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Abstract

The main goal of goal-conditioned RL (GCRL) is to learn actions that maximize
the conditional probability of achieving the desired goal from the current state.
To improve sample efficiency, GCRL utilizes either 1) imitation learning with
expert demonstrations or 2) supervised learning with self-imitation, denoted goal-
conditioned RL with supervised learning (GCRL-SL). The GCRL-SL algorithms
directly estimate the probability of actions (A = a) given the current state (S = s),
and a future, observed goal (G = g) from batch data generated under a behavior
policy. Subsequently, the optimal action maximizes an estimate of P (A | S =
s,G = g). One crucial insight missing from empirical and theoretical work on
GCRL relates to the causal interpretation of the policy learned by GCRL algorithms.
In this study, we begin exploring a crucial question for ensuring safe and robust
decision-making: What causal biases arise in the GCRL training process and
when can these causal biases lead to a poor policy? Our theoretical and empirical
analysis demonstrates that GCRL algorithms can result in learning poor policies
when the training data follows particular causal graphs. This issue is particularly
problematic when implementing GCRL in environments with potential unmeasured
confounding, as often encountered in healthcare and mobile health applications.

1 Introduction

In the field of goal-conditioned policy training, several methods based on imitation learning have been
proposed to enhance sample efficiency [20, 21, 10, 4]. Incorporating imitation into goal-conditioned
reinforcement learning (GCRL) has demonstrated significant effectiveness [11]. Without loss of
generality, the first step involves collecting a dataset of demonstrations performed by an expert. These
demonstrations consist of state-action pairs that result in a desired goal (e.g., high final reward) in a
given environment. Using the batch data consisting of expert demonstrations, the imitation learning
based GCRL algorithm then attempts to learn a policy that can replicate the observed behavior.

When obtaining an adequate number of expert demonstrations is challenging, self-imitation learning
has proven to be a useful alternative in GCRL [25, 14, 36, 22]. Including the future information in the
training process, such as the observed final state or the reward-to-go, makes any trajectory suited for
learning even without expert demonstrations. Recent work has highlighted the potential effectiveness
of formulating RL objectives as supervised learning problems with self-imitation [15, 7, 13]. We
denote the family of GCRL algorithms which rely on self-imitation as goal conditioned RL with
Supervised Learning (GCRL-SL). GCRL-SL algorithms learn, from a batch of data collected under a
behavior policy, the conditional distribution of actions (A = a) given states (S = s) and future goals
(G = g), that is, P (A | S = s,G = g). The GCRL-SL policy then selects the action that maximizes
the learned conditional distribution of actions given the current state and a desired goal. Conditioning
can be on a goal state [9, 11, 24, 15, 23, 13] or on reward values [19, 31, 7].
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One key insight missing from both empirical and theoretical work in this domain is if, and when,
the training process employed by GCRL causes selection bias — a central problem for valid causal
inference. Selection bias can occur when trajectories are preferentially chosen from the data [33].
More generally, selection bias results from conditioning on a collider variable [5, 16, 17]. When
conditioned on, colliders introduce spurious associations between otherwise unrelated variables with
a common descendant [26]. The unblocked extraneous information between parents of a collider
could result in an agent learning a poor policy (policy based on spurious associations), which affects
the achieved return. This type of bias cannot be removed with large amount of data.

In this work, we start to investigate a central question for safe and robust decision making: What
causal biases arise in the GCRL training process and when can these causal biases lead to a
poor policy? We focus on the causal implications of (1) training on only expert demonstrations with
good performance, and (2) conditioning on future, observed goals as part of the training process.
Our study includes (1) complete graph settings, including the standard MDP and (2) incomplete
graphs, where unknown and unmeasured variables might influence the decision process. This paper is
motivated by the potential use of GCRL methods in healthcare and mobile health. Here, unmeasured
confounding is abundant, and while GCRL might be an appealing alternative to value-based methods,
one must be especially careful not to introduce causal biases. Our theoretical and empirical analysis
demonstrates that GCRL algorithms can result in learning poorly performing policies when the
training data follows particular causal graphs. We believe these findings will be useful to the RL
community as they begin to untangle settings in which the preferential inclusion of trajectories and
conditioning on the observed future during the training process can be more or less beneficial.

2 Problem Scope

Consider a finite process with horizon T described by a tuple (S,A,R, P, P1, T ). We denote the
random state, action, and reward at time t as St, At, and Rt, where t belongs to the set [T ] =
{1, . . . , T}. The reward at t is a bounded random variable Rt ∈ [0, 1]. Let P (St+1 | St =
s,At = a) denote the probability of transitioning to the next state given St = s and At = a.
We denote the marginal distribution of the initial state as P1(S1 = s). The policy π consists of
a sequence of conditional distributions {πt}Tt=1 that map a state to an action. The subscript b is
used to emphasize that data is generated under the behavior policy. We express a trajectory τ as
(s1, a1, r1, . . . , sT , aT , rT ), where τi indexes the i-th trajectory. The two types of goals encountered
in GCRL are the goal state, representing the state an agent visits in the future (gt ∈ S), and the
goal reward, which is a function of the future collected reward(s) (gt ∈ R). The agent is considered
successful if it achieves the desired goal by the end of the trajectory. Let D = {τi}Ni=1 denote a
dataset of N collected trajectories, generated by some behavior policy. Assuming final reward is
the goal, GCRL-SL algorithms directly estimate Pb(At | St = s,RT = g) from D by minimizing
the empirical negative log likelihood loss [15, 7, 6]. Therefore, GCRL-SL aims to estimate the
full longitudinal structure of the trajectory, as P (At | St = s,RT = g) = Pb(At, St = s,RT =
g)/Pb(St = s,RT = g). Subsequently, the action that maximizes an estimate of the conditional
probability of actions given the current state and any desired goal is deemed optimal. It is important to
note that during the training process, the goal is the observed goal g (e.g., state, reward) corresponding
to collected trajectories in D.

