CONVOLUTIONAL NEURAL NETWORKS COMBINED WITH RUNGE-KUTTA METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

A convolutional neural network for image classification can be constructed mathematically since it is inspired by the ventral stream in visual cortex which can be regarded as a multi-period dynamical system. In this paper, a novel approach is proposed to construct network models from the dynamical systems view. Since a pre-activation residual network can be deemed an approximation of a time-dependent dynamical system using the Euler method, higher order Runge-Kutta methods (RK methods) can be utilized to build network models in order to achieve higher accuracy. The model constructed in such a way is referred to as the Runge-Kutta Convolutional Neural Network (RKNet). RK methods also provide an interpretation of Dense Convolutional Networks (DenseNets) and Convolutional Neural Networks with Alternately Updated Clique (CliqueNets) from the dynamical systems view. The proposed methods are evaluated on the benchmark datasets: CIFAR-10/100 and ImageNet. The experimental results are consistent with the theoretical properties of RK methods and support the dynamical systems interpretation. Moreover, the experimental results show that the RKNets are superior to the state-of-the-art network models on CIFAR-10 and be comparable with them on CIFAR-100 and ImageNet.

1 INTRODUCTION

Residual Networks (ResNets) which are feed-forward network models with skip connections have achieved great success on several vision benchmarks in 2015 (He et al., 2016a). Recently, researchers have studied the relations among ResNets, the primate visual cortex and dynamical systems. The proposed multi-state time-invariant recurrent networks that reflect the multi-stage processing in the primate visual cortex achieve competitive performance as very deep residual networks (Liao & Poggio, 2016). On the other hand, there are some efforts focusing on the connections between ResNets and dynamical systems [E, 2017; Haber et al., 2017; Chang et al., 2018b; Lu et al., 2018]. Euler method, a first-order RK method, has been employed to explain ResNets with full pre-activation (He et al., 2016b) from the dynamical systems view (Haber et al., 2017; Chang et al., 2018b). In addition, some improvements on network architecture based on ordinary differential equations (ODEs) are proposed (Chang et al., 2018a; Lu et al., 2018). However, they only use some special linear multi-step methods (LM methods) with low order. There is no systematic generalization to high order. Nevertheless, the higher-order method can achieve a lower truncation error. Since the lower truncation error makes a significant contribution to higher accuracy, it is necessary to study a network architecture for systematic generalization to high order.

If the ventral stream in the visual cortex is deemed several time-dependent dynamical systems, there should be a series of ODEs to describe these systems. Runge-Kutta methods (RK methods) are widely-used procedures to solve ODEs in numerical analysis (Butcher, 2008). They are also the building blocks of high-order LM methods. Consequently, these methods can be used to build network models for visual processing.

The neural network community has long been aware of the numerical methods for dynamical systems. Runge-Kutta Neural Network (RKNN) is proposed for identification of unknown dynamical systems in high accuracy (Wang & Lin, 1998), but it has not been used to model the visual system nor been extended to convolutional networks. Moreover, RKNNs adopt the specific RK methods by indicating the every coefficient for the RK methods. Thus, it is hard to apply very high order RK
methods in RKNNs. In addition, the time-step size need to be prespecified. Hence, RKNN cannot be used in the task where the time is unknown such as image classification. On the contrary, we learn all the coefficients and time-step sizes implicitly by training to avoid these difficulties. As a result, one of the major contributions of the paper is a novel and effective neural network architecture inspired by the RK methods. Furthermore, this architecture can systematic generalize network model to arbitrary high order.

In order to apply RK methods to the image classification problem, three assumptions are made throughout the paper. Firstly, the image classification procedure is multi-period corresponding to the several visual areas in the ventral stream. Secondly, each period in classification process is modeled by a time-dependent first-order dynamical system. Thirdly, there is no connection among non-adjacent periods. In other words, the connections among non-adjacent visual areas are ignored. Based on these assumptions, a novel network model called RKNet is proposed.

