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ABSTRACT

We consider structure discovery of undirected graphical models from observational
data. Inferring likely structures from few examples is a complex task often requiring
the formulation of priors and sophisticated inference procedures. In the setting of
Gaussian Graphical Models (GGMs) a popular estimator is a maximum likelihood
objective with a penalization on the precision matrix. Adapting this estimator to
capture domain-specific knowledge as priors or a new data likelihood requires great
effort. In addition, structure recovery is an indirect consequence of the data-fit
term. By contrast, it may be easier to generate training samples of data that arise
from graphs with the desired structure properties. We propose here to leverage
this latter source of information as training data to learn a function mapping
from empirical covariance matrices to estimated graph structures. Learning this
function brings two benefits: it implicitly models the desired structure or sparsity
properties to form suitable priors, and it can be tailored to the specific problem of
edge structure discovery, rather than maximizing data likelihood. We apply this
framework to several real-world problems in structure discovery and show that it
can be competitive to standard approaches such as graphical lasso, at a fraction
of the execution speed. We use convolutional neural networks to parametrize our
estimators due to the compositional structure of the problem. Experimentally,
our learnable graph-discovery method trained on synthetic data generalizes well:
identifying relevant edges in real data, completely unknown at training time. We
find that on genetics, brain imaging, and simulation data we obtain competitive
(and generally superior) performance, compared with analytical methods.

1 INTRODUCTION

Probabilistic graphical models provide a powerful framework for describing the dependencies between
a set of variables. Many applications infer the structure of a probabilistic graphical model from data
to elucidate the relationships between variables. These relationships are often represented by an
undirected graphical model also known as a Markov Random Field (MRF). We focus on a common
MRF model, Gaussian graphical models (GGMs). GGMs are used in structure-discovery settings for
rich data such as neuroimaging, genetics, or finance (Friedman et al., 2008; Ryali et al, 2012; Mohan
et al., 2012; Belilovsky et al., 2016). Although multivariate Gaussian distributions are well-behaved,
determining likely structures from few examples is a complex task when the data is high dimensional.
It requires strong priors, typically a sparsity assumption, or other restrictions on the structure of the
graph, which now make the distribution difficult to express analytically and use.

A standard approach to estimating structure with GGMs in high dimensions is based on the classic
result that the zeros of a precision matrix correspond to zero partial correlation, a necessary and
sufficient condition for conditional independence (Lauritzen, 1996). Assuming only a few conditional
dependencies corresponds to a sparsity constraint on the entries of the precision matrix, leading to a
combinatorial problem. Many popular approaches to learning GGMs can be seen as leveraging the
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`1-norm to create convex surrogates to this problem. Meinshausen & Bühlmann (2006) use nodewise
`1 penalized regressions. Other estimators penalize the precision matrix directly (Cai et al., 2011;
Friedman et al., 2008; Ravikumar et al., 2011). The most popular being the graphical lasso

fglasso(Σ̂) = arg min
Θ�0
− log |Θ|+ Tr (Σ̂Θ) + λ‖Θ‖1, (1)

which can be seen as a penalized maximum-likelihood estimator. Here Θ and Σ̂ are the precision and
sample covariance matrices, respectively. A large variety of alternative regularization penalties extend
the priors of the graphical lasso (Danaher et al., 2014; Ryali et al, 2012; Varoquaux et al., 2010). How-
ever, several problems arise in this approach. Constructing novel surrogates for structured-sparsity
assumptions on MRF structures is challenging, as a prior needs to be formulated and incorporated
into a penalized maximum likelihood objective which then needs an efficient optimization algorithm
to be developed, often within a separate research effort. Furthermore, model selection in a penalized
maximum likelihood setting is difficult as regularization parameters are often unintuitive.

We propose to learn the estimator. Rather than manually designing a specific graph-estimation
procedure, we frame this estimator-engineering problem as a learning problem, selecting a function
from a large flexible function class by risk minimization. This allows us to construct a loss function
that explicitly aims to recover the edge structure. Indeed, sampling from a distribution of graphs and
empirical covariances with desired properties is often possible, even when this distribution is not
analytically tractable. As such we can perform empirical risk minimization to select an appropriate
function for edge estimation. Such a framework gives more easy control on the assumed level of
sparsity (as opposed to graph lasso) and can impose structure on the sampling to shape the expected
distribution, while optimizing a desired performance metric.

For particular cases we show that the problem of interest can be solved with a polynomial function,
which is learnable with a neural network (Andoni et al., 2014). Motivated by this fact, as well as
theoretical and empricial results on learning smooth functions approximating solutions to combinato-
rial problems (Cohen et al., 2016; Vinyals et al., 2015), we propose to use a particular convolutional
neural network as the function class. We train it by sampling small datasets, generated from graphs
with the prescribed properties, with a primary focus on sparse graphical models. We estimate from
this data small-sample covariance matrices (n < p), where n is the number of samples and p is the
dimensionality of the data. Then we use them as training data for the neural network (Figure 2) where
target labels are indicators of present and absent edges in the underlying GGM. The learned network
can then be employed in various real-world structure discovery problems.

In Section 1.1 we review the related work. In Section 2 we formulate the risk minimization view of
graph-structure inference and describe how it applies to sparse GGMs. Section 2.3 describes and
motivates the deep-learning architecture we chose to use for the sparse GGM problem in this work.
In Section 3 we describe the details of how we train an edge estimator for sparse GGMs. We then
evaluate its properties extensively on simulation data. Finally, we show that this edge estimator trained
only on synthetic data can obtain state of the art performance at inference time on real neuroimaging
and genetics problems, while being much faster to execute than other methods.