3 Causality of Goal Conditioned RL

To describe the environments we use structural causal models, where actions represent modifications
to functional relationships [28]. Specifically, each action do(a) on a causal modelM results in a
new modelMa = (U, V, Fa), where V denotes the set of observable variables, while U are the
unknown and unobservable variables. For every A, Fa is derived by replacing fA ∈ F with a new
function that outputs a constant value a defined by do(a). Central to the analysis in this study is
the concept of g-recoverability, which emphasizes the necessity for effects to be computable from
the existing data and assumptions embedded in an augmented causal graph Cg [1]. Another vital
concept is of identifiability, which signifies the necessity for causal effects to be computable based on
a combination of data and assumptions inherent in the causal graph C [28]. The recoverability of a
causal effect is defined as the combination of g-recoverability with identifiability using the rules of
do-calculus. Formal definitions are included in the Appendix Section A.
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3.1 The g- recoverability in GCRL

To learn the optimal policy, we first need to learn quantities that rely on the effect of action At = a
on the outcome Rl for l ≥ t given the current state. In this section, we study conditions under which
such quantities cannot be learned when trajectories are preferentially chosen based on a desired
outcome. For example, learning only based on expert demonstrations that achieve high rewards, or a
high final state, results in selection bias as selection is dependent on the outcome [33]. To illustrate
the nature of selection bias, consider Figure 3(a) in the Appendix Section B.1. Let’s assume we are
interested in obtaining a high reward at the end of the trajectory, R2 = 1. The goal G is the indicator
of a high reward (R2 = 1). First, we collect trajectories from an expert and retain trajectories with
R2 = 1. The problem is that the batch data reflects P (τ | G = 1). Can we recover the conditional
distributions needed for learning the optimal policy? Proposition 1 states that we cannot recover
essential components of the likelihood from P (τ | G = 1) under certain graphs [1, 3]. Similar
analysis follows when expert trajectories are based on the final state, or sum of all rewards (e.g.,
Figure 3(b) and (c)). In Theorem 1, we provide general rules for when conditional probabilities are
g-recoverable from the data. All proofs are allocated to the Appendix Section B.

Proposition 1. The causal effect P (R2 | do(At = a), St = s) for t = 1, 2 is not g-recoverable from
the causal graph Cg in Figure 3(a).

Theorem 1. The distribution P (At | St) is g-recoverable from Cg if and only if G ⊥⊥ At | St.
Similarly, P (Rl | At, St) with t ≤ l and P (Sj | At, St) with t < j are g-recoverable if and only if
G ⊥⊥ Rl | At, St and G ⊥⊥ Sj | At, St.

3.2 Recovering Causal Effects in GCRL-SL

In this section, we illustrate instances where key causal quantities for learning the optimal policy
become unattainable due to conditioning on specific variables, as observed in GCRL-SL. [18, 17].
Instead of having a separate G variable, recoverability issues equivalently occur due to conditioning
on variables known as colliders. The common structure of selection bias strives from conditioning on
a variable which is caused by two other variables: one that is (or is associated) with an action, and one
that is (or is associated) with the outcome. Conditioning on the common outcome of two independent
variables induces a spurious association between them, as they are now associated within levels of
it. Conditioning on a collider can also distort the association between dependent variables. In the
following, we focus on the causal graph depicted in Figure 1(b), which contains an unknown, and
unmeasured, variable ϵ. While atypical in RL literature, this causal structure is prevalent in healthcare
and mobile health applications. In Figure 1(a), we study a subgraph of Figure 1(b) which is an MDP.

a)

S1 A1

R1

S2 A2

R2

b)

S1 A1

R1

S2 A2

R2

S3 A3

R3

ϵ

Figure 1: Directed Acyclic Graphs depicting (a) complete causal graph, and (b) incomplete causal
graph with unknown, and unmeasured variable ϵ. Variables conditioned on are depicted as rectangles.

We aim to quantify the change in Rl induced by raising At one unit, while keeping St = s constant.
In the language of do-calculus, we express this target parameter as δ

δaE[Rl | do(At = a), St = s].
This causal effect can be defined using the partial regression coefficient βRlAt·St

, representing the
slope of the regression line of Rl on At given St = s. In a linear model, βRlAt·St

is crucial for
learning the optimal policy. The GCRL-SL objective in a linear model then corresponds to βAtRl·St

,
the slope of the regression line of At on Rl for St = s. We employ linear structural equation
models and path tracing to illustrate that, for causal graphs depicted in Figure 1 and l ≥ t, the
partial coefficient βAtRl·St is not always equal to βRlAt·St [12, 29]. The closed-form expressions for
βRlAt·St and βAtRl·St are provided in the Appendix Section B.3 as part of Lemma 1. Challenges
with the GCRL-SL policy arise when βAtRl·St

and βRlAt·St
display opposing signs, indicating a

contradictory relationship between the goal and action. We illustrate this empirically in Section 4.
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Lemma 1. For graphs in Figure 1(a) and (b), the partial coefficient βAtRl·St is not always equal to
βRlAt·St . For certain path coefficients in linear SEMs, βAtRl·St and βRlAt·St have different signs.

In Lemma 2, we establish that the causal effect of an action at time t, denoted as do(At = a), on
Rl for l ≥ t given the current state cannot be recovered when employing GCRL-SL methods for
the causal graph in Figure 1. Moreover, conditioning on RT in a causal graph depicted in Figure
1 opens a back-door path from St to At because (St ⊥⊥ At | RT )CSt

is violated for t ∈ [T ]. As a
result, the GCRL-SL policy produces actions influenced by spurious associations, even when actions
have no impact on the rewards and states. The proofs for Lemma 2 and Corollary 1 are available in
the Appendix Section B.4.
Lemma 2. Given the causal graph depicted in Figure 1 with unmeasured and unknown variable ϵ,
P (Rl | do(At = a), St = s) for l ≥ t is not recoverable using GCRL-SL algorithms.
Corollary 1. For the causal graphs in Figure 1, P (At | St = s) is not g-recoverable from P (At |
St = s,Rl = g).