In an RKNet, a period is composed of the iteration of time-steps. A particular RK method is adopted throughout the time-steps in a period to approximate the system state. RK methods have several stages within a time-step and utilize the ODE to calculate the increment in each step. In an RKNet, the increment is approximated by a convolutional subnetwork due to the versatility of neural networks on approximation.

Another contribution of this paper is a theoretical interpretation of DenseNets and CliqueNets from the dynamical systems view. The dense connection in DenseNet resembles the relationship among increments in the stages in explicit RK methods (ERK methods). Similarly, the clique block in CliqueNets resembles the relationship among increments in the stages in implicit RK methods (IRK methods). Under some conditions, DenseNets and CliqueNets can be formulated as approximating dynamical systems using multi-stage RK methods. We also propose a method to convert a DenseNet to an explicit RKNet (ERKNet) and a method convert a CliqueNet to an implicit RKNet (IRKNet). Furthermore, DenseNets and CliqueNets have only one time-step in each period, whereas RKNNs are more general and can have multiple time-steps in each period.

We evaluate the performance of RKNNs on benchmark datasets including CIFAR-10, CIFAR-100 (Krizhevsky 2009) and ILSVRC2012 classification dataset (Russakovsky et al. 2015). Experimental results show that both ERKNNs and IRKNNs conform to the mathematical properties and IRKNNs surpass ERKNNs in terms of efficiency. Additionally, RKNNs achieve higher accuracy than the state-of-the-art network models on CIFAR-10 and comparable accuracy on CIFAR-100 and ImageNet.

The rest of the paper is organized as follows. The related work is reviewed in Section 2. The architecture of RKNNs, the dynamical systems interpretation of DenseNets and CliqueNets, and the conversion from them to RKNNs are described in Section 3. The performance of RKNNs is evaluated in Section 4. The conclusion and future work is described in Section 5.

2 RELATED WORK

ResNets have gained much attention over the past few years since they have obtained impressive performance on many challenging image tasks, such as ImageNet (Russakovsky et al. 2015) and COCO object detection (Lin et al. 2014). ResNets are deep feed-forward networks with the shortcuts as identity mappings. ResNets with pre-activation can be regarded as an unfolded shallow RNN, which implements a discrete dynamical system (Liao & Poggio 2016). This dynamical system represents the processing of visual information through the ventral stream of the primate visual cortex. The ventral stream is associated with visual perception and passes several visual areas, i.e. V1, V2, V4, IT (Goodale & Milner 1992). Each visual area can be considered a processing period. Some biologically plausible multi-state recurrent networks corresponding to the multi-stage processing in the ventral stream have been evaluated on CIFAR-10 (Liao & Poggio 2016). Note that the state and stage in their paper both denote period. The paper (Liao & Poggio 2016) provides a novel point of view for explaining pre-activation ResNets via neuroscience and dynamical systems.

Recently, more work has emerged to connect dynamical systems with deep learning (E, 2017) or ResNets in particular (Haber et al. 2017; Chang et al. 2018a,b; Li et al. 2018; Long et al. 2018; Lu et al. 2018; Wang et al. 2018). The paper (E, 2017) proposes ideas about using continuous dynamical systems as a tool for machine learning. The paper (Chang et al. 2018a) proposes three reversible
architectures based on ResNets and ODE systems. The paper (Chang et al., 2018b) proposes a novel method for accelerating ResNets training based on the interpretation of ResNets from dynamical systems view in (Haber et al., 2017). The paper (Li et al., 2018) presents a training algorithm which can be used in the context of ResNets. The paper (Lu et al., 2018) proposes a 2-step architecture based on ResNets. In addition, research combining dynamical system identification and RK methods with neural networks for scientific computing has emerged recently (Raissi et al., 2017a,b; Raissi, 2018), introducing physics informed neural networks with automatic differentiation.

DenseNets (Huang et al., 2017) are the state-of-the-art network models after ResNets. The dense connection is the main difference from the previous models. There are direct connections from a layer to all subsequent layers in a dense block in order to allow better information and gradient flow. There is no interpretation of DenseNets from dynamical systems view yet.