1.1 RELATED WORK

Lopez-Paz et al. (2015) analyze learning functions to identify the structure of directed graphical
models in causal inference using estimates of kernel-mean embeddings. As in our work, they
demonstrate the use of simulations for training while testing on real data. Unlike our work, they
primarily focus on finding the causal direction in two node graphs with many observations.

Our learning architecture is motivated by the recent literature on deep networks. Vinyals et al. (2015)
have shown that neural networks can learn approximate solutions to NP-hard combinatorial problems,
and the problem of optimal edge recovery in MRFs can be seen as a combinatorial optimization
problem. Several recent works have been proposed which show neural architectures for graph input
data (Henaff et al., 2015; Duvenaud et al, 2015; Li et al., 2016). These are based on multi layer
convolutional networks, as in our work, or multi-step recurrent neural networks. The input in our
approach can be viewed as a complete graph, while the ouput a sparse graph, thus none of these are
directly applicable. A related use of deep networks to approximate a posterior distribution can be
found in Balan et al. (2015). Finally, Gregor & LeCun (2010); Xin et al. (2016) use deep networks to
approximate steps of a known sparse recovery algorithm.
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Bayesian approaches to structure learning rely on priors on the graph combined with sampling
techniques to estimate the posterior of the graph structure. Some approaches make assumptions
on the decomposability of the graph (Moghaddam et al., 2009). The G-Wishart distribution is a
popular distribution which forms part of a framework for structure inference, and advances have been
recently made in efficient sampling (Mohammadi & Wit, 2015). These methods can still be rather
slow compared to competing methods, and in the setting of p > n we find they are less powerful.

2 METHODS

2.1 LEARNING AN APPROXIMATE EDGE ESTIMATION PROCEDURE

We consider MRF edge estimation as a learnable function. Let X ∈ Rn×p be a matrix whose n rows
are i.i.d. samples x ∼ P (x) of dimension p. Let G = (V,E) be an undirected and unweighted graph
associated with the set of variables in x. Let L = {0, 1} and Ne = p(p−1)

2 the maximum possible
edges in E. Let Y ∈ LNe indicate the presence or absence of edges in the edge set E of G, namely

Y ij =

{
0 xi ⊥ xj |xV \i,j
1 xi 6⊥ xj |xV \i,j

(2)

We define an approximate structure discovery method gw(X), which produces a prediction of the edge
structure, Ŷ = gw(X), given a set of data X . We focus on X drawn from a Gaussian distribution. In
this case, the empirical covariance matrix, Σ̂, is a sufficient statistic of the population covariance and
therefore of the conditional dependency structure. We thus express our structure-recovery problem as
a function of Σ̂: gw(X) := fw(Σ̂). fw is parametrized by w and belongs to the function class F .
We note that the graphical lasso in Equation (1) is an fw for an appropriate choice of F .

This view on the edge estimator now allows us to bring the selection of fw from the domain of
human design to the domain of empirical risk minimization over F . Defining a distribution P on
Rp×p × LNe such that (Σ̂, Y ) ∼ P, we would like our estimator, fw, to minimize the expected risk

R(f) = E(Σ̂,Y )∼P[l(f(Σ̂), Y )] (3)
Here l : LNe×LNe → R+ is the loss function. For graphical model selection the 0/1 loss function is
the natural error metric to consider (Wang et al., 2010). The estimator with minimum risk is generally
not possible to compute as a closed form expression for most interesting choices of P, such as those
arising from sparse graphs. In this setting, Eq. (1) achieves the information theoretic optimal recovery
rate up to a constant for certain P corresponding to uniformly sparse graphs with a maximum degree,
but only when the optimal λ is used and the non-zero precision matrix values are bounded away from
zero (Wang et al., 2010; Ravikumar et al., 2011).

The design of the estimator in Equation (1) is not explicitly minimizing this risk functional. Thus
modifying the estimator to fit a different class of graphs (e.g. small-world networks) while minimizing
R(f) is not obvious. Furthermore, in practical settings the optimal λ is unknown and precision
matrix entries can be very small. We would prefer to directly minimize the risk functional. Desired
structural assumptions on samples from P on the underlying graph, such as sparsity, may imply that
the distribution is not tractable for analytic solutions. Meanwhile, we can often devise a sampling
procedure for P allowing us to select an appropriate function via empirical risk minimization. Thus
it is sufficient to define a rich enough F over which we can minimize the empirical risk over the
samples generated, giving us a learning objective over N samples {Yk,Σk}Nk=1 drawn from P:
min
w

1
N

∑N
k=1 l(fw(Σ̂k), Yk). To maintain tractability, we use the standard cross-entropy loss as a

convex surrogate, l̂ : RNe × LNe , given by:
l̂(fw(Σ̂), Y ) =

∑
i 6=j

(
Y ij log(f ijw (Σ̂)) + (1− Y ij) log(1− f ijw (Σ̂))

)
. (4)

We now need to select a sufficiently rich function class for fw and a method to produce appropriate
(Y, Σ̂) which model our desired data priors. This will allow us to learn a fw that explicitly attempts
to minimize errors in edge discovery.
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2.2 DISCOVERING SPARSE GAUSSIAN GRAPHICAL MODELS AND BEYOND

We discuss how the described approach can be applied to recover sparse Gaussian graphical models.
A typical assumption in many modalities is that the number of edges is sparse. A convenient property
of these GGMs is that the precision matrix has a zero value in the (i, j)th entry precisely when
variables i and j are independent conditioned on all others. Additionally, the precision matrix and
partial correlation matrix have the same sparsity pattern, while the partial correlation matrix has
normalized entries.

