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ABSTRACT

We propose a new objective for generative adversarial networks (GANs) that is
aimed to address current issues in GANs such as mode collapse and unstable con-
vergence. Our approach stems from the hockey-stick divergence that has proper-
ties we claim to be of great importance in generative models. We provide theoret-
ical support for the model and preliminary results on synthetic Gaussian data.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) has been an extremely suc-
cessful class of generative models since its emergence. Due to its notoriously hard training and
convergence issues as well as mode collapse (Goodfellow, 2016), a number of different versions of
GANs have arisen (see Poole et al. (2016), Zhao et al. (2016), Chen et al. (2016), etc). The core idea
behind all the GANs is a 2-player minimax game between the generator G and the discriminator
D. The generator tries to generate new samples x ∼ Pg taking in noise z ∼ Pz as input so that
the generated distribution Pg « Pr is close to the real distribution. The discriminator’s goal is to
differentiate between samples from Pg and Pr in order to makeG strive for indistinguishable results.

A modification in the objective of the minimax game changes the optimization of the model, po-
tentially giving rise to a new GAN. A desired property of the objective is having the minimization
part by the generator with an optimal (under constraints) discriminator indicate Pg converging to
Pr in some sense. For instance, the original vanilla GAN has the generator minimizing the Jensen-
Shannon divergence assuming an optimal discriminator. Similarly, Wasserstein-GAN (Arjovsky
et al., 2017) was developed to have the generator minimize the Earth-Mover distance. In this paper,
we present a new GAN objective (HS-GAN) that corresponds to the so called hockey-stick diver-
gence and explore possible theoretical and practical properties of it. It is worth to take a look at the
general version of a GAN objective before proceeding to the specific cases. The minimax game is
represented as follows

min
G

max
D

E
x∼Pr

rmpDpxqqs ` E
x∼Pg

rmp1´Dpxqqs, (1)

with an increasing and concave measuring functionmp¨q (Arora et al., 2017). Note that the objective
(1) is consistent with the intuition described above as the discriminator aims to have a high score
for real data and low score for generated data while the generator tries to fool the discriminator in
believing generated data is real, i.e. high score for generated data. The remaining sections intro-
duce the Hockey-Stick GAN and investigate its advantages and drawbacks both theoretically and
practically.

2 HOCKEY-STICK DIVERGENCE

The hockey-stick divergence (Sason & Verdu, 2016) is a member of the f -divergence family.
Definition 1. The f -divergence family is a family of divergences between probability distributions
given by

Df pP ‖ Qq “
ż

X
qpxqf

ˆ

ppxq

qpxq

˙

dx

where f : R` Ñ R is a convex, lower semicontinuous function.
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This is a very well-known family in information theory with a number of essential properties. It
includes the famous Kullback-Leibler, Jensen-Shannon, χ2, total variation and other divergences.
The hockey-stick divergence is an extension of the total variation distance.
Definition 2. The hockey-stick divergence is the f -divergence corresponding to the ‘hockey-stick’
function fγptq “ maxpt´ γ, 0q with γ ě 1,

EγpP ‖ Qq “ Dfγ pP ‖ Qq “
ż

X
qpxqmax

ˆ

ppxq

qpxq
´ γ, 0

˙

dx “

ż

ppxqěγqpxq

pppxq ´ γqpxqqdx

Notice that when γ “ 1, we have that the hockey-stick divergence Eγ“1pP ‖ Qq “ 1
2 |P ´ Q| is

equivalent to the total variation distance.

There are several properties of the hockey-stick divergence that are worth to consider for the later
analysis of HS-GAN. First, unlike most of the common divergences, EγpP ‖ Qq with γ ą 1 can
equal zero even when P and Q are different (see Appendix). This is not desirable as one cannot
guarantee anything certain about closeness of P and Q even when having zero divergence between
them.