CliqueNets (Yang et al., 2018) are the state-of-the-art network models based on DenseNets. They adopt the alternately updated clique blocks to incorporate both forward and backward connections between any two layers in the same block. There is no interpretation of CliqueNets from dynamical systems view either.

Given that a visual area can be thought of as a time-dependent dynamical system, there should be a set of ODEs that describes this system. Consequently, mathematical tools could be employed to construct network models. RK methods are commonly used to solve ODEs in numerical analysis (Butcher, 2008). Note that the Euler method used in (Chang et al., 2018b; Haber et al., 2017) is a first-order RK method. Higher order RK methods can achieve lower truncation error. Moreover, these methods are usually the building blocks of high-order LM methods. Therefore, RK methods are ideal tools to construct network models from dynamical systems view.

RK methods have been adopted to construct neural networks, which are known as RKNN, for identification of unknown dynamical systems described by ODEs (Wang & Lin, 1998). In that paper, neural networks are classified into two categories: (1) a network that directly learns the state trajectory of a dynamical system is called a direct-mapping neural network (DMNN); (2) a network that learns the rate of change of system states is called a RKNN. Hence, AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy et al., 2015) and ResNet (He et al., 2016a) all belong to DMNNs. Specifically, the original ResNet (He et al., 2016a) is a DMNN because of the ReLU layer after the addition operation. As a result, the ResNet building block learns the state trajectory directly, not the rate of change of the system states. On the contrary, a ResNet with pre-activation (He et al., 2016b) is an RKNN.

RKNNs are proposed to eliminate several drawbacks of DMNNs, such as the difficulty in obtaining high accuracy for the multi-step prediction of state trajectories. It has been shown theoretically and experimentally that the RKNN has higher prediction accuracy and better generalization capability than the conventional DMNN (Wang & Lin, 1998).

Therefore, it is reasonable to believe that RK methods can be adopted to design effective network architectures for image classification problems. Additionally, the RK methods might improve the performance of image classification since the convolutional subnetworks are able to approximate the rate of change of the dynamical system states more precisely.

3 RKNNs

3.1 Runge-Kutta Methods

An initial value problem for a time-dependent first-order dynamical system can be described by the following ODE (Butcher, 2008):

$$\frac{dy}{dt} = f(t, y(t)), \quad y(t_0) = y_0.$$ (1)

where y is a vector representing the system state. The dimension of y should be equal to the dimension of the dynamical system. The ODE represents the rate of change of the system states. The rate of change is a function of time and the current system state. RK methods utilize the rate of change calculated from the ODE to approximate the increment in each time-step, and then obtain the predicted final state at the end of each step. RK methods are numerical methods originated from
Euler method. There are two types of RK methods: explicit and implicit. Both of them are employed in the RKNet. The family of RK methods is given by the following equations (Sli & Mayers [2003]):

\[y_{n+1} = y_n + h \sum_{i=1}^{s} b_i z_i, \quad t_{n+1} = t_n + h, \]

(2)

where

\[z_i = f \left(t_n + c_i h, y_n + h \sum_{j=1}^{s} a_{ij} z_j \right), \quad 1 \leq i \leq s. \]

(3)

In equation 2, \(y_{n+1} \) is an approximation of the solution to equation 1 at time \(t_{n+1} \), i.e. \(y(t_{n+1}) \); \(y_0 \) is the input initial value; \(h \sum_{i=1}^{s} b_i z_i \) is the increment of system state \(y \) from \(t_n \) to \(t_{n+1} \); \(\sum_{i=1}^{s} b_i z_i \) is the estimated slope which is the weighted average of the slopes \(z_i \) computed in different stages. The positive integer \(s \) is the number of \(z_i \), i.e. the number of stages of the RK method. The equation 3 is the general formula of \(z_i \). \(h \) is the time-step size which can be adaptive for different time-steps but must be fixed across stages within a time-step.

