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ABSTRACT

In this work, we focus on the problem of grounding language by training an agent
to follow a set of natural language instructions and navigate to a target object
in a 2D grid environment. The agent receives visual information through raw
pixels and a natural language instruction telling what task needs to be achieved.
Other than these two sources of information, our model does not have any prior
information of both the visual and textual modalities and is end-to-end trainable.
We develop an attention mechanism for multi-modal fusion of visual and textual
modalities that allows the agent to learn to complete the navigation tasks and also
achieve language grounding. Our experimental results show that our attention
mechanism outperforms the existing multi-modal fusion mechanisms proposed in
order to solve the above mentioned navigation task. We demonstrate through the
visualization of attention weights that our model learns to correlate attributes of
the object referred in the instruction with visual representations and also show
that the learnt textual representations are semantically meaningful as they follow
vector arithmetic and are also consistent enough to induce translation between in-
structions in different natural languages. We also show that our model generalizes
effectively to unseen scenarios and exhibit zero-shot generalization capabilities.
In order to simulate the above described challenges, we introduce a new 2D envi-
ronment for an agent to jointly learn visual and textual modalities.

1 INTRODUCTION

Figure 1: The agent (blue in
color) should learn to read
the instruction and navigate
to green apple.

Understanding of natural language instructions is an important as-
pect of an Artificial Intelligence (AI) system. In order to success-
fully accomplish tasks specified by natural language instructions, an
agent has to extract representations of language that are semantically
meaningful and ground it in perceptual elements and actions in the
environment.

Humans have the ability to understand the true essence of the words
and thus they can easily decipher sentences even if it contains some
new combination of words. It is not unreasonable to expect the same
from an AI agent. The information extracted by agent from the lan-
guage should be such that it corresponds to the true meaning of the
word so that it enables the agent to generalize to even unseen com-
binations of words. For instance, when given sufficient information
about the words such as ’green’ and ’bag’, it should automatically
figure out as to what ’green bag’ essentially means.

Consider a task in which an agent has to learn to navigate to a target
object in a 2D grid environment as shown in figure 1. The environ-
ment consists of many objects with different attributes (in our case:
green apple, red apple, blue sofa, green sofa, an orange fruit, red
car) and multiple obstacles. The agent receives visual information
through raw pixels and an instruction telling what task needs to be
achieved. The challenges that the agent has to tackle here are manyfold: a) the agent has to develop
the capability to recognize various objects, b) have some memory of objects seen in previous states
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while exploring the environment as the objects may occlude each other and/or may not be present in
the agent’s field of view c) ground the instruction in visual elements and actions in the environment
and d) learn a policy to navigate to the target object by avoiding the obstacles and other non-target
objects.

We tackle this problem by proposing an end-to-end trainable architecture that creates a combined
representation of the image observed by the agent and the instruction it receives. Our model does
not have any prior information of both the visual and textual modalities. We develop an attention
mechanism for multimodal fusion of visual and textual modalities. Our experimental results show
that our attention mechanism outperforms the existing multimodal fusion mechanisms proposed in
order to solve the above mentioned task. We demonstrate through the visualization of attention
weights that our model learns to correlate attributes of the object referred in the instruction with
visual representations and also show that the learnt textual representations are semantically mean-
ingful as they follow vector arithmetic and are also consistent enough to induce translation between
instructions in different natural languages. We also show that our model generalizes effectively to
unseen scenarios and exhibit zero-shot (ZS) generalization capabilities. In order to simulate the
above described challenges, we introduce a new 2D environment for an agent to jointly learn visual
and textual modalities. Our 2D environment is also thread compatible. Finally, in order to enable
the reproducibility of our research through participation in Pineau (2017) and foster further research
in this direction, we open source our environment as well as the code and models that we developed.

2 RELATED WORK

The task of grounding natural language instructions has been well explored by researchers in dif-
ferent domains. From the robotics domain : (Guadarrama et al. (2013), Tellex et al. (2011)) focus
on grounding verbs in navigational instructions like go, pick up, move, follow etc. (Chao et al.
(2011), Lemaignan et al. (2012)) ground various concepts through human-robot interaction. (Artzi
& Zettlemoyer (2013), Misra et al. (2016)) focus on grounding natural language instructions by
mapping instructions to action sequences in 2D and 3D environments respectively. Given a natural
language instruction, Chen & Mooney (2011) attempt to learn a navigation policy that is optimal
in a 2D maze-like setting by relying on a semantic parser. Mei et al. (2016) focus on neural map-
ping of navigational instructions to action sequences by representing the state of the world using
bag-of-words visual features.