4 Experiments

We consider two environments for which GCRL-SL policies perform poorly due to causal biases:
(1) complete graph in Figure 1(a) denoted as CG1, and (2) incomplete graph in Figure 1(b) denoted
IG1. For clarity, we consider finite trajectories of length T = 7 with linear dynamics. The action
space is binary for both, while the CG1 data-generating process is non-stationary. We run multiple
experiments to show that performance differences between GCRL-SL and value-based RL (e.g., fitted
Q iteration) stem from GCRL-SL methods learning poor policies due to causal biases introduced
during the training phase. Reported return is an average over 100 random iterations, each evaluated
over 20 validation trajectories. More details on the experiments and results are available in the
Appendix section C, D and E.

Why does GCRL under-perform? In CG1, GCRL-SL policy assigns A = 1 at early time-points
due to spurious associations with actions at later time-points, where A = 1 does lead to a higher
return. In IG1, the GCRL-SL policy consistently assigns A = 1, despite the negative impact of
actions on the outcome. This behavior is influenced by the spurious association with the exogenous
variable ϵ, which does have a positive impact on the return.

Figure 2: Mean return and standard error for CG1 (upper panels (a)-(d)) and IG1 (lower panels
(a)-(d)) over 100 Monte Carlo iterations. Variations in the level of stochasticity of the data-generating
process is indicated by distinct standard error levels, denoted as σ.
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A Background and Notation

Let X , Y and Z be arbitrary disjoint sets of nodes in a causal graph C. We denote V and U as
the set of all observable and unobservable variables. A convenient way of characterizing the set of
distributions compatible with the causal graph C is to list the set of all (conditionally) independent
variables that such distribution must satisfy. We make use of the d-separation criterion for reading
constraints imposed over distributions in the induced graph, as stated in Definition 1 [26, 28].
Definition 1 (d-separation). A path p is said to be d-separated by a set of vertices in Z if and only if

1. p contains a chain i → m → j or a fork i ← m → j such that m is in Z (at least one
arrow-emitting node in Z), or

2. p contains an inverted fork i→ m← j such that m is not in Z, and no descendant of m is
in Z (at least one collision node is outside Z and its descendants).

A set Z d-separates X from Y if and only if Z blocks every path from node in X to a node in Y .

We also make use of do-calculus, which is a collection of syntactic rules that permit the manipulation
of causal expressions involving the do-operator [27]. Let CX̄ be the graph obtained by removing all
arrows pointing to nodes in X from the original graph C. The CX is a graph obtained by removing
all arrows emerging from nodes in X . An expression of the type Q = P (y | do(x), z) is compatible
with C if the interventional distribution described by Q can be generated by parameterizing the
graph with a set of functions and exogenous variables. The following inference rules of the proposed
calculus (rules of do-calculus) are valid for every interventional distribution compatible with C [28]:

Rule 1 (Insertion/deletion of observations)

P (y | do(x), z, w) = P (y | do(x), w)
if (Y ⊥⊥ Z | X,W )CX̄

.

Rule 2 (Action/observation exchange)

P (y | do(x), do(z), w) = P (y | do(x), z, w)
if (Y ⊥⊥ Z | X,W )CX̄,Z

.

Rule 3 (Insertion/deletion of actions)

P (y | do(x), do(z), w) = P (y | do(x), w)
if (Y ⊥⊥ Z | X,W )CX̄, ¯Z(W )

and ¯Z(W ) is the set of Z-nodes that are not ancestors of any W -node
in CX̄ .

We provide the formal definitions of identifiability and g-recoverability in Definition 2 and 3. Addition-
ally, Theorem 2 from [2] outlines recoverability as a combination of g-recoverability of conditional
distributions with identifiability employing the rules of do-calculus.
Definition 2 (Identifiability of Causal Effects). The causal effect of an action do(X=x) on a set
of variables Y is said to be identifiable from P in a causal graph C if P (Y | do(x)) is uniquely
computable from P (v) in any model that induces C.
Definition 3 (g-Recoverability). Given a causal graph Cg augmented with a node G encoding the
selection mechanism, the distribution Q = P (y | x) is said to be g-recoverable from selection biased
data in Cg if the assumptions embedded in the causal model renders Q expressible in terms of the
distribution under selection bias P (v | G = 1). Formally, for every two probability distributions P1

and P2 compatible with Cg , P1(v | G = 1) = P2(v | G = 1) > 0 implies P1(y | x) = P2(y | x).
Theorem 2 (Recoverability: g-recoverability and identifiability via do-calculus). The causal effect
Q = P (y | do(x)) is recoverable from selection biased data if using the rules of the do-calculus, Q is
reducible to an expression in which there is no do-operator, and g-recoverability can be determined.

Finally, Definition 4 extends the backdoor condition to selection bias problems by identifying a set
of variables W which are 1) backdoor admissible, and 2) ensure recoverability from selection bias
[30, 3]. The Corollary 2, proved in [3], gives a graphical condition for recovering causal effects
which generalizes the back-door adjustment.
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Definition 4 (Selection-backdoor criterion). Let a set W of variables be partitioned into W+ ∪W−

such that W+ contains all non-descendants of X and W− the descendants of X . The set W is said
to satisfy the selection backdoor criterion (g-backdoor) relative to an ordered pairs of variables
(X,Y ) in a graph Cg if W+ and W− satisfy the following:

1. W+ blocks all back door paths from X to Y .

2. X and W+ block all paths between W− and Y .

3. X and W block all paths between G and Y .

4. Measurements of W for the entire population are available.

Corollary 2 (Selection-backdoor adjustment). If a set W satisfies the g-backdoor criterion relative
to the ordered pair (X,Y ), then the effect of X on Y is identifiable and g-recoverable.

