating alternately in Stage-II.

Appending to a restricted clique block conforming to the above rules, yn and the groups hbizi for
i = 1, . . . , s are added to obtain yn+1 according to equation 2. Figure 3 illustrates one time-step of
IRKNet using a 3-stage IRK method as an example.

In CliqueNets, every clique block together with part of the subsequent computation can be regarded
as a period using a s-stage IRK method with r = 1 time-step. The transition layers and the post-
processor contain the summation operation in equation 2. This gives an explanation of CliqueNets
from the dynamical systems view.

4 EXPERIMENTS

To verify the theoretical properties of RK methods and evaluate the performance of RKNets on
image classification, experiments are conducted using the proposed network architectures. The ex-
perimental setup is described in Appendix A. Some extra techniques, including attentional transition,
bottleneck and multiscale feature strategy, can be adopted in RKNets following CliqueNets. They
are introduced in Appendix B.

8

Under review as a conference paper at ICLR 2019

Table 1: Test errors of ERKNets and IRKNets, evaluated on CIFAR-10 without data augmentation.
The growth rate k is 36 in every period of the RKNets. The times of successive growth in each stage,
m, is 1. The multiscale feature strategy is used. All the models are run with batchsize 64.

ERKNet FLOPs
(G)

Params
(M)

Error
(%)

IRKNet FLOPs
(G)

Params
(M)

Error
(%)

-6×1 6×1 6×1 0.66 0.74 7.08 -3×1 3×1 3×1 0.38 0.32 7.18
-7×1 6×1 6×1 0.83 0.83 7.02 -4×1 3×1 3×1 0.62 0.40 6.89
-7×1 7×1 6×1 0.87 0.91 6.67 -4×1 4×1 3×1 0.68 0.49 6.63
-7×1 7×1 7×1 0.88 0.99 6.61 -4×1 4×1 4×1 0.69 0.57 6.50

Table 2: Test errors evaluated on CIFAR and SVHN. k is growth rate. The multiscale feature
strategy is used in RKNets. A and B represent attentional transition and bottleneck respectively.
The bottleneck layers which output k channels to the following layers are used in IRKNets. C10 and
C100 stand for CIFAR-10 and CIFAR-100 respectively. ”+” indicates standard data augmentation.
When data augmentation is not used, dropout layers are added. The values with * are provided by
Huang et al. (2017). The values with † are provided by Kuen et al. (2017). The values with ? are
computed by ourselves. FLOPs and Params are calculated on CIFAR-10 or SVHN. RKNets are
run with batchsize 32 on CIFAR but run with batchsize 64 on SVHN. Results that outperform all
competing methods are bold and the overall best result is blue.

Model FLOPs
(G)

Params
(M)

C10
(%)

C10+
(%)

C100
(%)

C100+
(%)

SVHN
(%)

pre-act ResNet (He et al., 2016b) - 10.2 10.56* 4.62 33.47* 22.71 -

WRN (Zagoruyko & Komodakis, 2016) 3.10† 11.0 - 4.27 - 20.43 1.54
10.49† 36.5 - 4.00 - 19.25 -

DenseNet (Huang et al., 2017) 14.53? 27.2 5.83 3.74 23.42 19.25 1.59
10.83? 15.3 5.19 3.62 19.64 17.60 1.74
18.59? 25.6 - 3.46 - 17.18 -

Hamiltonian (Chang et al., 2018a) - 1.68 - 5.98 - 26.11 -

LM-architecture (Lu et al., 2018) - 1.7 - 5.27 - 22.9 -
- 68.8 - - - 16.79 -

CliqueNet (Yang et al., 2018) 9.45 10.14 5.06 - 23.14 - 1.51
10.56? 10.48? 5.06 - 21.83 - 1.64

IRKNet-5×1 5×1 5×1-AB (k=80) 2.17 1.40 5.27 4.23 24.35 21.77 1.74
IRKNet-5×1 5×1 5×1-A (k=80) 5.44 4.37 - - - - 1.63
IRKNet-5×1 5×1 5×1-AB (k=150) 7.62 4.87 4.60 3.60 21.39 19.42 1.64
IRKNet-6×1 6×1 6×1-A (k=80) 7.92 6.28 - - - - 1.52
IRKNet-5×1 5×1 5×1-AB (k=180) 10.98 6.99 4.56 - 20.88 18.61 -
IRKNet-5×1 5×1 5×1-AB (k=200) 13.55 8.63 - 3.54 20.67 18.11 -
IRKNet-5×1 5×1 5×1-AB (k=240) 19.51 12.41 - 3.40 20.58 - -

According to the theoretical results, an RK method with more stages usually has a higher order and
a lower truncation error. Therefore, as the number of stages increases, a more precise approximation
of the system states in every period leads to more accurate classification. Table 1 shows the number
of FLOPs and parameters and classification error on CIFAR-10 for RKNets with varying number of
stages in each period. The empirical results are consistent with the theoretical properties.