In numerical analysis, \(s \), \(a_{ij} \), \(b_i \) and \(c_i \) in equation 2 and equation 3 need to be prespecified for a particular RK method. These coefficients are displayed in a Butcher tableau. The ERK methods are those methods with \(a_{ij} = 0 \) when \(1 \leq i \leq j \leq s \). All the RK methods other than ERK methods are IRK methods. The algebraic relationships of the coefficients have to meet the order conditions to reach the highest possible order. Different RK methods have different truncation errors which are denoted by the order: an order \(p \) indicates that the local truncation error is \(O(h^{p+1}) \). If a \(s \)-stage ERK method has order \(p \), then \(s \geq p \); if \(p \geq 5 \), then \(s > p \) (Butcher, 2008). Furthermore, a \(s \)-stage IRK method can has order \(p = 2s \) when its coefficients are chosen under some conditions (Butcher, 2008). Therefore, more stages may achieve higher orders, i.e. lower truncation errors. The Euler method is a one-stage first-order RK method. In other words, high-order RK methods can be expected to achieve lower truncation errors than Euler method. Thus, the goal of our proposed RKNets is to improve the classification accuracy by taking advantage of high-order RK methods.
It is necessary to specify h in order to control the error of approximation in common numerical analysis. The varying time-step size can be adaptive to the regions with different rates of change. The truncation error is lower when the h is smaller.

3.2 FROM RK METHODS TO RKNETS

There are three components of RKNets: the preprocessor, the multi-periods and the postprocessor. The preprocessor manipulates the raw images and passes the results to the first period; it mainly simulates the transmission of visual information from the eyes to the visual cortex. The postprocessor deals with the output from the last period or all the periods while adopting multiscale feature strategy. Then, it passes the result to the classifier to make a decision. The periods between those two components are divided by the transition layers. These periods can be modeled by time-dependent dynamical systems which are assumed to represent the visual areas in the ventral stream of visual cortex. Some RKNets have only three periods while there are four visual areas in the ventral stream. They could be thought of as fusing the four dynamical systems into three periods. Each period of an RKNets is divided into r time-steps as shown in Figure 1. RK methods approximate the final state of every time-step using the rate of change of the system state. Some guiding principles when applying RK methods to RKNets are listed as follows.

Firstly, dimensionality reduction is often carried out to simplify the system identification issue, when the dimension of real dynamical system is too high. The dimension of y in each period in RKNets is predefined as the multiplication of the size of feature map and the number of channels at the beginning of a period. The dimensions of y in the same periods of different RKNets can be different due to various degrees of dimensionality reduction. Nevertheless, the dimension of y is consistent within a period.

Secondly, given that there is no explicit ODE for image classification, a convolutional subnetwork is employed to approximate the increment in each time-step. The number of neurons in each hidden layer can be more than the dimension of y.

Thirdly, the number of stages s in each period is predefined in RKNets but the other coefficients, a_{ij}, b_i and c_i in equation 2 and equation 3 are learned by training. Due to the order conditions, the relationships among the coefficients are more important than the specific value of any individual coefficient. Hence, the coefficients are learned implicitly but not as explicit parameters. The optimal relationship among the coefficients with a highest possible order is obtained after training.

Lastly, the number of time-steps r in each period is predefined in RKNets, but step size h is learned by training. n in equation 2 and equation 3 is limited to the range $[0, r)$. The learned h is thus considered adaptive. In theory, the adaptive time-step size can achieve higher accuracy.

A variety of RK methods can be adopted in the different periods of RKNets, but the same RK method is used for all time-steps within one period in an RKNet. The network models are named after the specific method in each period, such as RKNet-$3 \times 2 \times 4 \times 1 \times 2 \times 5 \times 1 \times 1$. The suffix in the name of an RKNets is composed of several $s \times r$ terms; each stands for the method in corresponding period. The number of such terms equals the total number of periods. s or r can vary in different periods. For example, RKNet-$3 \times 2 \times 4 \times 1 \times 2 \times 5 \times 1 \times 1$ has four periods: period one has 2 time-steps and each step has 3 stages; period two has 1 time-step and it has 4 stages; period three has 5 time-steps and each step has 2 stages; period four has 1 time-step and it has 1 stage. We use this notation throughout this paper. In addition, ERKNETs only adopt ERK methods. On the contrary, IRKNETs only adopt IRK methods.