B Proofs

B.1 Proposition 1

Proof. Let P1 be compatible with the causal graph Cg depicted in Figure 3(a). We construct another
causal model, such that P2 corresponds to the subgraph Cg\{R2 → G}. We set the parameters of
P1 through its factors, and notice that (V ⊥⊥ G)P2

, where V is the set of all variables in Cg without
the selection variable. As P2(V | G) = P2(V ), we compute the parameters of P2 by enforcing
P1(V | G) = P2(V ). We assume all variables are binary for ease of derivations, as recoverability
should hold for any parametrization.

We focus on the recoverability of the probability of R2 conditional on action and state at t = 2. The
same arguments follows for the probability of R2 conditional on action and state at t = 1. First we
observe that for the causal graph Cg in Figure 3(a), Y ∈ Pa(G), and there exists no sets of variables
for which one can d-separate G from R2. We can write the conditional distribution corresponding to
the second causal model at S2 = s under MDP dynamics as

P2(R2 | A2, S2 = s) = P1(R2 | A2, S2 = s,G = 1)

=
P1(R2, A2, S2 = s,G = 1)

P1(A2, S2 = s,G = 1)

=
P1(R2 | A2, S2 = s)P1(G = 1 | R2)

P1(G = 1 | R2)P1(R2 | A2, S2 = s) + P1(G = 1 | R̃2)P1(R̃2 | A2, S2 = s)
.

Let P1(R2 | A2, S2 = s) = 1/2 and P1(R̃2 | A2, S2 = s) = 1/2. Further, let P1(G = 1 | R2) = α

and P1(G = 1 | R̃2) = β, where 0 < α, β < 1 and α ̸= β. The result follows as under this
parametrization P2(R2 | A2, S2 = s) = α/(α+ β), while P1(R2 | A2, S2 = s) = 1/2. Therefore,
we have that

P2(R2 | do(A2 = a), S2 = s) = P2(R2 | A2 = a, S2 = s)

̸= P2(R2 | A2 = a, S2 = s,G = 1),

where the first equality follows from the second rule of do-calculus as (R2 ⊥⊥ A2 | S2)CA2
. By

Theorem 2, P2(R2 | do(A2 = a), S2 = s) is not recoverable. The same argument follows for
P2(R2 | do(A1 = a), S1 = s). Finally, note that G and R1 are d-separated by (A1, S1). Therefore,
G ⊥⊥ R1 | A1, S1, and P (R1 | A1 = a, S1 = s) is g-recoverable from Cg. By the second rule of
do-calculus, the causal effect P (R1 | do(A1 = a), S1 = s) is recoverable.

B.2 Theorem 1

Proof. We show that the distribution of At given St is g-recoverable from Cg if and only if G ⊥⊥
At | St. The same argument can be used to show P (Rl | At, St) for t ≤ l is g-recoverable from Cg

if and only if G ⊥⊥ Rl | At, St, and P (Sj | At, St) for t < j is g-recoverable from Cg if and only if
G ⊥⊥ Sj | At, St. The argument follows from [3], adapted to longitudinal settings.
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b)

S1 A1

R1

S2 A2

R2

G

c)

S1 A1

R1

S2 A2

R2

G

b)
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R1

S2 A2

R2

G

Figure 3: Directed Acyclic Graph (DAG) where the selection variable G is an indicator of (a) a
high final reward, (b) a high final state, (c) a high reward-to-go and (d) action selection. Variables
conditioned on are depicted as rectangles.

(if) We note that if St d-separates G and At in Cg , P (At | St) is g-recoverable.

(only if) To establish necessity, we must show that for all graphs where d-separation fails, none of
these structures enable g-recoverability.

Let P1 be compatible with the causal graph Cg. We construct another causal model, such that P2

corresponds to a subgraph C2 where all edges pointing to G are removed. Let V denote the set of
all variables in Cg without G. Given a Markovian data-generating model, P1 can be parameterized
through its factors [28]. As (V ⊥⊥ G)P2

, it follows that P2(V | G = g) = P2(V ). We can compute
the parameters of P2 by enforcing P1(V | G = g) = P2(V ). We assume all variables are binary for
ease of derivations, as recoverability should hold for any parametrization. We assume St is directly
connected to At, meaning there are no nodes in between St and At ∀t ∈ [T ]. We proceed to show
that whenever there is an open path between G and At that is not blocked by St, P1 and P2 can be
constructed such that P1(V | G = 1) = P2(V | G = 1), but P1(At | St) ̸= P2(At | St).

Case 1: At is a parent of G. Case 1 corresponds a graph where At ∈ Pa(G), and G is not separable
from At in Cg. We follow the same construction given in Lemma 1. We can write the conditional
distribution corresponding to the second causal model under MDP dynamics as

P2(At | St) = P1(At | St, G = 1) =
P1(At, St, G = 1)

P1(St, G = 1)
(1)

=
P1(At | St)P1(G = 1 | At)

P1(G = 1 | At)P1(At | St) + P1(G = 1 | Ãt)P1(Ãt | St)
,

where the first equality is by construction. Consider a subgraph C∗, such that all nodes V \{St, At, G}
in Cg are disconnected from {St, At, G}, and we can parametrize the complete model. Note that
all parameters of P2 are free, and can be chosen to match P1. Still, for almost all parametrizations,
P1(At | St) and P2(At | St) in Equation 1 will not be the same. Let P1(G = 1 | At) = α,
P1(G = 1 | Ãt) = β, where α ̸= β, 0 < α and β < 1. We set every distribution but the selection
node equal to 1/2, so P1(At | St) = 1/2. The result follows as P2(At | St) = α/(α + β), while
P1(At | St) = 1/2.