Deep reinforcement learning agents have been previously used to solve tasks in both 2D Mnih et al.
(2015) and 3D Mnih et al. (2016) environments. More recently, these approaches have been used for
playing first-person shooter games in Lample & Chaplot (2017) and Kempka et al. (2016). These
works focus on learning optimal policy for different tasks using only visual features, while our
work involves the agent receiving natural language instruction in addition to visual state of the
environment.

The authors in Yu et al. (2017) and concurrent ICLR 2018 submission Anonymous1 (2018) pro-
pose an end-to-end framework by which an agent learns to navigate in 2D maze-like environment
(XWORLD) using natural language instructions. They simultaneously learn visual representations,
syntax and semantics of natural language instruction as well as the navigation action to perform. The
task of the agent is basically navigation plus Visual Question Answering (VQA) Antol et al. (2015);
the agent at every step either gets a navigation instruction or a question about the environment, and
the output is either a navigation action or answer to the question posed. Another concurrent ICLR
2018 submission Anonymous2 (2018) use a simple concatenation of visual and textual represen-
tations. Chaplot et al. (2017) propose a Gated-Attention architecture for task oriented language
grounding and evaluate their approach on a new environment built over VizDoom Kempka et al.
(2016). They do hadamard product between textual and visual representations, whereas we generate
multiple textual embeddings by passing Gated Recurrent Unit (GRU) Chung et al. (2014) features to
parallel Fully-Connected (FC) layers and then use each of them to convolve with the visual features
thus generating multiple attention maps.

In our work, we present a simple attention based architecture in order to ground natural language
instructions in a 2D grid environment. Our model does not have any prior information of both the
visual and textual modalities and is end-to-end trainable without the requirement of external seman-
tic parser or language models as with prior work in robotics domain mentioned previously. Through
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(a) Complete view of environment. (b) Egocentric view as seen by agent.

Figure 2: Example state of environment.

our multimodal fusion mechanism, we obtain a joint concise representation of both the visual and
textual modalities which is sufficient for the agent to learn optimal policy. When compared to prior
work Yu et al. (2017) and concurrent ICLR 2018 submission Anonymous1 (2018), the scenarios
we work with are more complex as our environment has a larger grid size, more number of ob-
jects present concurrently in it, increased complexity of natural language instructions (two sentence
instructions). In addition, the new environment introduced by us is thread compatible.

3 PROBLEM DESCRIPTION

We tackle the problem in which an agent learns to navigate to the target object in a 2D grid envi-
ronment. The agent receives a natural language instruction at the beginning of every episode which
specifies the characteristics of the target object. The episode terminates when the agent reaches the
target object or the number of time steps exceed the maximum episode length. The environment
consists of several other objects as well as many obstacles which act as distractors. The agent re-
ceives a negative reward when it reaches any non-target object or an obstacle. The agent sees an
egocentric view of the environment in which the objects present outside a certain predefined radius
are not visible and hence the agent does not have complete knowledge about the environment. The
objective of the agent is to learn an optimal policy so that it reaches the correct object before the
episode terminates.

4 ENVIRONMENT

We create a new 2-D grid based environment in which the agent interacts with the environment and
performs one of the four actions: up, down, left and right. Each scenario in the environment consists
of an agent, a list of objects and a list of obstacles (walls) as shown in figure 2a. Every object and
obstacle has a set of attributes associated with it like color, size etc. Environment is completely
customizable as the grid size, number of objects, type of objects, number of obstacles along with
their corresponding attributes can be specified in a configurable specification file which is in JSON
format (refer section 9.6 for an example configuration file). The agent perceives the environment
through raw RGB pixels with an egocentric view, in which we blacken out the region outside certain
predefined radius centered at the agent(figure 2b). At the beginning of every episode, the agent
receives a natural language instruction (Eg: ”Go to red apple”) and obtains a positive reward (+1) on
successful completion of the task. The task is considered successful if the agent is able to navigate
to the target object (red apple in this case) correctly before the episode ends (which is specified by
max episode length). The agent gets a negative reward (-1) whenever it hits a wall. The agent also
receives a small negative (-0.5) reward if it reaches any non-target object and the non-target object
is then placed at a new random location within the grid. In every episode, the environment is reset
randomly, i.e., the agent, the target object, non-target objects are placed at random locations in the
grid. This means that the objects may occlude each other and/or may not be in the agent’s egocentric
view in the initial configuration. The instruction is generated based on the initial configuration of
the environment. Some example instructions are given below:
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• Go to car or Car is your target(or destination). If the environment consists of multiple cars
that differ in their size and/or color attributes, the agent gets a positive reward if it navigates
to any one of them.
• Go to green apple or Green apple is your target(or destination). The agent gets a posi-