Algorithm 1 Training a GGM edge estimator

for i ∈ {1, .., N} do
Sample Gi ∼ P(G)
Sample Σi ∼ P(Σ|G = Gi)
Xi ← {xj ∼ N(0,Σi)}nj=1

Construct (Yi, Σ̂i) pair from (Gi,Xi)
end for
Select Function Class F (e.g. CNN)
Optimize: min

f∈F
1
N

∑N
k=1 l̂(f(Σ̂k), Yk))

We propose to simulate our a priori assumptions of
sparsity and Gaussianity to learn fw(Σ̂), which can
then produce predictions of edges from the input data.
We model P (x|G) as arising from a sparse prior on
the graph G and correspondingly the entries of the
precision matrix Θ. To obtain a single sample of
X corresponds to n i.i.d. samples from N (0,Θ−1).
We can now train fw(Σ̂) by generating sample pairs
(Σ̂, Y ). At execution time we standardize the input
data and compute the covariance matrix before evaluating fw(Σ̂). The process of learning fw for
the sparse GGM is given in Algorithm 1. A weakly-informative sparsity prior is one where each
edge is equally likely with small probability, versus structured sparsity where edges have specific
configurations. For obtaining the training samples (Σ̂, Y ) in this case we would like to create a sparse
precision matrix, Θ, with the desired number of zero entries distributed uniformly. One strategy to
do this and assure the precision matrices lie in the positive definite cone is to first construct an upper
triangular sparse matrix and then multiply it by its transpose. This process is described in detail in
the experimental section. Alternatively, an MCMC based G-Wishart distribution sampler can be
employed if specific structures of the graph are desired (Lenkoski, 2013).

The sparsity patterns in real data are often not uniformly distributed. Many real world networks
have a small-world structure: graphs that are sparse and yet have a comparatively short average
distance between nodes. These transport properties often hinge on a small number of high-degree
nodes called hubs. Normally, such structural patterns require sophisticated adaptation when applying
estimators like Eq. (1). Indeed, high-degree nodes break the small-sample, sparse-recovery properties
of `1-penalized estimators (Ravikumar et al., 2011). In our framework such structural assumptions
appear as a prior that can be learned offline during training of the prediction function. Similarly
priors on other distributions such as general exponential families can be more easily integrated. As
the structure discovery model can be trained offline, even a slow sampling procedure may suffice.

2.3 NEURAL NETWORK GRAPH ESTIMATOR

In this work we propose to use a neural network as our function fw. To motivate this let us consider
the extreme case when n� p. In this case Σ̂ ≈ Σ and thus entries of Σ̂−1 or the partial correlation
that are almost equal to zero can give the edge structure.
Definition 1 (P-consistency). A function class F is P-consistent if ∃f ∈ F such that
E(Σ̂,Y )∼P[l(f(Σ̂), Y )]→ 0 as n→∞ with high probability.
Proposition 1 (Existence of P-consistent neural network graph estimator). There exists a feed
forward neural network function class F that is P-consistent.
Proof. If the data is standardized, each entry of Σ corresponds to the correlation ρi,j . The partial
correlation of edge (i, j) conditioned on nodes Z, is given recursively as

ρi,j|Z = (ρi,j|Z\zo − ρi,zo|Z\zoρj,zo|Z\zo)
1

D
. (5)

We may ignore the denominator, D, as we are interested in I(ρi,j|Z = 0). Thus we are left with a
recursive formula that yields a high degree polynomial. From Andoni et al. (2014, Theorem 3.1)
using gradient descent, a neural network with only two layers can learn a polynomial function of
degree d to arbitrary precision given sufficient hidden units.

Remark 1. Naïvely the polynomial from the recursive definition of partial correlation is of degree
bounded by 2p−2. In the worst case, this would seem to imply that we would need an exponentially
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Figure 1: (a) Illustration of nodes and edges "seen" at edge 4,13 in layer 1 and (b) Receptive field at
layer 1. All entries in grey show the o0i,j in covariance matrix used to compute o14,13. (c) shows the
dilation process and receptive field (red) at higher layers

growing number of hidden nodes to approximate it. However, this problem has a great deal of
structure that can allow efficient approximation. Firstly, higher order monomials will go to zero
quickly with a uniform prior on ρi,j , which takes values between 0 and 1, suggesting that in many
cases a concentration bound exists that guarantees non-exponential growth. Furthermore, the
existence result is shown already for a shallow network, and we expect a logarithmic decrease in the
number of parameters to peform function estimation with a deep network (Cohen et al., 2016).

Moreover, there are a great deal of redundant computations in Eq. (5) and an efficient dynamic
programming implementation can yield polynomial computation time and require only low order
polynomial computations with appropriate storage of previous computation. Similarly we would like
to design a network that would have capacity to re-use computations across edges and approximate
low order polynomials. We also observe that the conditional independence of nodes i, j given Z can
be computed equivalently in many ways by considering many paths through the nodes Z. Thus we
can choose any valid ordering for traversing the nodes starting from a given edge.