Case 2: path from At to G passes through an offspring of At. Case 2 corresponds to a graph where
there is a directed path p from At to G, which does not pass through St. As such, G is not separable
from At in Cg, and St cannot d-separate G and At. Consider Rt as the immediate child of At in
path p. For simplicity, we assume the segment from Rt to G is of length one, although the distance
between Rt and G can be otherwise arbitrary. This assumption is valid by construction, which ensures
only chains exist along this segment. We can write the conditional distribution corresponding to the
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second causal model under MDP dynamics as

P2(At | St) = P1(At | St, G = 1) =
P1(At, St, G = 1)

P1(St, G = 1)
(2)

=
P1(At | St)

∑
Rt

ϕRt
(At)f(Rt)

P1(At | St)
∑

Rt
ϕRt

(At)f(Rt) + P1(Ãt | St)
∑

Rt
ϕRt

(Ãt)f(Rt)
,

where ϕRt(At) = P1(Rt | At) and f(Rt) = P1(G = 1 | Rt). Consider a subgraph C∗, such that
all nodes V \{St, At, Rt, G} in Cg are disconnected from {St, At, Rt, G}, and we can parametrize
the complete model. We first set P1(At | St) = 1/2 for all values of At and St. Using the same
construction presented in [3] with k = 0, we set f(Rt) = 7/12 + ϵ and f(R̃t) = 7/12 − ϵ for
0 < ϵ ≤ 1, and let ϕRt(At) = 1/3 and ϕRt(Ãt) = 3/4. Substituting back into Equation 2, we get
that P2(At | St) = 1/2− (2/7)ϵ, which is never equal to P1(At | St) = 1/2.

Case 3: path from At to G passes through an ancestor of At. Let W represent the set of nodes that are
ancestors of At. In Case 3, we consider a graph where W\St is not d-separated from At in Cg , and
there exists a path p from Zt ∈W\St that cannot be blocked by St. Two cases must be considered:
(a) p is a directed path from Zt to At that does not pass through St, and (b) p contains converging
arrows into St.

Case 3a considers graphs where p is a directed path from Zt to At. For simplicity, we assume the
segment from Zt to G and Zt to At is of length one. This assumption is possible as, by construction,
there can be only chains along these segments. We note that the distance between Zt to G and Zt to
At can be otherwise arbitrary. Under this configuration, we have the flexibility to modify Cg while
remaining in the same equivalence class by reversing the direction in p in a way that Zt ceases to be
an ancestor of At. Consequently, Case 3a simplifies to Case 2.

Case 3b considers a graph where p contains converging arrows into St. Let Wt denote an ancestor
which, together with Zt, has converging arrows into St (Wt → · · · → St ← · · · ← Zt). We again
assume that segments Wt → · · · → At, Wt → · · · → St, Zt → · · · → St and Zt → · · · → G are of
length one. We can write the conditional distribution corresponding to the second causal model as

P2(At | St) = P1(At | St, G = 1) =
P1(At, St, G = 1)

P1(St, G = 1)
(3)

=

∑
Wt

ϕWt(At)f(Zt)∑
Wt

ϕWt
(At)f(Zt) +

∑
Wt

ϕWt
(Ãt)f(Zt)

,

where ϕWt(At) = P1(At | Wt)P1(Wt) and f(Zt) =
∑

Zt
P1(St | Zt,Wt)P (Zt)P1(G = 1 |

Zt). Consider a subgraph C∗, such that all nodes V \{Wt, St, At, Zt, G} in Cg are disconnected
from {Wt, St, At, Zt, G}, and we can parametrize the complete model. Consider the following
parametrization where ϕWt(At) = 1/3, ϕW̃t

(At) = 1/3, ϕW̃t
(Ãt) = 2/9 and ϕWt(Ãt) = 1/9. We

also let P1(Zt) = 1/2, P1(Z̃t) = 1/2, P1(St | Zt,Wt) = 1/2 + ϵ, P1(St | Z̃t,Wt) = 1/2 − ϵ,
P1(St | Zt, W̃t) = 1/2 and P1(St | Z̃t, W̃t) = 1/2 for 0 < ϵ < 1/2. Finally, let P1(G = 1 | Zt) =

α and P1(G = 1 | Z̃t) = β where α > β. With some algebra, we derive that P1(At | St) = 2/3

while P2(At | St) =
2
3 (

α+β+ϵ(α−β)
α+β+8/9ϵ(α−β) ).

B.3 Lemma 1

Proof. Let βRlAt·St denote the partial regression coefficient, or the slope of the regression line of Rl

on At given St = s. We denote σRlAt
as the covariance of Rl and At. We assume all variables are

standardized and St is a singleton.
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Case 1: Causal Graph in Figure 1(a). Consider the following Linear Structural Equation model (SEM)
corresponding to the causal graph in Figure 1(a) with T = 2:

S1 = US1 (4)
A1 = β1S1 + UA1

R1 = δ1S1 + ν1A1 + UR1
,

S2 = γ1S1 + α1A1 + US2
,

A2 = β2S2 + η1A1 + UA2

R2 = δ2S2 + ν2A2 + UR2
.

All SEM coefficients in Equation 4 carry causal information, and are refered to as path coefficients.
For example, ν1 stands for the change in R1 induced by raising A1 one unit, while keeping all other
variables constant. In terms of do-calculus, ν1 can be interpreted as the slope ν1 = δ/δaE[R1 |
do(a), do(s)]. Using Wright’s path-tracing rules and d-separation in a standardized model where all
variables are unity we have that

βR2A1·S1 =
α1δ2(1− β2

1) + α1β2ν2(1− β2
1) + η1ν2(1− β2

1)

1− β2
1

(5)

= α1δ2 + α1β2ν2 + η1ν2.

The closed-form expression for the partial coefficient βA1R2·S1 is

βA1R2·S1 =
(α1δ2 + α1β2ν2 + η1ν2)(1− β2

1)

1− (β1α1δ2 + β1α1β2ν2 + β1η1ν2 + γ1δ2 + γ1β2ν2)2
. (6)

Let β1 = 0.01 and γ1 = 10, while the rest of the path coefficients are 0.5. Then βA1R2·S1 < 0 while
βR2A1·S1 > 0.