tive reward only if it reaches the green apple. These types of instructions test the agent’s
capability to distinguish between objects on the basis of color.
• Go to medium blue sofa or Medium blue sofa is your target(or destination). If there are

multiple blue sofas in the environment which differ in their size attribute, the agent gets
a positive reward only if it navigates to the blue sofa with medium size. These type of
instructions demonstrate the agent’s ability to distinguish between multiple instances of the
same object which have different sizes based on visual appearance.
• Go to south of blue bus. The agent receives a positive reward only if it reaches the grid

which is to the south of blue bus.
• Go to bottom right corner. The agent gets a positive reward only if it reaches the bottom-

most and rightmost grid in the environment.
• There is a orange chair. Go to it. The environment can consist of multiple instances of

orange chair which differ in their size attribute and the agent gets a positive reward if it
reaches any one of them.
• There is a small blue bag. Go to it. The environment can consists of multiple instances of

blue bag which differ in their size attribute, however the agent gets a positive reward only if
it reaches the small blue bag. These type of instructions demonstrate the agent’s ability to
distinguish between multiple instances of the same object which have different sizes based
on visual appearance.
• There are multiple green tree. Go to smaller(or larger) one. These type of instruction are

generated only when there are multiple instances of an object, distinguished on the basis of
size are present in the environment. The agent is required to correlate the word smaller(or
larger) with the corresponding size of object and then navigate to it accordingly.
• There is a small yellow banana and a medium black television. Go to former(or latter).

The agent is required to understand the word former or latter and go to either small yellow
banana or medium black television respectively.
• If small yellow flower is present then go to small orange cat else go to medium black bear.

The agent is required to check if small yellow flower is present in the environment or not
and accordingly navigate to the correct object.

The complete set of objects and instructions are provided in section 9.

5 PROPOSED APPROACH

In order to solve the above mentioned problem, we propose an architecture which can be trained
end-to-end and does not have any prior knowledge of visual and textual modalities. The proposed
model can be divided into three phases a) input processing phase b) multi-modal fusion phase and
c) policy learning phase, as illustrated in figure 3

5.1 INPUT PROCESSING PHASE

The agent at each time step (t) receives a RGB image of the environment which is egocentric (Et).
It also receives an instruction (I) at the start of every episode, which contains the details of what task
needs to be performed by the agent. The image Et is passed through several layers of convolutional
neural network (CNN) to obtain a good representation of the image. We do not use pooling layers
because pooling leads to translational invariance, however in case of our problem the location of the
target object, non-target object and obstacles are crucial in determining the potential reward. The
final representation of the image obtained in this phase is RE and is of dimension W×H×D, where
W , H are width and height of each feature map and D represents the number of feature maps. In our
case the image representation has 64 channels, i.e. D = 64 and W = H = 7 (Refer section 6.1 for
exact details of network hyper-parameters). Every word in the instruction I is converted into an one
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Figure 3: Our network architecture consisting of all three phases.

Figure 4: Multimodal fusion phase: each vector obtained from FC layer is used as 1x1 filter to
perform convolution over visual representation.
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hot vector and then concatenated before passing it through the GRU. In all our evaluation scenarios,
the maximum number of words present in the instruction is 18. The total number of possible unique
words (i.e. vocabulary size) is 72. The complete list of these words are provided in section 9.4.
Sentences that have less than 18 words are zero padded to ensure that all sentences are represented
by 18 one hot vectors. The concatenated one hot vectors are passed through a GRU and the output
of the final time step is used as a representation of the entire sentence. The output of the GRU is then
passed through multiple parallel (say n) FC layers each of size 64 (equal to the number of feature
maps in the final image representation) and reshaped into 1× 1× 64× 1. This results in generation
of vectors V1, V2 . . . ,Vn