We propose a series of shared operations at each edge. We consider a feedforward network where
each edge i, j is associated with a fixed sized vector, oki,j , of dimensionality d at each layer, k > 0.
o0i,j is initialized to the covariance entries at k = 0. For each edge we start with a neighborhood of
the 6 adjacent nodes, i, j, i-1, i+1, j-1, j+1 for which we take all corresponding edge values from the
covariance matrix illustrated in Figure 1. We proceed at each layer to increase the nodes considered
for each edge, the output at each layer progressively increasing the receptive field making sure all
values associated with the considered nodes are present. The receptive field here refers to the original
covariance entries which are accessible by a given, oki,j (Luo et al., 2010). The equations defining the
process are shown in Figure 1. Here a neural network fwk is applied at each edge at each layer and a
dilation sequence dk is used. We call a network of this topology a D-Net of depth l. We use dilation
here to allow the receptive field to grow fast, so the network does not need a great deal of layers. We
make the following observations:
Proposition 2. For general P it is a necessary condition for P-consistency that the receptive field of
D-Net covers all entries of the covariance, Σ̂, at any edge it is applied.
Proof. Consider nodes i and j and a chain graph such that i and j are adjacent to each other in the
matrix but are at the terminal nodes of the chain graph. One would need to consider all other variables
to be able to explain away the correlation. Alternatively we can see this directly from expanding
Eq. (5).

Proposition 3. A p× p matrix Σ̂ will be covered by the receptive field for a D-Net of depth log2(p)
and dk = 2k−1

Proof. The receptive field of a D-Net with dilation sequence dk = 2k−1 of depth l is O(2l). We can
see this as oki,j will receive input from ok−1a,b at the edge of it’s receptive field, effectively doubling it.
It now follows that we need at least log2(p) layers to cover the receptive field.

Intuitively adjacent edges have a high overlap in their receptive fields and can easily share information
about the non-overlapping components. This is analogous to a parametrized message passing. For
example if edge (i, j) is explained by node k, as k enters the receptive field of edge (i, j − 1),
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Estimate 
Covariance

Input Data

Figure 2: Diagram of the DeepGraph structure discovery architecture used in this work. The input is first
standardized and then the sample covariance matrix is estimated. A neural network consisting of multiple dilated
convolutions and a final 1× 1 convolution layer is used to predict edges corresponding to non-zero entries in the
precision matrix.

the path through (i, j) can already be discounted. In terms of Eq. 5 this can correspond to storing
computations that can be used by neighbor edges from lower levels in the recursion.

Here fwk is shared amongst all nodes and thus we can implement this as a special kind of convolutional
network. We make sure that to have considered all edges relevant to the current set of nodes in
the receptive field which requires us to add values from filters applied at the diagonal to all edges.
In Figure 1 we illustrate the nodes and receptive field considered with respect to the covariance
matrix. This also motivates a straightforward implementation using 2D convolutions (adding separate
convolutions at i, i and j, j to each i, j at each layer to achieve the specific input pattern described)
shown in (Figure 2).

Ultimately our choice of architecture that has shared computations and multiple layers is highly
scalable as compared with a naive fully connected approach and allows leveraging existing optimized
2-D convolutions. In preliminary work we have also considered fully connected layers but this proved
to be much less efficient in terms of storage and scalibility than using deep convolutional networks.

Considering the general n � p case is illustrative. However, the main advantages of making the
computations differentiable and learned from data is that we can take advantage of the sparsity and
structure assumptions on the target function to obtain more efficient results than naive computation of
partial correlation or matrix inversion. As n decreases our estimate of ρ̂i,j becomes inexact and here
a data driven model which can take advantage of the assumptions on the underlying distribution can
more accurately recover the graph structure.

The convolution structure is dependent on the order of the variables used to build the covariance
matrix, which is arbitrary. Permuting the input data we can obtain another estimate of the output. In
the experiments, we leverage these various estimate in an ensembling approach, averaging the results
of several permutations of input. We observe that this generally yields a modest increase in accuracy,
but that even a single node ordering can show substantially improved performance over competing
methods in the literature.

3 EXPERIMENTS

Our experimental evaluations focus on the challenging high dimensional settings in which p > n
and consider both synthetic data and real data from genetics and neuroimaging. In our experiments
we explore how well networks trained on parametric samples generalize, both to unseen synthetic
data and to several real world problems. In order to highlight the generality of the learned networks,
we apply the same network to multiple domains. We train networks taking in 39, 50, and 500 node
graphs. The former sizes are chosen based on the real data we consider in subsequent sections. We
refer to these networks as DeepGraph-39, 50, and 500. In all cases we have 50 feature maps of 3× 3
kernels. The 39 and 50 node network with 6 convolutional layers and dk = k + 1. For the 500 node
network with 8 convolutional layers and dk = 2k+1. We use ReLU activations. The last layer has
1× 1 convolution and a sigmoid outputing a value of 0 to 1 for each edge.

We sample P (X|G) with a sparse prior on P (G) as follows. We first construct a lower diagonal
matrix, L, where each entry has α probability of being zero. Non-zero entries are set uniformly
between −c and c. Multiplying LLT gives a sparse positive definite precision matrix, Θ. This gives
us our P (Θ|G) with a sparse prior on P (G). We sample from the Gaussian N (0,Θ−1) to obtain
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samples of X . Here α corresponds approximately to a specific sparsity level in the final precision
matrix, which we set to produce matrices 92− 96% sparse and c chosen so that partial correlations
range 0 to 1.