Case 2: Causal Graph in Figure 1(b). Consider the following Linear Structural Equation model
(SEM) corresponding to the causal graph in Figure 1(b) with T = 2:

S1 = ξ1ϵ+ US1
(7)

A1 = β1S1 + UA1

R1 = δ1S1 + ν1A1 + UR1 ,

S2 = γ1S1 + α1A1 + ξ2ϵ+ US2 ,

A2 = β2S2 + η1A1 + UA2

R2 = δ2S2 + ν2A2 + UR2
.

Using Wright’s path-tracing rules and d-separation in a standardized model where all variables are
unity we have that

βR2A1·S1 =
α1δ2(1− β2

1) + α1β2ν2(1− β2
1) + η1ν2(1− β2

1)

1− β2
1

(8)

= α1δ2 + α1β2ν2 + η1ν2.

The closed-form expression for the partial coefficient βA1R2·S1 is

βA1R2·S1 =
(α1δ2 + α1β2ν2 + η1ν2)(1− β2

1)

1− (β1α1δ2 + β1α1β2ν2 + β1η1ν2 + γ1δ2 + γ1β2ν2 + ξ1ξ2δ2 + ξ1ξ2β2ν2)2
. (9)

Let β1 = 0.01 and γ1 = 10, while the rest of the path coefficients are 0.5. Then βA1R2·S1 < 0 while
βR2A1·S1 > 0.

B.4 Lemma 2 and Corollary 1

Proof. We consider a simplified case with T = 3, as recoverability should hold for any T . Let
the goal reward at T be g, such that if R3 = g, we have achieved the desired goal. For the graph
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illustrated in Figure 4(a), we can write the following structural equations model:

ϵ = fϵ(Uϵ)

S1 = fS1
(ϵ, US1

)

A1 = fA1(S1, UA1)

R1 = fR1(S1, A1, UR1)

St = fSt(St, At, ϵ, USt) for 1 < t ≤ T

At = fAt
(St, At, UAt

) for 1 < t ≤ T

Rt = fRt
(St, At, URt

) for 1 < t ≤ T

where U = (US1 , UA1 , UR1 , US2 , UA2 , UR2 , US3 , UA3 , UR3) is the set of all independent
and unobservable variables. We denote the set of all observable variables as V =
(S1, A1, R1, S2, A2, R2, S3, A3, R3). Given an input (U, V ), structural equations fSt , fAt and fRt

for each t deterministically assign a value to each of the nodes. The structural equations do not
restrict the functional form of causal relationships.

We start with what the policy estimand should be at t = 2, then attempt to derive from it the GCRL-SL
objective, P (A2 | S2 = a,R3 = g). The target optimal policy at t = 2 can then be written as an
argmax over a of the following quantity:

Pb(fR3(fS3(s, a, ϵ, UR3), fA3(fS3(s, a, ϵ, UR3), a, UA3), UR3) = g | fS2(ϵ, S1, A1, US2) = s)∑
ā b(fR3(fS3(s, ā, ϵ, UR3), fA3(fS3(s, ā, ϵ, UR3), ā, UA3), UR3) = g | fS2(ϵ, S1, A1, US2) = s)

. (10)

Let A2 = a∗. It follows that
Pb({A2 = a∗} ∩ fR3(fS3(s, a

∗, ϵ, UR3), fA3(fS3(s, a, ϵ, UR3), a
∗, UA3), UR3) = g | fS2(ϵ, S1, A1, US2) = s)∑

ā Pb({A2 = a∗} ∩ fR3(fS3(s, ā, ϵ, UR3), fA3(fS3(s, ā, ϵ, UR3), ā, UA3), UR3) = g | fS2(ϵ, S1, A1, US2) = s)

̸= Pb(A2 = a∗ | S2 = s)Pb(R3 = g | A2 = a∗, S2 = s)/Pb(R3 = g, S2 = s).

The second inequality follows from the fact that R3 ⊥̸⊥ A2 | S2 and the backdoor-path R3 → S3 →
ϵ← S1 → A1 → A2 is open. Therefore, we cannot write the joint over fA2(·) and fR3(·) conditional
on fS2(·) as a product of conditional probabilities, and Pb(R3 = g | do(A2 = a∗), S2 = s) cannot
be written in terms of the observed data, Pb(R3 = g | A2 = a∗, S2 = s). Therefore, the GCRL-SL
objective does not correspond to the desired policy estimand.

Under the dynamics illustrated in Figure 4(a), Pb(At | St = s) is not g-recoverable from Pb(At |
St = s,Rl = g) for l ≥ t by Theorem 1. Consider a subgraph of Figure 4(a), as illustrated in Figure
4(b). Even when actions have no effect on the future rewards and states, Pb(At | St = s) is still not
g-recoverable from Pb(At | St = s,Rl = g), as Rl ⊥⊥ At | St does not apply in the causal graph
illustrated in Figure 4(b).

B.5 Lemma 3

In Lemma 3, we show that if the behavior policy is directly re-weighed based on the distribution of
future returns, no causal biases occur.
Lemma 3. In a MDP illustrated in Figure 5(a) P (Rl | do(At = a), St = s) for l ≥ t is recoverable
under sequential randomization and corresponds to the GCRL-SL objective.