5.2 MULTIMODAL FUSION PHASE

We propose an attention method for the multimodal fusion of RE and Vj where j ∈ {1,2, . . . ,n}.
Each Vj is used as a 1 × 1 filter to perform 2D convolution over feature volume RE which is of
dimension 7 × 7 × 64. This is feasible because both RE and Vj , each have 64 channels. Each
such fusion results in an attention map of dimension 7 × 7 × 1 where the value of each pixel is the
dot product across channels of the filter with the corresponding pixel in the visual representation
(figure 4 provides an illustration of this phase). All these attention maps are then concatenated to
result in a tensor of dimension 7 × 7 × n (say Mattn and the corresponding model A3Cattn). In
our experiments we try with n ∈ {1,5,10} (refer section 5 for comparison of performance). This
attention mechanism draws inspiration from Xu et al. (2015). The visual representation obtained
through multiple layers of convolutions can detect various attributes (such as color, shape, size) of
the objects in the environment. The agent is required to attend to specific attributes of the objects
based on the instruction. For example, when the instruction is ”Go to blue sofa”, the agent should
learn to attend to objects that are ’blue’ in color as well as attend to objects that resemble a ’sofa’.
We demonstrate through the visualization of attention weights in section 5 that our attention method
learns to correlate attributes of the object referred in the instruction with visual representations.
Mattn is then fed as input to the policy learning phase. Through this fusion mechanism, we have
obtained a concise representation (Mattn) of both the textual and visual modalities which symbolizes
consciousness of an AI agent as highlighted in Bengio (2017). We also consider a small variant of
this fusion mechanism where we concatenate one of the attention maps with the visual representation
to result in a tensor of dimension 7×7×65 (say Mnetattn and the corresponding model A3Cnetattn).
We show in section 5 that the policy learnt by the agent when Mnetattn is fed as input to the policy
learning phase performs poorly on our evaluation scenarios when compared to the case when Mattn

is fed as input to the policy learning phase. We also compare our method with previously proposed
multimodal fusion methods: a) Gated Attention unit Chaplot et al. (2017) (say A3Chadamard) b)
Concatenation unit Yu et al. (2017) (say A3Cconcat). We replicate the complete architecture along
with the hyperparameters used by the authors in Chaplot et al. (2017) for our comparison.

5.3 POLICY LEARNING PHASE

This phase receives as input, the output of the multimodal fusion phase. We adopt a reinforcement
learning approach using the Asynchronous Advantage Actor-Critic (A3C) Mnih et al. (2016) algo-
rithm. In A3C, there is a global network and multiple local worker agents each having their own
network parameters. Each of these worker agents interacts with it’s own copy of environment si-
multaneously and gradients of these worker agents are used to update the global network. Refer
section 6.1 for exact details of our architecture.

6 EXPERIMENTAL SETUP

In all our experiments, we fix the grid size to be 10x10 with 63 objects and 8 obstacles. At the
start of every episode, we randomly select between 3 to 6 objects from the set of 63 objects and a
single instruction is randomly selected from a set of feasible instructions which are generated based
on the initial configuration of the environment. Since the agents, objects and obstacles are placed
at random locations in the grid, we take into consideration the reachability of the agent to various
objects while generating the set of feasible instructions for the given episode. The episode terminates
if the agent navigates to the target object or when time steps exceed the maximum episode length.
We use accuracy of the agent and mean reward it obtains as the evaluation metrics. The accuracy
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is the number of times the agent reaches the target object successfully before the episode terminates
and mean reward is the average reward that the agent obtains across all episodes. We consider two
modes of evaluation:

1) Unseen scenario generalization: At test time, the agent is evaluated in unseen environment
scenarios with instructions in the train set. The scenario consists of combination of objects placed
at random locations not seen before by the agent at train time.

2) Zero-shot generalization: At test time, the agent is evaluated with unseen instructions that
consists of new combinations of attribute-object pairs never seen during training. The environment
scenario is also unseen in this case.