The most attractive part of the hockey-stick divergence is its flexibility of the parameter γ. According
to (Sason & Verdu, 2016), it contains enough information to determine KL, Hellinger and almost
any other f -divergence. More specifically, the set of values

tpEγpP ‖ Qq, EγpQ ‖ P qq, γ ě 1u

is known to uniquely determine the values of all f -divergences with twice differentiable f . It is
straightforward to show that tEγpQ ‖ P q, γ ě 1u is equivalent to tEγpP ‖ Qq, 0 ă γ ď 1u (see
Appendix). Hence, we conclude that the set of values tEγpP ‖ Qq, γ ą 0u is enough to determine
the values of almost all f -divergences. The information stored in the hockey-stick divergence with
a flexible γ can serve as a great advantage in the design of a generative model.

3 HS-GAN

3.1 METHOD OF f -GAN

The f -GAN method introduced by (Nowozin et al., 2016) is a general technique for the family of
f -divergences. In particular, it describes a method for constructing objective functions that become
equivalent to an f -divergence after optimizing the discriminator. The main result of the method is
the following variational bound on f -divergences

Df pP ‖ Qq ě sup
TPT

ˆ

E
x∼P

rT pxqs ´ E
x∼Q

rf˚pT pxqqs

˙

(2)

where T is an arbitrary class of functions T : X Ñ R and f˚p¨q is the Fenchel conjugate of fp¨q de-
fined as f˚ptq “ supuPdomf tut´ fpuqu. The bound (2) follows from the Fenchel-Moreau theorem
that the biconjugate f˚˚ “ f is the function itself when f is convex and lower semicontinuous as
well as Jensen’s inequality to switch the order of integration and supremum. Fortunately, this bound
is also tight, specifically for

Toptpxq “ f 1
ˆ

ppxq

qpxq

˙

3.2 HOCKEY-STICK GAN

Having the heavy artillery of f -GAN, we proceed to designing the Hockey-Stick GAN presented in
the following theorem.
Theorem 1. If the range of D is r0, 1s, then

max
D

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs “ EγpPr ‖ Pgq, (3)

1prpxqěγpgpxq “ argmax
D

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs (4)
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Proofs of this theorem can be found in the Appendix. Notice that (3) implies that HS-GAN with the
objective

min
G

max
D:XÑr0,1s

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs, where γ ą 0 (5)

has the generator minimizing the hockey-stick divergence in case of an optimal discriminator. This
is the exact property of HS-GAN that makes the model worthwhile. Moreover, ensuring the range
constraint of r0, 1s on the discriminator has a standard solution to it such as having a sigmoid or
tanh output activation function.

Even though theorem 1 provides a theoretical justification for HS-GAN, a substantial downside of
HS-GANs comes from the nature of the hockey-stick divergence. As mentioned in section 2, Eγ for
γ ą 1 does not satisfy the identity condition that the majority of divergences satisfy. Hence, there
are no guarantees of closeness of distributions P,Q even if EγpP ‖ Qq “ 0. In terms of HS-GAN,
this means that even though in presence of an optimal discriminator the generator is minimizing the
hockey-stick divergence, there is no guarantee that Pg « Pr even if the generator converges at a
global minimum.
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Figure 1: Experimental results on fitting a Gaussian distribution using vanilla GAN and Hockey-
Stick GAN. Red line indicates the real (normal) distribution with mean µ “ 0 and variance σ2 “ 2.
Blue histograms represent the generated distributions by vanilla GAN (left top) and HS-GAN with
γ “ 0.5, 1, 2. Notice that γ “ 2 fits the real distribution even though others fail to do so.

4 EXPERIMENTS

In order to illustrate the properties of HS-GAN, we run simple experiments with low-capacity neu-
ral networks over synthetic Gaussian data (see Figure 1). The experiments show convergence of
HS-GAN to different expected distributions while varying the value of gamma. The obtained dis-
tributions correspond to the intuition behind the properties of the hockey-stick divergence since, as
mentioned earlier, distributions don’t have to be identical for the hockey-stick divergence to equal
0. However, we can already see the usefulness of the varying gamma parameter that could be lever-
aged in a number of ways. Despite many other conducted experiments, more foundational practical
results are left for future work.
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APPENDIX

4.1 HOCKEY-STICK PROPERTIES

Claim 1. There exist non-identical distributions P,Q such that EγpP ‖ Qq “ 0 for all γ ą 1.