Given an RKNets model, s and r can be modified to construct more variants with the same dimensions in the corresponding periods. In other words, s and r control depth of the network while dimensionality reduction controls the width of the network. More stages, more time-steps and larger dimensions usually lead to higher classification accuracy. However, the complexity of an ODE increases with the increase of dimensions. As a result, the convolutional subnetwork which approximates the increment in a time-step need be more complex for larger dimensions. Hence, the accuracy is also associated with the matching degree of the dimension and the convolutional subnetwork. The unmatched high-dimensional network model may have lower accuracy. Additionally, the training method might affect the classification accuracy too.
Figure 2: Architecture of one time-step in ERKNet using an s-stage ERK method. y_n is the approximation of $y(t_n)$. The convolutional subnetwork concatenates the output m times to the input at a growth rate of k to generate each $hb_i z_i$. Here, h is time-step size, b_i is coefficient of ERK method, and z_i is the slope of each stage. The convolutional subnetwork concatenating ms times forms a dense block. An explicit summation layer is added after a dense block to complete a time-step.

3.3 ERK Nets and IRK Nets

In this section, we introduce the architecture of RKNets. As shown in equation 2, the sum of $hb_i z_i$ represents the increment in a time-step. It is crucial to approximate this increment in RKNet. For the purpose of constructing an RKNet, $hb_i z_i$ can be described as follows according to equation 3:

$$\begin{align*}
hb_i z_i &= e_i (y_n, ha_{i1} z_1, \ldots, ha_{i(i-1)} z_{i-1}) \\
&= E_i (y_n, hb_1 z_1, \ldots, hb_{i-1} z_{i-1}), & i > 1.
\end{align*}$$

The above transformation first changes the explicit dependence on the time in equation 3 to an implicit one. Since the time parameter $t_n + c_i h$ is different for the different stages, it can be absorbed into $f_i(\cdot)$, which implicitly depends on time for stage i. Afterward, the summation in the input parameter of $f_i(\cdot)$ is split into separate terms. $F_i(\cdot)$ denotes the function of these terms for each stage. We verify that $F_i(\cdot)$ can equal to $f_i(\cdot)$ after training by experiment though $F_i(\cdot)$ is more expressive than $f_i(\cdot)$ in expression. Additionally, $F_i(\cdot)$ is more memory efficient than $f_i(\cdot)$ because of saving the storage for the summation inputted to $f_i(\cdot)$.

3.3.1 Connect ERK Nets with Dense Nets

In order to construct ERK Nets, $hb_i z_i$ can be described by the equation below, according to equation 4:

$$
\begin{align*}
hb_i z_i &= h b_i f \left(t_n + c_i h, \ y_n + h \sum_{j=1}^{s} a_{ij} z_j \right) \\
&= f_i \left(y_n + h \sum_{j=1}^{s} a_{ij} z_j \right) \\
&= F_i (y_n, hb_1 z_1, \ldots, hb_{i-1} z_{i-1}), & i > 1.
\end{align*}
$$

The above transformation first eliminates $ha_{ij} z_j$ ($i \leq j$) since $a_{ij} = 0$ when $1 \leq i \leq j \leq s$ for ERK methods. After that, adjusting the coefficients of each parameter from a_{ij} to b_j yields another function $E_i(\cdot)$.

[Figure 2: Architecture of one time-step in ERKNet using an s-stage ERK method. y_n is the approximation of $y(t_n)$. The convolutional subnetwork concatenates the output m times to the input at a growth rate of k to generate each $hb_i z_i$. Here, h is time-step size, b_i is coefficient of ERK method, and z_i is the slope of each stage. The convolutional subnetwork concatenating ms times forms a dense block. An explicit summation layer is added after a dense block to complete a time-step.]
If a convolutional subnetwork is adopted to model $E_i(\cdot)$ in equation [5] the most similar network structure is the dense connections in DenseNets. However, the dense blocks must conform to the following rules in ERKNets.