6.1 IMPLEMENTATION DETAILS

The input to the input processing phase neural network is a RGB image of size 84x84x3 and an
instruction. The input image is processed with a CNN that has four convolution layers. The first
layer convolves the image with 32 filters of 5x5 kernel size with stride 2, followed by another 32
filters of 5x5 kernel size with stride 2. This is then followed by 64 filters of 4x4 kernel size with
stride 1 and finally by another 64 filters of 3x3 kernel size with stride 2. The input instruction is
encoded through a GRU of size 16. The encoded instruction is then passed through a FC layer
of size 64. The visual mode is then combined with textual mode through various multi-modal
fusion mechanisms: a) simple concatenation, b) our attention mechanism and its variants, c) Gated-
Attention unit (Hadamard product). In case of our attention mechanism, the multiple attention
maps are concatenated and passed through two other convolutional layers (each having 64 filters
of 3x3 kernel size with stride 1) before passing it to the LSTM layer. All our experiments are
performed with A3C algorithm. Our policy learning phase has a LSTM layer of size 32, followed
by fully connected layer of size 4 to estimate the policy function as well as fully connected layer
of size 1 to predict value function. The LSTM layer enables the agent to have some memory of
previous states. This is crucial as the agent receives egocentric view in which all the objects may
not be present and hence need to remember the previously seen objects. The network parameters are
shared for predicting both the policy function and the value function except the final fully connected
layer. All the convolutional layers and FC layers have PReLU activations He et al. (2015). We
observed during our experimentation the importance of not suppressing the negative gradients, as
the same architecture in which all convolutional and FC layers have ReLU activations Nair & Hinton
(2010) performed poorly on our evaluation scenarios (Refer section 5 for this comparison). The A3C
algorithm was trained using Adam optimizer Kingma & Ba (2014) with an annealing learning rate
schedule starting with 0.0001 and reducing by a fraction of 0.9 after every 10000 steps. For each
experiment, we run 32 parallel threads and we use a discount factor of 0.99 for calculating expected
rewards. The gradients of each of these worker threads are clipped in order to prevent overly-large
parameter updates which can destabilize the policy. As described in Mnih et al. (2016) we use
entropy regularization for improved exploration. Further, in order to reduce the variance of the
policy gradient updates, we use the Generalized Advantage Estimator Schulman et al. (2015).

7 RESULTS AND DISCUSSIONS

Table 1 depicts the performance of our attention mechanism (A3Cattn) as described in section 5.2
for various n values on unseen scenarios. The accuracy and mean reward values are averaged over
100 episodes. We observe from the table that n = 5 achieves best mean reward of 0.95. We also
found that when A3Cattn (n = 5) is evaluated under zero-shot generalization settings, it obtains a
mean reward of 0.8. For zero-shot evaluation, we measure the agent’s success rate on 19 instructions
that were held out during training and these instructions consist of new combinations of attribute-
object pairs not seen before by the agent during train phase (refer section 9.5 for these instructions).
The results have been updated in the table 1. Figure 11a shows the mean reward obtained by our
A3Cattn model for different n values as the training progresses. We observe from the graph that
n = 5 converges faster to higher reward values. Figure 11b shows the comparison of our best per-
forming A3Cattn model in which all convolutional and FC layers have PReLU activations against
the case in which all convolutional and FC layers have ReLU activations. It is evident from the
graph the performance gain obtained just by not suppressing negative gradients using PReLU and
accentuates the importance of choosing appropriate activation function. Table 2 portrays the perfor-
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(a) Performance of A3Cattn (n = 1, 5, 10). (b) Performance of A3Cattn (n = 5) with PReLU
vs ReLU.

(c) Performance of A3Cattn (n = 5) with other
baseline methods.

Figure 5: Performance analysis of our attention mechanism and comparison with other baseline
methods.

mance of A3Cattn with n = 5 with a variant of our attention method (A3Cnetattn) as well as with
other previously proposed multimodal fusion mechanism methods (A3Chadamard and A3Cconcat)
as described in section 5.2. From figure 11c, it is apparent that our A3Cattn with n = 5 converges
faster and performs significantly better than other methods.

Table 1: The mean reward and accuracy of our model for different n values on unseen scenario
generalization and ZS instructions.

Model mean reward mean reward (ZS) accuracy
A3Cattn (n = 1) 0.87 0.73 0.86
A3Cattn (n = 5) 0.95 0.8 0.92
A3Cattn (n = 10) 0.94 0.75 0.88

Table 2: Comparison of our model with other baseline methods on unseen scenario generalization.

Model mean reward accuracy
A3Cattn (n = 5) 0.95 0.92

A3Cnetattn -2.8 0.1
A3Chadamard 0.4 0.5
A3Cconcat -2.9 0.1

We also visualize the attention maps for our best performing A3Cattn model. Figure 6 shows the
visualization of attention maps for the case when the sentence is ”Go to small red car.” As shown in
figures 6b, 6c and 6d, different attention maps focus on different regions in the environment and the
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(a) Egocentric view as seen by agent. (b) Highlights the non target objects

(c) Highlights the non-target objects. (d) Highlights the possible target objects.