Each network is trained continously with new samples generated until the validation error saturates.
For a given precision matrix we generate 5 possible X samples to be used as training data, with a
total of approximately 100K training samples used for each network. The networks are optimized
using ADAM (Kingma & Ba, 2015) coupled with cross-entropy loss as the objective function (cf.
Sec. 2.1). We use batch normalization at each layer. Additionally, we found that using the absolute
value of the true partial correlations as labels, instead of hard binary labels, improves results.

Synthetic Data Evaluation To understand the properties of our learned networks, we evaluated
them on different synthetic data than the ones they were trained on. More specifically, we used a
completely different third party sampler so as to avoid any contamination. We use DeepGraph-39 on
a variety of settings. The same trained network is utilized in the subsequent neuroimaging evaluations
as well. DeepGraph-500 is also used to evaluate larger graphs.

We used the BDGraph R-package to produce sparse precision matrices based on the G-Wishart
distribution (Mohammadi & Wit, 2015) as well as the R-package rags2ridges (Peeters et al.,
2015) to generate data from small-world networks corresponding to the Watts–Strogatz model (Watts
& Strogatz, 1998). We compared our learned estimator against the scikit-learn (Pedregosa et
al, 2011) implementation of Graphical Lasso with regularizer chosen by cross-validation as well as
the Birth-Death Rate MCMC (BDMCMC) method from Mohammadi & Wit (2015).

For each scenario we repeat the experiment for 100 different graphs and small sample observations
showing the average area under the ROC curve (AUC), precision@k corresponding to 5% of possible
edges, and calibration error (CE) (Mohammadi & Wit, 2015).

For graphical lasso we use the partial correlations to indicate confidence in edges; BDGraph
automatically returns posterior probabilities as does our method. Finally to understand the effect
of the regularization parameter we additionally report the result of graphical lasso under optimal
regularizer setting on the testing data.

Our method dominates all other approaches in all cases with p > n (which also corresponds to the
training regime). For the case of random Gaussian graphs with n=35 (as in our training data), and
graph sparsity of 95%, we have superior performance and can further improve on this by averaging
permutations. Next we apply the method to a less straightforward synthetic data, with distributions
typical of many applications. We found that, compared to baseline methods, our network performs
particularly well with high-degree nodes and when the distribution becomes non-normal. In particular
our method performs well on the relevant metrics with small-world networks, a very common family
of graphs in real-world data, obtaining superior precision at the primary levels of interest. Figure 3
shows examples of random and Watts-Strogatz small-world graphs used in these experiments.

Training a new network for each number of samples can pose difficulties with our proposed method.
Thus we evaluted how robust the network DeepGraph-39 is to input covariances obtained from fewer
or more samples. We find that overall the performance is quite good even when lowering the number
of samples to n = 15, we obtain superior performance to the other approaches (Table 1). We also
applied DeepGraph-39 on data from a multivariate generalization of the Laplace distribution (Gómez
et al., 1998). As in other experiments precision matrices were sampled from the G-Wishart at a
sparsity of 95%. Gómez et al. (1998, Proposition 3.1) was applied to produce samples. We find that
DeepGraph-39 performs competitively, despite the discrepancy between train and test distributions.
Experiments with variable sparsity are considered in the supplementary material, which find that
for very sparse graphs, the networks remain robust in performance, while for increased density
performance degrades but remains competitive.

Using the small-world network data generator (Peeters et al., 2015), we demonstrate that we can
update the generic sparse prior to a structured one. We re-train DeepGraph-39 using only 1000
examples of small-world graphs mixed with 1000 examples from the original uniform sparsity model.
We perform just one epoch of training and observe markedly improved performance on this test case
as seen in the last row of Table 1.
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For our final scenario we consider the very challenging setting with 500 nodes and only n = 50
samples. We note that the MCMC based method fails to converge at this scale, while graphical lasso
is very slow as seen in the timing performance and barely performs better than chance. Our method
convincingly outperforms graphical lasso in this scenario. Here we additionally report precision at
just the first 0.05% of edges since competitors perform nearly at chance at the 5% level.

Experimental Setup Method Prec@5% AUC CE
Glasso 0.361 ± 0.011 0.624 ± 0.006 0.07

Glasso (optimal) 0.384 ± 0.011 0.639 ± 0.007 0.07
Gaussian Random Graphs BDGraph 0.441 ± 0.011 0.715 ± 0.007 0.28

(n = 35, p = 39) DeepGraph-39 0.463 ± 0.009 0.738 ± 0.006 0.07
DeepGraph-39+Perm 0.487 ± 0.010 0.740 ± 0.007 0.07

Glasso 0.539 ± 0.014 0.696 ± 0.006 0.07
Glasso (optimal) 0.571 ± 0.011 0.704 ± 0.006 0.07

Gaussian Random Graphs BDGraph 0.648 ± 0.012 0.776 ± 0.007 0.16
(n = 100, p = 39) DeepGraph-39 0.567 ± 0.009 0.759 ± 0.006 0.07

DeepGraph-39+Perm 0.581± 0.008 0.771± 0.006 0.07
Glasso 0.233 ± 0.010 0.566 ± 0.004 0.07