Rule 1 The number of channels of y_n is in the form of mk, where m and k are positive integers and k is known as the growth rate in DenseNet literature. The dimension of y_n is the multiplication of the size of feature map and mk.

Rule 2 The mk channels grown after m successive growth are regarded as a group. The ith group corresponds to $hb_i z_i$.

Rule 3 The total number of growth is ms, where s is number of stages of RK methods.

In the end, y_n and the groups $hb_i z_i$ for $i = 1, \ldots, s$ are added to obtain y_{n+1}. Figure [2] illustrates one time-step of ERKNet.

In DenseNets, every dense block together with part of the subsequent computation can be regarded as a period using a s-stage ERK method with $r = 1$ time-step. The transition layers and the post-processor contain the summation operation in equation [6]. This gives an explanation of DenseNets from the dynamical systems view.

3.3.2 Connect IRK Nets with Clique Nets

$hb_i z_i$ for IRK methods can be described by the equation below, according to equation [4]

$$
hb_i z_i = H_i (y_n, hb_1 z_1, \ldots, hb_s z_s) = I_i (hb_1 z_1, \ldots, hb_{i-1} z_{i-1}, hb_{i+1} z_{i+1}, \ldots, hb_s z_s).
$$

Firstly, adjusting the coefficients of each parameter from a_{ij} to b_j yields another function $H_i(\cdot)$. As a result, every $hb_i z_i$ is a function of y_n and itself. Thus, $hb_i z_i$ can be denoted by a function of the increments in all stages except itself. This function is written as $I_i(\cdot)$.

If a convolutional subnetwork is adopted to model $I_i(\cdot)$ in equation [6] the most similar network structure is the clique block in CliqueNets. However, the clique blocks must conform to both the three rules written in Section [3.3.1] and the following rule in IRK Nets.
Table 1: Test errors of ERK Nets and IRK Nets, evaluated on CIFAR-10 without data augmentation. The growth rate k is 36 in every period of the RK Nets. The times of successive growth in each stage, m, is 1. The multiscale feature strategy is used. All the models are run with batchsize 64.

<table>
<thead>
<tr>
<th>ERKNet</th>
<th>FLOPs (G)</th>
<th>Params (M)</th>
<th>Error (%)</th>
<th>IRKNet</th>
<th>FLOPs (G)</th>
<th>Params (M)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6×1_6×1_6×1</td>
<td>0.66</td>
<td>0.74</td>
<td>7.08</td>
<td>-3×1_3×1_3×1</td>
<td>0.38</td>
<td>0.32</td>
<td>7.18</td>
</tr>
<tr>
<td>-7×1_6×1_6×1</td>
<td>0.83</td>
<td>0.83</td>
<td>7.02</td>
<td>-4×1_3×1_3×1</td>
<td>0.62</td>
<td>0.40</td>
<td>6.89</td>
</tr>
<tr>
<td>-7×1_7×1_6×1</td>
<td>0.87</td>
<td>0.91</td>
<td>6.67</td>
<td>-4×1_4×1_3×1</td>
<td>0.68</td>
<td>0.49</td>
<td>6.63</td>
</tr>
<tr>
<td>-7×1_7×1_7×1</td>
<td>0.88</td>
<td>0.99</td>
<td>6.61</td>
<td>-4×1_4×1_4×1</td>
<td>0.69</td>
<td>0.57</td>
<td>6.50</td>
</tr>
</tbody>
</table>

Rule 4 The times of successive growth in each stage, m, is 1 in IRK Nets to avoid the too complicated models.

After the function relationship among every $h_{bi}z_i$ is updated alternately, y_n and the groups $h_{bi}z_i$ for $i = 1, \ldots, s$ are added to obtain y_{n+1}. Figure 3 illustrates one time-step of IRK Net.