(e) Attention map formed by attention arith-
metic((d) - ((c) + (b))

Figure 6: Visualization of attention maps for sentence: ”Go to small red car.”

agent uses a combination of these in order to learn the policy and successfully navigate to the target
object while avoiding incorrect objects and obstacles. Attention map 6d highlights the possible tar-
get objects while attention maps 6b and 6c focus on non-target objects. Looking at the attention
maps it seemed that the agent was subtracting the union of maps 6b and 6c from 6d to figure out
the target(small red car). We did this arithmetic and generated the attention map show in figure 6e
thus confirming our hypothesis. As mentioned previously in section 5.2, the above visualization also
underscores the fact that through our attention mechanism we obtain a joint concise representation
of both the textual and visual modalities which exemplifies consciousness Bengio (2017). Figure 7
provides another visualization of attention maps for the case when the sentence is ”There are mul-
tiple tree. Go to smaller one.” We found the same pattern to be consistent across many different
examples whereby one attention map would focus on the possible target objects and other maps
would highlight the non-target one. The visualization of attention weights clearly indicate that the
extracted representation of instruction are semantically meaningful and grounded in various visual
elements in the environment.

In order to understand the quality of instruction embedding learnt by the GRU, we do a two-
dimensional Principal Component Analysis (PCA) projection of the original 16 dimension repre-
sentation obtained when the input instruction is encoded through a GRU of size 16. As shown in
figure 8a, vector(”Go to green apple”) - vector(”Go to apple”) is parallel to vector(”Go to green
sofa”) - vector(”Go to sofa”). Similarly vector(”Go to blue bag”) - vector(”Go to bag”) is par-
allel to vector(”Go to blue bus”) - vector(”Go to bus”). We also observe a similar pattern with
instructions that include size attribute in addition to color attribute. From figure 8b, we discern that
vector(”Go to medium blue bag”) - vector(”Go to blue bag”) is parallel to vector(”Go to medium
green tree”) - vector(”Go to green tree”). Likewise, vector(”Go to small blue bag”) - vector(”Go
to blue bag”) is parallel to vector(”Go to small green tree”) - vector(”Go to green tree”). In figure
8c, we notice similar relationship with instructions that specify direction. These evidently highlight
our model’s ability to organize various concepts and learn the relationships between them implicitly.

Additionally, we also illustrate that these instruction embeddings follow vector arithmetic. In order
to elucidate this, we obtain the embeddings for the instruction ”Go to small green tree” as follows:
vector(”Go to tree”) + (vector(”Go to green apple”) - vector(”Go to apple”)) + vector(”Go to
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(a) Egocentric view as seen by agent. (b) Highlights the non-target objects.

(c) Highlights the non-target objects. (d) Highlights the possible target objects.

(e) Attention map formed by attention arith-
metic((d) - ((c) + (b))

Figure 7: Visualization of attention maps for sentence: ”There are multiple tree. Go to smaller one.”

(a) Instruction type - Go to [object] or Go to
[color][object]

(b) Instruction type - Go to [color][object] or Go
to [size][color][object]

(c) Instruction type - Go to [direction] of
[color][object] or Go to [size][color][object]

Figure 8: Two-dimensional PCA projection of instruction embedding learnt by the GRU.
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small red car”) - vector(”Go to red car”). Using this, the agent learns to navigate successfully to
the small green tree as depicted in 9. Figure 9a is the complete state of the environment consisting of
small green tree, medium green tree, small red car and medium red car. Figure 9b shows the initial
egocentric view of the agent. Although the larger green tree is visible to the agent in its initial view
and the smaller green tree is not visible, the agent learns to avoid the larger green tree and navigate
correctly to the smaller green tree. Figure 9c shows an intermediate state in the agent’s trajectory
to the target object. In figure 9d, the agent is next to the target object and it finally reaches the
target object in figure 9e. We found that we could do other interesting things with the embedding
vectors. For example using the embedding calculated by vector(”There are multiple green Tree. Go
to smaller one”) - (vector(”Go to small blue Bag”) - vector(”Go to blue Bag”)) + (vector(”Go to
medium blue Bag”) - vector(”Go to blue Bag”)), makes the agent go to medium green tree even
when small green tree is present in the environment as shown in figure 10. The agent even responds
to sentences such as ”Go to small Apple” formed by vector(”Go to Apple”) + vector(”Go to small
green Sofa”) - vector(”Go to green Sofa”) even though the agent has never seen sentences of the
form ”Go to [size][object]”.

7.1 ATTEMPT AT LANGUAGE TRANSLATION AS A BY-PRODUCT OF GROUNDING

Language grounding eventually means capturing the essence of words which consequently should
enable an agent to translate the same concept across different languages. For e.g if an agent knows
the concept ’apple’ in multiple languages represent the same object. Then given any word which
represent the concept ’apple’ in any of its known languages, the agent should be able to translate
it other known languages. In order to examine if our agent is grounded well enough to do such
translations, we train the agent by giving it instructions in both English and French on a subset of
vocabulary. At test time, to assess the instruction embedding, we ask the agent to translate English
instructions to French and vice-versa. We found that the agent manages to translate 85% of the
instructions.