Glasso (optimal) 0.263 ± 0.010 0.578 ± 0.004 0.07
Gaussian Random Graphs BDGraph 0.261 ± 0.009 0.630 ± 0.007 0.41

(n = 15, p = 39) DeepGraph-39 0.326 ± 0.009 0.664 ± 0.008 0.08
DeepGraph-39+Perm 0.360 ± 0.010 0.672 ± 0.008 0.08

Glasso 0.312 ± 0.012 0.605 ± 0.006 0.07
Glasso (optimal) 0.337 ± 0.011 0.622 ± 0.006 0.07

Laplacian Random Graphs BDGraph 0.298 ± 0.009 0.687 ± 0.007 0.36
(n = 35, p = 39) DeepGraph-39 0.415 ± 0.010 0.711 ± 0.007 0.07

DeepGraph-39+Perm 0.445 ± 0.011 0.717 ± 0.007 0.07
Glasso 0.387 ± 0.012 0.588 ± 0.004 0.11

Glasso (optimal) 0.453 ± 0.008 0.640 ± 0.004 0.11
Gaussian Small-World Graphs BDGraph 0.428 ± 0.007 0.691 ± 0.003 0.17

(n=35,p=39) DeepGraph-39 0.479 ± 0.007 0.709 ± 0.003 0.11
DeepGraph-39+Perm 0.453 ± 0.007 0.712 ± 0.003 0.11

DeepGraph-39+update 0.560 ± 0.008 0.821 ± 0.002 0.11
DeepGraph-39+update+Perm 0.555 ± 0.007 0.805 ± 0.003 0.11

Table 1: For each case we generate 100 sparse graphs with 39 nodes and data matrices sampled (with n samples)
from distributions with those underlying graphs. DeepGraph outperforms other methods in terms of AP, AUC,
and precision at 5% (the approximate true sparsity). In terms of precision and AUC DeepGraph has better
performance in all cases except n > p.
We compute the average execution time of our method compared to Graph Lasso and BDGraph on a
CPU in Table 4. We note that we use a production quality version of graph lasso (Pedregosa et al,
2011), whereas we have not optimized the network execution, for which known strategies may be
applied (Denton et al., 2014).

Experimental Setup Method Prec@0.05% Prec@5% AUC CE
random 0.052 ± 0.002 0.053 ± 0.000 0.500 ± 0.000 0.05
Glasso 0.156 ± 0.010 0.055 ± 0.001 0.501 ± 0.000 0.05

Gaussian Random Graphs Glasso (optimal) 0.162 ± 0.010 0.055 ± 0.001 0.501 ± 0.000 0.05
(n=50,p=500) DeepGraph-500 0.449 ± 0.018 0.109 ± 0.002 0.543 ± 0.002 0.06

DeepGraph-500+Perm 0.583 ± 0.018 0.116 ± 0.002 0.547 ± 0.002 0.06

Table 2: Experiment on 500 node graphs with only 50 samples repeated 100 times.
Improved performance in all metrics.

(a) (b)

Figure 3: Example of
(a) random and (b) small
world used in experiments

Cancer Genome Data We perform experiments on a gene expression dataset described in Honorio
et al. (2012). The data come from a cancer genome atlas from 2360 subjects for various types of
cancer. We used the first 50 genes from Honorio et al. (2012, Appendix C.2) of commonly regulated
genes in cancer. We evaluated on two groups of subjects, one with breast invasive carcinoma (BRCA)
consisting of 590 subjects and the other colon adenocarcinoma (CODA) consisting of 174 subjects.

Evaluating edge selection in real-world data is challenging. We use the following methodology: for
each method we select the top-k ranked edges, recomputing the maximum likelihood precision matrix
with support given by the corresponding edge selection method. We then evaluate the likelihood on a
held-out set of data. We repeat this procedure for a range of k. We rely on Algorithm 0 in Hara &
Takemura (2010) to compute the maximum likelihood precision given a support. The experiment is
repeated for each of CODA and BRCA subject groups 150 times. Results are shown in Figure 4. In
all cases we use 40 samples for edge selection and precision estimation. We compare with graphical
lasso as well as the Ledoit-Wolf shrinkage estimator (Ledoit & Wolf, 2004). We additionally consider
the MCMC based approach described in previous section. For graphical lasso and Ledoit-Wolf, edge
selection is based on thresholding partial correlation (Balmand & Dalalyan, 2016).

Additionally, we evaluate the stability of the solutions provided by the various methods. In several
applications a low variance on the estimate of the edge set is important. On Table 3, we report
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Figure 4: Average test likelihood for COAD and BRCA subject groups in gene data and neuroimaging data
using different number of selected edges. Each experiment is repeated 50 times for genetics data. It is repeated
approximately 1500 times in the fMRI to obtain significant results due high variance in the data. DeepGraph
with averaged permutation dominates in all cases for genetics data, while DeepGraph+Permutation is superior or
equal to competing methods in the fMRI data.

Spearman correlations between pairs of solutions, as it is a measure of a monotone link between two
variables. DeepGraph has far better stability in the genome experiments and is competitive in the
fMRI data.