9

Under review as a conference paper at ICLR 2019

Table 3: Classification errors on ImageNet validation set with a single-crop (224×224). The growth
rate k is 32 and mk is the initial number of channels in each period in RKNets. mn stands for m in
the nth period. For each RKNet in this table, m0 is 2, m1 is 4 and m2 is 8. B represents bottleneck.
The bottleneck layers which output 4k channels to the following layers are used in ERKNets.

Model m3 FLOPs
(G)

Params
(M)

Top1 (%) Top5 (%)

ERKNet-3×1 3×1 3×1 1×1-B 16 5.20 6.95 25.47 7.81
ERKNet-3×1 3×1 4×1 2×1-B 20 6.35 14.49 24.12 7.17
ERKNet-3×1 3×1 6×1 2×1-B 28 8.50 25.51 23.14 6.66

Figure 4: Comparison of the DenseNets, CliqueNets and RKNets. The top-1 error rates (single-crop
testing) on the ImageNet validation dataset are shown as a function of learned parameters (left) and
FLOPs during test-time (right). RKNets compared here are the models shown in Table 3.

5 10 15 20 25 30

22

24

26

28

-121

-169

-201
-161 (k=48)

S0*

S1*
S2*

S2 S3*

S3

ERKNet-3×1 3×1 3×1 1×1-B

ERKNet-3×1 3×1 4×1 2×1-B

ERKNet-3×1 3×1 6×1 2×1-B ———-

#Parameters (M)

V
al

id
at

io
n

er
ro

r

DenseNets

CliqueNets

RKNets

4 6 8 10 12 14 16

22

24

26

28

-121

-169

-201
-161 (k=48)

S0*

S1*
S2*

S2 S3*

S3

ERKNet-3×1 3×1 3×1 1×1-B

ERKNet-3×1 3×1 4×1 2×1-B

ERKNet-3×1 3×1 6×1 2×1-B

#FLOPs (G)

V
al

id
at

io
n

er
ro

r

DenseNets

CliqueNets

RKNets

IRKNets are evaluated on CIFAR-10, CIFAR-100 and SVHN while ERKNets are evaluated on Im-
ageNet to compare with the state-of-the-art network models. The test errors of IRKNets on CIFAR-
10, CIFAR-100 and SVHN are shown in Table 2. The top-1 and top-5 errors on ImageNet validation
set with a single-crop (224×224) are shown in Table 3. Figure 4 shows the single-crop top-1 val-
idation errors of DenseNets, CliqueNets and RKNets as a function of the number of parameters
(left) and FLOPs (right). According to the experimental results, RKNets are more efficient than the
state-of-the-art models on CIFAR-10 and on par on CIFAR-100, SVHN and ImageNet.

5 CONCLUSION

We propose to employ a type of numerical ODE methods, the RK methods, to construct convolu-
tional neural networks for image classification tasks. The proposed network architecture can sys-
tematically generalize to high order. At the same time, we give a theoretical interpretation of the
DenseNet and CliqueNet via the dynamical systems view. The model constructed using the RK
methods is referred to as the RKNet, which can be converted from a DenseNet or CliqueNet by
enforcing theoretical constraints.

The experimental results validate the theoretical properties of RK methods and support the dynami-
cal systems interpretation. Moreover, the experimental results demonstrate that RKNets surpass the
state-of-the-art models on CIFAR-10 and are on par on CIFAR-100, SVHN and ImageNet.

With the help of the dynamical systems view and various numerical ODE methods including RK
methods, more general neural networks can be constructed. Many aspects of RKNets and the dy-
namical systems view still require further investigation. We hope this work inspires future research
directions.

10

Under review as a conference paper at ICLR 2019

REFERENCES

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2008.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In AAAI Conference on Artificial In-
telligence, 2018a.

Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. Multi-level residual net-
works from dynamical systems view. In International Conference on Learning Representations,
2018b.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems, 2018.

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, Mar 2017. ISSN 2194-671X. doi: 10.1007/s40304-017-0103-z. URL
https://doi.org/10.1007/s40304-017-0103-z.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Eldad Haber, Lars Ruthotto, Elliot Holtham, and Seong-Hwan Jun. Learning across scales - multi-
scale methods for convolution neural networks. arXiv preprint arXiv:1703.02009, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In The IEEE International Conference on
Computer Vision (ICCV), December 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016b.

Andrew G Howard. Some improvements on deep convolutional neural network based image classi-
fication. In International Conference on Learning Representations, 2014.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Jason Kuen, Xiangfei Kong, Gang Wang, and Yap-Peng Tan. Delugenets: Deep networks with
efficient and flexible cross-layer information inflows. In The IEEE International Conference on
Computer Vision (ICCV) Workshops, Oct 2017.

Qianxiao Li, Long Chen, Cheng Tai, and Weinan E. Maximum principle based algorithms for deep
learning. Journal of Machine Learning Research, 18(165):1–29, 2018. URL http://jmlr.
org/papers/v18/17-653.html.