To achieve the above task, we attach a decoder branch consisting of two separate decoders,
one for each English and French, on top of the instruction embedding obtained through GRU.
The task of the decoders during the training phase was to reconstruct the original instruction
as it is. Based on whether the natural language instruction is English or French, reconstruction
loss through the corresponding decoder is back-propagated to modify the weights of the GRU.
However during the test phase the decoder corresponding to each language is switched. There-
fore the English decoder is activated while giving French instructions and the French decoder
is activated while giving English instructions. It is important to note that the translation was
done in a completely unsupervised way, without explicitly giving parallel corpora to the agent.

Thus, all these experiments prove that the agent has learnt to correctly associate the words with
their true sense or meaning entirely on its own. In all these experiments, the agent’s trajectory as it
navigates to the target object are stored in the form of GIFs and are available https://github.com/rl-
lang-grounding/rl-lang-ground.

8 CONCLUSION AND FUTURE WORK

In the paper we presented an attention based simple architecture to achieve grounding of natural lan-
guage sentences via reinforcement learning. We show that retaining just the representation obtained
after multimodal fusion phase (i.e. multiple attention maps) and discarding the visual features helps
the agent achieve its goals. We justify this claim by visualization of the attention maps which reveal
that they contain sufficient information needed for the agent to find the optimal policy. Through
vector arithmetic, we also show that the embeddings learnt by the agent indeed make sense. In order
to encourage the research in this direction we have also open sourced our environment as well as the
code and models developed.

Our environment is capable of supporting rich set of natural language instructions and it’s highly
flexible. As a future work, we would like to increase the complexity of both the types of sentences
generated as well as the environment dynamics by introducing moving objects. We also plan to take
forward our approach to a 3D environment to test how well does it extend there.
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(a) Complete state of environment. (b) Initial egocentric view as seen by agent.

(c) Intermediate state as it navigates to target. (d) Agent is next to the target.

(e) Agent reaches the target.

Figure 9: Agent’s trajectory as it navigates to the small green tree.

(a) Complete state of environment. (b) Initial egocentric view as seen by agent.

(c) Intermediate state as it navigates to target. (d) Agent is next to the target.

(e) Agent reaches the target.

Figure 10: Agent’s trajectory as it navigates to the medium green tree.
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9 APPENDIX

9.1 RESULTS ON 3D ENVIRONMENT

To test if our attention mechanism could scale to 3D environments, we applied our fusion mechanism
to the Vizdoom based environment and compared our results with Chaplot et al. (2017) who have
recently open sourced their code Chaplot. We replaced their fusion mechanism with our attention
based fusion mechanism and the results for the easy, medium and also hard scenario are shown in
figure 11. We have also compared our accuracy values with the results mentioned by the authors in
their paper, in table 3, whereby we show significant performance improvement during the test phase
including for the zeros shot instructions. The experiments are still running for the hard difficulty case
but the results show that our approach converges much faster than the original fusion mechanism
used by them. We see that our mechanism thus scales to both 2D as well as 3D environments
outperforming other baselines in both the scenarios. The experiments were conducted on the same
set of hardware thus ensuring a fair comparison between the plots.The plot shown here differs from
the one shown in the paper( Chaplot et al. (2017)) because of a possible difference in hardwares
used. We will update the plots as soon as all the experiments have been completed.

Table 3: The mean accuracy comparison between our atttention mechanism results and the results
mentioned by Chaplot et al. (2017) in their paper.

Model Easy Easy(ZS) Medium Medium(ZS)
Our 1.00 0.96 0.92 0.9

Original 1.00 0.81 0.89 0.75

14

http://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html
http://www.cs.mcgill.ca/~jpineau/ICLR2018-ReproducibilityChallenge.html


Under review as a conference paper at ICLR 2018

(a) Easy difficulty (b) Medium difficulty

(c) Hard difficulty

Figure 11: Comparison of our attention based fusion mechanism with the fusion mechanism by
Chaplot et al. (2017) for 3d environment.

9.2 LIST OF OBJECTS

Our 2D environment is completely customizable. The different objects, obstacles along with their
corresponding attributes like color, size can be specified in a configurable specification file which is
in JSON format. The images used to represent these objects are publicly available. The size attribute
of each of the objects can be small (1x1), medium (2x2) or large (4x4). Figure 12 contains some of
the different objects used for experiments in our environment.