Proof. We consider a simplified case with T = 2, as recoverability should hold for any T . Let
the goal reward at T be g, such that if R2 = g, we have achieved the desired goal. For the graph
illustrated in Figure 5(a), we can write the following structural equations model:

S1 = fS1
(US1

)

A1 = fA1
(fS1

(US1
), UA1

)

R1 = fR1(fS1(US1), fA1(fS1(US1), UA1), UR1)

S2 = fS2(fS1(US1), fA1(fS1(US1), UA1), US2)

A2 = fA2(fS2(fS1(US1), fA1(fS1(US1), UA1), US2), UA2)

R2 = fR2(fS2(fS1(US1), fA1(fS1(US1), UA1), US2),

fA2
(fS2

(fS1
(US1

), fA1
(fS1

(US1
), UA1

), US2
), UA2

), UR2
),
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ϵ
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Figure 4: Example DAG for T = 3 and non-MDP settings where (a) actions have an effect, and (b)
actions have no effect on the states and rewards.

where U = (US1
, UA1

, UR1
, US2

, UA2
, UR2

) is the set of all independent and unobservable variables.
We denote the set of all observable variables as V = (S1, A1, R1, S2, A2, R2). The GCRL-SL
optimal policy at t = 1 can then be written as

argmax
a

Pb(fR2
(fS2

(s, a, US2
), fA2

(fS2
(s, a, US2

), UA2
), UR2

) = g | fS1
(US1

) = s)∑
ã Pb(fR2(fS2(s, ã, US2), fA2(fS2(s, ã, US2), UA2), UR2) = g | fS1(US1) = s)

. (11)

We can identify the numerator in Equation 11 as
Pb(fR2

(fS2
(s, a, US2

), fA2
(fS2

(s, a, US2
), UA2

), UR2
) = g | fS1

(US1
) = s) (12)

= Pb({fA1
(fS1

(US1
), UA1

) = a} ∩ {fR2
(fS2

(s, a, US2
), fA2

(fS2
(s, a, US2

), UA2
), UR2

) = g} | fS1
(US1

) = s)

= Pb(A1 = a | fS1
(US1

) = s)Pb(fR2
(fS2

(s, a, US2
), fA2

(fS2
(s, a, US2

), UA2
), UR2

) = g | fS1
(US1

) = s)

= Pb(A1 = a | S1 = s)Pb(R2 = g | A1 = a, S1 = s).

Substituting back into Equation 11, we get that the target optimal policy at t = 1 is identified as

argmax
a

Pb(A1 = a | S1 = s)Pb(R2 = g | A1 = a, S1 = s)

Pb(R2 = g | S1 = s)
. (13)

The same algebra results in the target optimal policy at t = 2 to be identified as

argmax
a

Pb(A2 = a | S2 = s)Pb(R2 = g | A2 = a, S2 = s)

Pb(R2 = g | S2 = s)
. (14)

Note that, under the MDP dynamics illustrated in Figure 5(a), we have that
Pb(R2 = g | do(A2 = a), S2 = s) = Pb(R2 = g | A2 = a, S2 = s)

and
Pb(R2 = g | do(A1 = a), S1 = s) = Pb(R2 = g | A1 = a, S1 = s)

by Rule 2 of do-calculus since (R2 ⊥⊥ A2 | S2)A2
and (R2 ⊥⊥ A1 | S1)A1

. Therefore the identified
expression in Equation 13 and 14 is the causal effect. We can also apply Corollary 2 in order to
check if the effect is identifiable. As there is no selection, C3 and C4 will hold. Let W+ = {S1}
and W− = {S2} for t = 1, and W+ = {S2} and W− = {} for t = 2. Then, C1, C2 are satisfied in
Corollary 2.

Consider a subgraph of the MDP in Figure 5(a) where actions have no effect on the future rewards
and states, as illustrated in Figure 5(b). By Theorem 1, Pb(At | St = s) is g-recoverable from
Pb(At, St | RT = g), as all actions are independent of the goal given the current state, RT ⊥⊥ At |
St.
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Figure 5: Example DAG for T = 3 and MDP settings where (a) actions have an effect, and (b) actions
have no effect on the states and rewards.

C Details on Graphs in Section 4

C.1 Complete Graph Environment (CG1)

We consider a finite horizon MDP with T = 7. In this setting, all variables are endogenous, as
represented by the corresponding DAG in Figure 6. The behavior policy takes as input the previous
time-point action and state variables. The action space is binary, with A = 1 corresponding to
“assign action" and A = 0 indicating “don’t assign action". The data-generating process (DGP)
corresponding to the state variables is as follows,

S1 ∼ Normal(0, σ)

St ∼ Normal(µa,t, σ), for 1 < t ≤ 3

St ∼ Normal(µb,t, σ), for t ≤ T

where µa,t = −0.7At−1 + 0.4St−1 and µb,t = 0.4At−1 + 0.4St−1. The process is not stationary.
The reward at time t is equal to 1 if St exceeds the third quantile of the asymptotic distribution of
St. Otherwise, it is 0. The goal state for CG1 is 0.7, which indicates a high value for the final state
at T = 7. In the DAG shown in Figure 6, both states and actions are colliders. The rewards can be
colliders or descendants of colliders. It’s crucial to emphasize that actions exert a negative influence
on the states until t = 3, after which they exhibit a positive effect from t > 3. By conditioning on the
final state or reward, we may introduce spurious associations between actions at earlier time points
(negatively affecting the return) and actions at later time points (positively affecting the return).

S1 A1

R1

S2 A2

R2

. . . S6 A6

R3

S7

Figure 6: DAG corresponding to the Complete Graph environment (CG1) with a horizon of T = 7.

C.2 Incomplete Graph Environment (IG1)

We consider a finite horizon DGP with T = 7. In this setting, all variables are endogenous except for
an unknown, exogenous variable ϵ ∼ Normal(1, 0.2). The corresponding DAG is depicted in Figure
7. The behavior policy takes as input the previous time-point state and action variable. Similar to the
previous scenario (CG1), the action space is binary. The data-generating process corresponding to
the state variables is as follows,

S1 ∼ 0.8ϵ

St ∼ Normal(µt, σ), for 1 < t ≤ T

14



where µt = −0.9At−1 − 0.9St−1 + 5ϵ. The process is stationary. The reward at time t is equal to 1
if St exceeds the third quantile of the asymptotic distribution of St. Otherwise, it is 0. The goal state
for IG1 is 2.4, which indicates a high value for the final state at T = 7. In the DAG depicted in Figure
7, both states and actions are colliders. The rewards can be colliders or descendants of colliders.
It’s important to note that ϵ positively influences the outcome, while actions have a negative impact
on the trajectory’s return. By conditioning on the final state or reward, we can introduce spurious
association between actions and ϵ.