Resting State Functional Connectivity We evaluate our graph discovery method to study brain
functional connectivity in resting-state fMRI data. Correlations in brain activity measured via
fMRI reveal functional interactions between remote brain regions. These are an important mea-
sure to study psychiatric diseases that have no known anatomical support. Typical connec-
tome analysis describes each subject or group by a GGM measuring functional connectivity be-
tween a set of regions (Varoquaux & Craddock, 2013). We use the ABIDE dataset (Di Mar-
tino et al, 2014), a large scale resting state fMRI dataset. It gathers brain scans from 539 in-
dividuals suffering from autism spectrum disorder and 573 controls over 16 sites.1 For our
experiments we use an atlas with 39 regions of interest derived in Varoquaux et al. (2011).

Gene BRCA Gene COAD ABIDE Control ABIDE Autistic
Graph Lasso 0.25± .003 0.34± 0.004 0.21± .003 0.21 ± .003
Ledoit-Wolfe 0.12± 0.002 0.15± 0.003 0.13± .003 0.13± .003

Bdgraph 0.07± 0.002 0.08± 0.002 N/A N/A
DeepGraph 0.48 ± 0.004 0.57 ± 0.005 0.23 ± .004 0.17± .003

DeepGraph +Permute 0.42± 0.003 0.52± 0.006 0.19± .004 0.14± .004

Table 3: Average Spearman correlation results for real data
showing stability of solution amongst 50 trials

50 nodes (s) 500 nodes (s)
sklearn GraphLassoCV 4.81 554.7

BDgraph 42.13 N/A
DeepGraph 0.27 5.6

Table 4: Avg. execution time over 10 trials for
50 and 500 node problem on a CPU for Graph
Lasso, BDMCMC, and DeepGraph

We use the network DeepGraph-39, the same network and parameters from synthetic experiments,
using the same evaluation protocol as used in the genomic data. For both control and autism patients
we use time series from 35 random subjects to estimate edges and corresponding precision matrices.
We find that for both the Autism and Control group we can obtain edge selection comparable to graph
lasso for very few selected edges. When the number of selected edges is in the range above 25 we
begin to perform significantly better in edge selection as seen in Fig. 4. We evaluated stability of the
results as shown in Tab. 3. DeepGraph outperformed the other methods across the board.

ABIDE has high variability across sites and subjects. As a result, to resolve differences between
approaches, we needed to perform 1000 folds to obtain well-separated error bars. We found that the
birth-death MCMC method took very long to converge on this data, moreover the need for many folds
to obtain significant results amongst the methods made this approach prohibitively slow to evaluate.

1http://preprocessed-connectomes-project.github.io/abide/
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DeepGraph(35 samples) L R
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Figure 5: Example solution from DeepGraph and Graph Lasso in the small sample regime on the same 35
samples, along with a larger sample solution of Graph Lasso for reference. DeepGraph is able to extract similar
key edges as graphical lasso
We show the edges returned by Graph Lasso and DeepGraph for a sample from 35 subjects (Fig. 5)
in the control group. We also show the result of a large-sample result based on 368 subjects from
graphical lasso. In visual evaluation of the edges returned by DeepGraph we find that they closely
align with results from a large-sample estimation procedure. Furthermore we can see several edges in
the subsample which were particularly strongly activated in both methods.

4 DISCUSSION AND CONCLUSIONS

Our method was competitive with strong baselines. Even in cases that deviate from standard GGM
sparsity assumptions (e.g. Laplacians, small-world) it performed substantially better. When fine-
tuning on the target distribution performance further improves. Most importantly the learned estimator
generalizes well to real data finding relevant stable edges. We also observed that the learned estimators
generalize to variations not seen at training time (e.g. different n or sparsity), which points to this
potentialy learning generic computations. This also shows potential to more easily scale the method
to different graph sizes. One could consider transfer learning, where a network for one size of data is
used as a starting point to learn a network working on larger dimension data.

Penalized maximum likelihood can provide performance guarantees under restrictive assumptions on
the form of the distribution and not considering the regularization path. In the proposed method one
could obtain empirical bounds under the prescribed data distribution. Additionally, at execution time
the speed of the approach can allow for re-sampling based uncertainty estimates and efficient model
selection (e.g. cross-validation) amongst several trained estimators.

We have introduced the concept of learning an estimator for determining the structure of an undirected
graphical model. A network architecture and sampling procedure for learning such an estimator
for the case of sparse GGMs was proposed. We obtained competitive results on synthetic data with
various underlying distributions, as well as on challenging real-world data. Empirical results show
that our method works particularly well compared to other approaches for small-world networks, an
important class of graphs common in real-world domains. We have shown that neural networks can
obtain improved results over various statistical methods on real datasets, despite being trained with
samples from parametric distributions. Our approach enables straightforward specifications of new
priors and opens new directions in efficient graphical structure discovery from few examples.
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mean ‖Σ̂− Σ‖22 mean ‖Σ̂− Σ‖∞
Empirical 0.0267 0.543

Graph Lasso 0.0223 0.680
DeepGraph 0.0232 0.673

Table 5: Covariance prediction of ABIDE data. Averaged over 50 trials of 35 samples from the ABIDE Control
data Experimental Setup Method Prec@5% AUC CE

Glasso 0.464 ± 0.038 0.726 ± 0.021 0.02
Glasso (optimal) 0.519 ± 0.035 0.754 ± 0.019 0.02

Gaussian Random Graphs BDGraph 0.587 ± 0.033 0.811 ± 0.017 0.15
(n=35,p=39,sparsity=2%) DeepGraph-39 0.590 ± 0.026 0.810 ± 0.019 0.03

DeepGraph-39+Perm 0.598 ± 0.026 0.831 ± 0.017 0.03
Glasso 0.732 ± 0.046 0.562 ± 0.013 0.32

Glasso (optimal) 0.847 ± 0.029 0.595 ± 0.011 0.33
Gaussian Random Graphs BDGraph 0.861 ± 0.015 0.654 ± 0.013 0.33
(n=35,p=39,sparsity=15%) DeepGraph-39 0.678 ± 0.032 0.643 ± 0.012 0.33

DeepGraph-39+Perm 0.792 ± 0.023 0.660 ± 0.011 0.33

Table 6: For each scenario we generate 100 graphs with 39 nodes, and corresponding data matrix sampled from
distributions with those underlying graphs. The number of samples is indicated by n.