In CliqueNets, every clique block together with part of the subsequent computation can be regarded as a period using a s-stage IRK method with $r = 1$ time-step. The transition layers and the post-processor contain the summation operation in equation 2. This gives an explanation of CliqueNets from the dynamical systems view.

4 EXPERIMENTS

To verify the theoretical properties of RK methods and evaluate the performance of RK Nets on image classification, experiments are conducted using the proposed network architectures.

4.1 EXPERIMENTAL SETUP

The RK Nets are evaluated on CIFAR-10, CIFAR-100 and ImageNet. The CIFAR-10 dataset contains 60,000 color images of size 32×32 in 10 classes, with 5,000 training images and 1,000 test images per class. The CIFAR-100 is similar to the CIFAR-10 except that it has 100 classes and 500 training images and 100 test images per class. ImageNet, which denotes the ILSVRC2012 classification dataset in this paper, consists of 1.28 million training images and 50,000 validation images. It has 1,000 classes and 732~1,300 training images and 50 validation images per class.

The weights of convolution layer are initialized as in [He et al., 2015]. A weight decay of 0.0001 and Nesterov momentum of 0.9 are used. The learning rate is set to 0.1 initially.

On CIFAR-10 and CIFAR-100, the weights of fully connected layer are using Xavier initialization (Glorot & Bengio, 2010). The models are trained using stochastic gradient descent with a mini-batch size of 64 or 32 as required. No data augmentation is used. The models are trained for 300 epochs and the learning rate is divided by 10 at epoch 150 and 225.

On ImageNet, the models are trained with a mini-batch size of 256 for 90 epochs. Scale and aspect ratio augmentation in (Szegedy et al., 2015), the standard color augmentation in (Krizhevsky et al., 2012) as well as the photometric distortions in (Howard, 2014) are adopted. The learning rate is divided by 10 every 30 epochs.

4.2 EXPERIMENTAL RESULTS

RK Nets constructed as what are described in Section 3.3 are evaluated. Some extra techniques, including attentional transition, bottleneck and multiscale feature strategy, can be adopted in RK Nets following CliqueNets. The attentional transition is a channelwise attention mechanism in transition layers, following the method proposed in (Yang et al., 2018). In attentional transition, the filters are globally averaged after the convolution in transition firstly. Then, two fully connected (FC) operations are conducted. The first FC layer has half of the filters and is activated by ReLU function. The second FC layer has the same number of filters and is activated by Sigmoid function. At last,
Table 2: Test errors evaluated on CIFAR without data augmentation. k is growth rate. The multiscale feature strategy is used in RKNets. A and B represent attentional transition and bottleneck respectively. The bottleneck layers which output k channels to the following layers are used in IRKNets. The values with \ast are computed by ourselves. All the RKNets are run with batchsize 32. Results that surpass all competing methods are **bold** and the overall best result is **blue**.

<table>
<thead>
<tr>
<th>Model</th>
<th>k</th>
<th>FLOPs (G)</th>
<th>Params (M)</th>
<th>CIFAR-10 (%)</th>
<th>CIFAR-100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DenseNet-BC (Depth = 250)</td>
<td>24</td>
<td>10.83</td>
<td>15.3</td>
<td>5.19</td>
<td>19.64</td>
</tr>
<tr>
<td>CliqueNet ($T = 18$) (Yang et al., 2018)</td>
<td>80</td>
<td>9.45</td>
<td>10.14</td>
<td>5.06</td>
<td>23.14</td>
</tr>
<tr>
<td>CliqueNet-ABC ($T = 30$) (Yang et al., 2018)</td>
<td>150</td>
<td>10.56</td>
<td>10.48</td>
<td>5.06</td>
<td>21.83</td>
</tr>
<tr>
<td>IRKNet-5×1,5×1,5×1-AB (Ours)</td>
<td>150</td>
<td>7.62</td>
<td>4.87</td>
<td>4.60</td>
<td>21.63</td>
</tr>
<tr>
<td>IRKNet-5×1,5×1,5×1-AB (Ours)</td>
<td>180</td>
<td>10.98</td>
<td>6.99</td>
<td>4.56</td>
<td>21.09</td>
</tr>
</tbody>
</table>