Qianli Liao and Tomaso Poggio. Bridging the gaps between residual learning, recurrent neural
networks and visual cortex. arXiv preprint arXiv:1604.03640, 2016.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

11

https://doi.org/10.1007/s40304-017-0103-z
http://jmlr.org/papers/v18/17-653.html
http://jmlr.org/papers/v18/17-653.html

Under review as a conference paper at ICLR 2019

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-net: Learning PDEs from data. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3208–3216, Stock-
holmsmssan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.
mlr.press/v80/long18a.html.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 3276–3285, Stockholmsmssan, Stock-
holm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/
lu18d.html.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions. arXiv preprint arXiv:1801.06637, 2018.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017a.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part ii): Data-driven discovery of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10566, 2017b.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

Endre Sli and David F. Mayers. An Introduction to Numerical Analysis. Cambridge University
Press, 2003.

Bao Wang, Xiyang Luo, Zhen Li, Wei Zhu, Zuoqiang Shi, and Stanley J Osher. Deep learning with
data dependent implicit activation function. arXiv preprint arXiv:1802.00168, 2018.

Yi-Jen Wang and Chin-Teng Lin. Runge-kutta neural network for identification of dynamical sys-
tems in high accuracy. IEEE Transactions on Neural Networks, 9(2):294–307, 1998.

Yibo Yang, Zhisheng Zhong, Tiancheng Shen, and Zhouchen Lin. Convolutional neural networks
with alternately updated clique. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

12

http://proceedings.mlr.press/v80/long18a.html
http://proceedings.mlr.press/v80/long18a.html
http://proceedings.mlr.press/v80/lu18d.html
http://proceedings.mlr.press/v80/lu18d.html
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

Under review as a conference paper at ICLR 2019

A EXPERIMENTAL SETUP

The RKNets are evaluated on CIFAR-10, CIFAR-100, SVHN and ImageNet. The CIFAR-10 dataset
contains 60,000 color images of size 32 × 32 in 10 classes, with 5,000 training images and 1,000
test images per class. The CIFAR-100 is similar to the CIFAR-10 except that it has 100 classes
and 500 training images and 100 test images per class. The Street View House Numbers (SVHN)
dataset (Netzer et al., 2011) contains 32 × 32 colored digit images. There are 73,257 images in the
training set, 26,032 images in the test set, and 531,131 images for additional training. ImageNet,
which denotes the ILSVRC2012 classification dataset in this paper, consists of 1.28 million training
images and 50,000 validation images. It has 1,000 classes and 732 ∼ 1, 300 training images and 50
validation images per class.

The weights of convolution layer are initialized as in (He et al., 2015). A weight decay of 0.0001
and Nesterov momentum of 0.9 are used. The learning rate is set to 0.1 initially.

On both CIFAR and SVHN, the learning rate is divided by 10 at 50% and 75% of the training
procedure. Moreover, the weights of fully connected layer are using Xavier initialization (Glorot &
Bengio, 2010). For the cases without data augmentation, we add a dropout layer (Srivastava et al.,
2014) with dropout rate 0.2 after each convolution layer following (Huang et al., 2017; Yang et al.,
2018).

On CIFAR, the models are trained using stochastic gradient descent with a mini-batch size of 64 or
32 as required. A standard data augmentation scheme is adopted in some cases following (He et al.,
2016a). The models are trained for 300 epochs.

On SVHN, the models are trained using stochastic gradient descent with a mini-batch size of 64.
Following (Yang et al., 2018), we use all training samples without augmentation and divide images
by 255 for normalization. The models are trained for 40 epochs.

On ImageNet, the models are trained with a mini-batch size of 256 for 90 epochs. Scale and aspect
ratio augmentation in (Szegedy et al., 2015), the standard color augmentation in (Krizhevsky et al.,
2012) as well as the photometric distortions in (Howard, 2014) are adopted. The learning rate is
divided by 10 every 30 epochs.

B EXTRA TECHNIQUES

The attentional transition is a channelwise attention mechanism in transition layers, following the
method proposed in (Yang et al., 2018). In attentional transition, the filters are globally averaged
after the convolution in transition firstly. Then, two fully connected (FC) operations are conducted.
The first FC layer has half of the filters and is activated by a ReLU function. The second FC layer
has the same number of filters and is activated by a sigmoid function. At last, the output of the
second FC layer acts on the output of the convolution by filter-wise multiplication. The bottleneck
layer is a 1×1 convolution layer which is placed before each 3×3 convolution layer in periods. The
multiscale feature strategy is a mechanism in the postprocessor to collect outputs from all the periods
but not only from the last period.

13

	Introduction
	Related work
	RKNets
	Runge-Kutta methods
	From RK methods to RKNets
	ERKNets and IRKNets
	Connect ERKNets with DenseNets
	Connect IRKNets with CliqueNets

	Experiments
	Conclusion
	Experimental setup
	Extra techniques