A SUPPLEMENTARY EXPERIMENTS

A.1 PREDICTING COVARIANCE MATRICES

Using our framework it is possible to attempt to directly predict an accurate covariance matrix given a noisy one
constructed from few observations. This is a more challenging task than predicting the edges. In this section we
show preliminay experiments which given an empirical covariance matrix from few observations attempts to
predict a more accurate covariance matrix that takes into account underlying sparse data dependency structure.

One challenge is that outputs of our covariance predictor must be on the positive semidefinite cone, thus we
choose to instead predict on the cholesky decompositions, which allows us to always produce positive definite
covariances. We train a similar structure to DeepGraph-39 structure modifying the last layer to be fully connected
linear layer that predicts on the cholesky decomposition of the true covariance matrices generated by our model
with a squared loss.

We evaluate this network using the ABIDE dataset described in Section 3. The ABIDE data has a large number of
samples allowing us to obtain a large sample estimate of the covariance and compare it to our estimator as well as
graphical lasso and empirical covariance estimators. Using the large sample ABIDE empirical covariance matrix.
We find that we can obtain competitive `2 and `∞ norm using few samples. We use 403 subjects from the ABIDE
Control group each with a recording of 150 − 200 samples to construct covariance matrix, totaling 77 330
samples (some correlated). This acts as our very approximate estimate of the population Σ. We then evaluate
covariance estimation on 35 samples using the empirical covariance estimator, graphical lasso, and DeepGraph
trained to output covariance matrices. We repeat the experiment for 50 different subsamples of the data. We see
in 5 that the prediction approach can obtain competitive results. In terms of `2 graphical lasso performs better,
however our estimate is better than empirical covariance estimation and much faster then graphical lasso. In
some applications such as robust estimation a fast estimate of the covariance matrix (automatically embedding
sparsity assumptions) can be of great use. For `∞ error we see the empirical covariance estimation outperforms
graphical lasso and DeepGraph for this dataset, while DeepGraph performs better in terms of this metric.

We note these results are preliminary, as the covariance predicting networks were not heavily optimized, moreover
the ABIDE dataset is very noisy even when pre-processed and thus even the large sample covariance estimate
may not be accurate. We believe this is an interesting alternate application of our paper.

A.2 ADDITIONAL SYNTHETIC RESULTS ON SPARSITY

We investigate the affect of sparsity on DeepGraph-39 which has been trained with input that has sparsity
96% − 92% sparse. We find that DeepGraph performs well at the 2% sparsity level despite not seeing this
at training time. At the same time performance begins to degrade for 15% but is still competitive in several
categories. The results are shown in Table 6. Future investigation can consider how alternate variation of sparsity
at training time will affect these results.

A.3 APPLICATION OF LARGER NETWORK ON SMALLER INPUT

We perform preliminary investigation of application of a network trained for a larger number of nodes to a
smaller set of nodes. Specifically, we consider the breast invasive carcinoma groups gene data. We now take all
175 valid genes from Appendix C.2 of Honorio et al. (2012). We take the network trained on 500 nodes in the
synthetic experiments section. We use the same experimental setup as in the gene experiments. The 175× 175
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Figure 6: Average test likelihood over 50 trials of applying a network trained for 500 nodes, used on a 175 node
problem
covariance matrix from 40 samples and padded to the appropriate size. We observe that DeepGraph has similar
performance to graph lasso while permuting the input and ensembling the result gives substantial improvement.

A.4 PERMUTATION AS ENSEMBLE METHOD

As discussed in Section 2.3, permuting the input and averaging several permutations can produce an improved
result empirically. We interpret this as a typical ensembling method. This can be an advantage of the proposed
architecture as we are able to easily use standard ensemble techniques. We perform an experiment to further
verify that indeed the permutation of the input (and subsequent inverse permutation) allows us to produce
separate classifiers that have uncorrelated errors.

We use the setup from the synthetic experiments with DeepGraph-39 in Section 3 with n = 35 and p = 39.
We construct 20 permutation matrices as in the experimental section. Treating each as a separate classifier
we compute the correlation coefficient of the errors on 50 synthetic input examples. We find that the average
correlation coefficient of the errors of two classifiers is 0.028± 0.002, suggesting they are uncorrelated. Finally
we note the individual errors are relatively small, as can already be inferred from our extensive experimental
results in Section 3. We however compute the average absolute error of all the outputs across each permutation
for this set of inputs as 0.03, notably the range of outputs is 0 to 1. Thus since prediction error differ at each
permutation but are accurate we can average and yield a lower total prediction error.

Finally we note that our method is extremely efficient computationally thus averaging the results of several
permutations is practical even as the graph becomes large.
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