Table 3: Classification errors on ImageNet validation set with a single-crop (224×224). The growth rate k is 32 and mk is the initial number of channels in each period in RKNets. m_n stands for m in the nth period. For each RKNet in this table, m_0 is 2, m_1 is 4 and m_2 is 8. B represents bottleneck. The bottleneck layers which output $4k$ channels to the following layers are used in ERKNets.

<table>
<thead>
<tr>
<th>Model</th>
<th>m_3</th>
<th>FLOPs (G)</th>
<th>Params (M)</th>
<th>Top1 (%)</th>
<th>Top5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERKNet-3×1,3×1,3×1,1×1-B</td>
<td>16</td>
<td>5.20</td>
<td>6.95</td>
<td>25.47</td>
<td>7.81</td>
</tr>
<tr>
<td>ERKNet-3×1,3×1,4×1,2×1-B</td>
<td>20</td>
<td>6.35</td>
<td>14.49</td>
<td>24.12</td>
<td>7.17</td>
</tr>
<tr>
<td>ERKNet-3×1,3×1,6×1,2×1-B</td>
<td>28</td>
<td>8.50</td>
<td>25.51</td>
<td>23.14</td>
<td>6.66</td>
</tr>
</tbody>
</table>

the output of the second FC layer acts on the output of the convolution by filter-wise multiplication. The bottleneck layer is a 1×1 convolution layer which is placed before each 3×3 convolution layer in periods. The multiscale feature strategy is a mechanism in the postprocessor to collect outputs from all the periods but not only from the last period.

According to the theoretical results, an RK method with more stages usually has a higher order and a lower truncation error. Therefore, as the number of stages increases, a more precise approximation of the system states in every period leads to more accurate classification. In addition, an IRK method can have a higher order and a lower truncation error with less stages than an ERK method. Table 1 shows the number of FLOPs and parameters and classification error on CIFAR-10 for RKNets with varying number of stages in each period. The empirical results are consistent with the theoretical properties and show that IRKNets are more efficient than ERKNets on FLOPs and parameters.

IRKNet-5×1,5×1,5×1-AB are evaluated on CIFAR-10 and CIFAR-100 while ERKNet-5×1,5×1,5×1-AB are evaluated on ImageNet to compare with the state-of-the-art network models. The test errors of IRKNet-5×1,5×1,5×1-AB on CIFAR-10 and CIFAR-100 are shown in Table 2. The top-1 and top-5 errors on ImageNet validation set with a single-crop (224×224) are shown in Table 3. Figure 4 shows the single-crop top-1 validation errors of DenseNets, CliqueNets and RKNets as a function of the number of parameters (left) and FLOPs (right). According to the experimental results, RKNets are more efficient than the state-of-the-art models on CIFAR-10 and are on par with the state-of-the-art models on CIFAR-100 and ImageNet.

5 Conclusions

We propose to employ a type of numerical ODE methods, the RK methods, to construct convolutional neural networks for image classification tasks. The proposed network architecture can systematically generalize to arbitrary high order. At the same time, we give a theoretical interpretation of the DenseNet and CliqueNet via the dynamical systems view. The model constructed using the RK methods is referred to as the RKNet, which can be converted from a DenseNet or CliqueNet by enforcing theoretical constraints.
The experimental results validate the theoretical properties of RK methods and support the dynamical systems interpretation. Moreover, the experimental results demonstrate that RKNets surpass the state-of-the-art models on CIFAR-10 and are comparable with them on CIFAR-100 and ImageNet.

With the help of the dynamical systems view and various numerical ODE methods including RK methods, more general neural networks can be constructed. Many aspects of RKNets and the dynamical systems view still require further investigation. We hope this work inspires future research directions.

REFERENCES