9.3 LIST OF INSTRUCTIONS

The various natural language instructions that specify the characteristics of the target object based
on which the agent learns to navigate in our 2D grid environment are listed below.

• Go to [object] - where [object] is one of the objects given in section 9.2, i.e. apple, orange,
sofa, car, chair, bus, bag and tree.

• Go to [color][object] - where [color][object] pairs are present in objects list (section 9.2).
• Go to [size][color][object] - where [size] can be small, medium or large and [color][object]

pairs are present in objects list (section 9.2).
• Go to [direction] of [color][object] - where [direction] can be north, south, east or west

and [color][object] pairs are present in objects list (section 9.2).
• Go to [top (or bottom)] [left (or right)] corner.
• There is a [color][object]. Go to it. - where [color][object] pairs are present in objects list

(section 9.2).
• There is a [size][color][object]. Go to it. - where [size] can be small, medium or large and

[color][object] pairs are present in objects list (section 9.2).
• There are multiple [color][object]. Go to smaller(or larger) one. - where [color][object]

pairs are present in objects list (section 9.2).
• There is a [size1][color1][object1] and a [size2][color2][object2]. Go to former(or

latter). - where [size1], [size2] can be small, medium or large and [color1][object1],
[color2][object2] pairs are present in objects list (section 9.2).
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(a) red apple
(b) green apple

(c) orange

(d) green sofa (e) blue sofa (f) red car

(g) green car

(h) orange chair
(i) pink chair

(j) blue bus (k) yellow bus

(l) blue bag

(m) orange bag (n) green tree
(o) yellow cup

(p) red cup
(q) yellow flower (r) pink flower

Figure 12: Some different objects used for experiments in our environment.
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• If [size1][color1][object1] is present then go to [size2][color2][object2] else go to
[size3][color3][object3] - where [size1], [size2], [size3] can be small, medium or large
and [color1][object1], [color2][object2], [color3][object3] pairs are present in objects list
(section 9.2).

9.4 VOCABULARY WORDS

The different unique words that can be present in instruction are: vocab = {apple, orange, sofa,
car, chair, bus, bag, tree, flower, cup, ball, knife, spoon, triangle, hexagon, grape, turtle, pig, fan,
camel, carrot, television, banana, fridge, plane, top, pant, truck, mobile, shirt, washmachine, phone,
laptop, go, navigate, move, to, the, of, there, is, and, are, a, it, red, green, orange, blue, pink, yellow,
black, top, bottom, left, right, corner, north, south, west, east, small, medium, smaller, larger, one,
multiple, former, latter, target, destination, your}

9.5 ZERO SHOT GENERALIZATION INSTRUCTIONS

The list of unseen instructions used for evaluation under zero-shot generalization settings are: in-
structions = {”Go to small red car”, ”Go to medium green apple”, ”Go to small orange”, ”Go to
medium red cup”, ”There is a small red car. Go to it.”, ”There is a medium green apple. Go to it.”,
”There is a small orange. Go to it.”, ”There is a medium red cup. Go to it.”, ”Go to orange sofa”,
”Go to blue bus”, Go to yellow flower”, ”There is a orange sofa. Go to it.”, ”There is a blue bus.
Go to it.”, ”There is a yellow flower. Go to it.”, ”Go to north of orange chair.”, ”Go to south of blue
bus.”, ”Go to west of green tree.”, ”Go to east of blue sofa.”, ”Go to bag.”}

9.6 SAMPLE JSON SPECIFICATION

A sample JSON configuration file for an environment consisting of an agent, one object and one
obstacle. More objects and obstacles can be added as desired.

1 {
2 "environment" :
3 {
4 "Height" : 84,
5 "Width" : 84,
6 "Block_height" : 10,
7 "Block_width" : 10,
8 "Background" : [255,255,255],
9 "Sizes" :{ "small" : 1,

10 "medium" : 2,
11 "large" : 3
12 }
13 },
14
15 "agent" : [
16 {
17 "img" : "agent.jpeg",
18 "size" : "small",
19 "step" : 1
20 }
21 ],
22
23 "objects" : [
24 {
25 "id" : 1,
26 "type" : "Apple",
27 "color" : "green",
28 "img" : "apple_crop.jpeg",
29 "size" : "small",
30 "hard" : 0,
31 "reward" : 1
32 }
33 ],
34 "obstacles" : [
35 {
36 "id" : 2,
37 "type" : "Walls",
38 "color" : "orange",
39 "img" : "brick_block.png",
40 "size" : "small",
41 "hard" : 1,
42 "reward" : -1
43 }
44 ]
45 }
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