Proof. Consider the following Bernoulli distributions P “ Berp 1`γ2γ q and Q “ Berp 1γ q for γ ą 1.
Notice that

1` γ

2γ
“ pp0q ă γqp0q “ 1,

γ ´ 1

2γ
“ pp1q ă γqp1q “ γ ´ 1

which means that EγpP ‖ Qq “ 0 while P ‰ Q.

Claim 2. The two sets tEγpQ ‖ P q, γ ě 1u and tEγpP ‖ Qq, 0 ă γ ď 1u are equivalent in terms
of information stored.

Proof. Take 0 ă γ ď 1 and consider

E 1
γ
pQ ‖ P q “

ż

qpxqěppxq{γ

pqpxq ´
1

γ
ppxqqdx “

1

γ

˜

´

ż

γqpxqąppxq

pppxq ´ γqpxqqdx

¸

“

“
1

γ

˜

´

ż

pppxq ´ γqpxqqdx`

ż

ppxqěγqpxq

pppxq ´ γqpxqqdx

¸

“
1

γ
pγ ´ 1` EγpP ‖ Qqq

Thus, for each 0 ă γ ď 1 the divergence values E 1
γ
pQ ‖ P q and EγpP ‖ Qq contain equivalent

information and the claim is proved.

4.2 PROOFS

Theorem. If the range of D is r0, 1s, then

max
D

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs “ EγpPr ‖ Pgq,

1prpxqěγpgpxq “ argmax
D

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs

Proof. Let us first compute the Fenchel conjugate of fγ given by f˚γ ptq “ supuě0tut ´ fγpuqu.
When u ě γ we have supuěγtut´u`γu “ γt for t ď 1 and supuěγtut´u`γu “ `8 for t ą 1.
Similarly, when 0 ď u ď γ we get that sup0ďuďγtutu “ γt for t ě 0 and sup0ďuďγtutu “ 0 for
t ă 0. Hence, overall we get that

f˚γ ptq “

$

&

%

`8, for t ą 1

γt, for 0 ď t ď 1

0, for t ă 0

Given the assumption that the range of D is r0, 1s, we obtain from (2) that

EγpPr ‖ Pgq “ Dfγ pPr ‖ Pgq ě sup
D:XÑr0,1s

ˆ

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs

˙

(6)

In addition to (6), it is easy to check that Doptpxq “ f 1γp
prpxq
pgpxq

q “ 1prpxqěγpgpxq satisfies equality
under the constraint of r0, 1s range

E
x∼Pr

rDoptpxqs ´ γ E
x∼Pg

rDoptpxqs “

ż

X
pprpxq ´ γpgpxqq1prpxqěγpgpxqdx “ EγpPr ‖ Pgq

which along with (6) shows both (3) and (4) and finishes the proof of the theorem.
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Alternate Proof of Theorem. Alternative to the f -GAN method, it is possible to provide an elemen-
tary proof to the theorem. To prove the statements (3) and (4) it is enough to just break up the
integral and bound each separately

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs “

ż

X
pprpxq ´ γpgpxqqDpxqdx “

“

ż

prpxqěγpgpxq

pprpxq ´ γpgpxqqDpxqdx`

ż

prpxqăγpgpxq

pprpxq ´ γpgpxqqDpxqdx

To upper bound the first integral notice that as prpxq ´ γpgpxq ě 0 we can simply replace Dpxq by
its upper bound, i.e. 1. The second integral is less than or equal to 0 as for each x in that region we
have prpxq ´ γpgpxq ă 0 and Dpxq ě 0. Hence, we obtain that

E
x∼Pr

rDpxqs ´ γ E
x∼Pg

rDpxqs ď

ż

prpxqěγpgpxq

pprpxq ´ γpgpxqqdx` 0 “ EγpPr ‖ Pgq

This shows (3) and makes it clear where the choice of optimal function (4) came from.
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