S1 A1

R1

S2 A2

R2

. . . S6 A6

R3

S7

ϵ

Figure 7: DAG corresponding to the Incomplete Graph environment (IG1) with T = 7. Dotted
arrows represent paths from unknown, exogenous (unobserved) variable to endogenous (observed)
state variables.

D Experiment Details

We run multiple experiments to show that performance differences between GCRL-SL and value-
based RL stem from GCRL-SL methods learning poor policies due to causal biases introduced
during the training phase. In all experiments, we focused on an offline RL setup, employing the
most general form of GCRL-SL with final states as goals, as described in [13]. For comparison, we
used a canonical version of Fitted Q Iteration (FQI). Each experiment was independently run 100
times, corresponding to 100 Monte Carlo simulations or iterations. The reported return represents an
average over these 100 random iterations, with each evaluated over 20 validation trajectories.

In Table 1, we present details regarding the neural network architecture utilized in all experiments,
unless explicitly stated otherwise. By default, we employ a feedforward fully-connected neural net-
work for estimation. Notably, in the last row of Table 1, we highlight our exploration of regularization
through dropout as a distinct estimator for various conditional policy estimators. The table also
outlines all the algorithms incorporated in the ensemble learner’s library, referred to as the Super
Learner (SL) [32]. This library includes the following algorithms: (1) generalized linear model (glm),
(2) single-layer neural network, (3) generalized additive model, (4) random forest, and (5) regularized
gradient boosting [8, 35, 34]. We explored different configurations of random forests and gradient
boosting based on their hyperparameters, such as the number of trees, maximum depth, and eta. The
Super Learner utilized 10-fold cross-validation.

In Table 2, we present a detailed list of simulation parameters. In each iteration, we trained
both GCRL-SL and FQI algorithm using training sets of varying sizes, specifically n =
{50, 100, 500, 1000, 3000, 5000}. For every experiment, we utilized a validation set comprising
20 trajectories, and the reported return represents the average over 100 Monte Carlo simulations. To
attain the target goal values for GCRL-SL, we set the target goal at 0.7 for CG1 and 2.4 for IG1.
These goals were determined based on the asymptotic distribution consistent with the dynamics of
the CG1 and IG1 DGP at the end of each trajectory. Specifically, they correspond to the upper tails
(3rd quantile) of the asymptotic distribution observed in CG1 and IG1 DGPs and are supported by
the training data used in each experiment.

E Experiment Results

E.1 Is stochasticity driving performance?

Recent studies suggest that GCRL-SL algorithms face challenges in stochastic environments [13, 6].
In our analysis, we assess the performance of GCRL-SL and FQI across different levels of variability,
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Table 1: Algorithm specifications and design parameters used for considered experiments.

HYPERPARAMETER VALUE ENVIRONMENT

HIDDEN LAYERS 2 ALL
LAYER WIDTH 1024 ALL
NONLINEARITY RELU ALL
LEARNING RATE 1E-3 ALL
EPOCHS 20 ALL
DROPOUT 0 ALL

0.1 ALL

ENSEMBLE LEARNER GLM ALL
GAM ALL

NEURAL NETWORK ALL
RANDOM FOREST ALL

XGBOOST ALL
CV 10 ALL

Table 2: Simulation parameters used for considered experiments.

HYPERPARAMETER VALUE ENVIRONMENT

NUMBER OF MC ITERATIONS 100 ALL
TRAINING SIZE 50 ALL

100 ALL
500 ALL

1000 ALL
3000 ALL
5000 ALL

VALIDATION SIZE 20 ALL

GOAL MAX 0.7 CG1
GOAL MAX 2.4 IG1

denoted by the parameter σ, in the data generating processes of CG1 and IG1. The results, depicted
in Figure 8, show that FQI consistently outperforms GCRL-SL across all levels of stochasticity and
training dataset sizes.

E.2 Do we need different policy estimators?

Practical recommendations suggest that simple implementations can achieve competitive, if not
superior, performance compared to more complex architectures and value-based RL methods [13].
Others emphasize the importance of complex neural network architectures, as even if the behavior
policy is simple, the conditional policy learned by GCRL-SL might not be [19, 7]. In our analysis,
we explore various choices for policy estimation, including: (1) a simple main terms generalized
linear model (glm), (2) Super Learner (SL), an ensemble learner based on cross-validation, (3) a
high-capacity feed-forward fully-connected neural network, and (4) a high-capacity neural network
with regularization. The SL is a convex combination of predictions made by glm, generalized additive
model, shallow neural network, regularized gradient boosting, and random forest [32, 8, 35, 34].
Figure 9 presents the results for different policy estimators at σ = 0.1. It demonstrates that FQI
consistently outperforms GCRL-SL across all considered policy estimators and sample sizes.
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Figure 8: Mean return for CG1 and IG1 Data Generating Process (DGP) at t = 7 and its corresponding
standard error, calculated over 100 Monte Carlo (MC) iterations. In the upper panels (a)-(d), we
illustrate the CG1 DGP, while in the lower panels (a)-(d), we depict the IG1 DGP under different
levels of σ = {0.001, 0.01, 0.1, 1}, indicating increasing stochasticity in the process.

Figure 9: Mean return for CG1 and IG1 Data Generating Process (DGP) at σ = 0.1 and t = 7 with
its corresponding standard error, calculated over 100 Monte Carlo (MC) iterations. In the upper
panels (a)-(d), we illustrate the CG1 DGP, while in the lower panels (a)-(d), we depict the IG1 DGP
with policy estimated using different estimators: linear models (LM), ensemble learner (SL), Neural
Network (NN) and Neural Network with dropout.
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