
Under review as a conference paper at ICLR 2018

FAST READING COMPREHENSION WITH CONVNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

State-of-the-art deep reading comprehension models are dominated by recurrent
neural nets. Their sequential nature is a natural fit for language, but it also pre-
cludes parallelization within an instances and often becomes the bottleneck for
deploying such models to latency critical scenarios. This is particularly problem-
atic for longer texts. Here we present a convolutional architecture as an alternative
to these recurrent architectures. Using simple dilated convolutional units in place
of recurrent ones, we achieve results comparable to the state of the art on two
question answering tasks, while at the same time achieving up to two orders of
magnitude speedups for question answering.

1 INTRODUCTION

Recurrent neural networks (e.g., LSTMs (Hochreiter & Schmidhuber, 1997) and GRUs (Cho et al.,
2014)) are been very successful at simplifying certain natural language processing (NLP) systems,
such as language modeling and machine translation. The dominant of text understanding (Rajpurkar
et al., 2016; Joshi et al., 2017; Seo et al., 2017) typically relies on recurrent networks to produce ini-
tial representations for the question and the document, and then apply attention mechanisms (Bah-
danau et al., 2014) to allow information passes between the two representations. The recurrent units
are powerful structures capable of modeling complex long range interactions. However, their se-
quential nature precludes parallelization within training examples, and often become the bottleneck
for deploying models to latency critical NLP applications. High latency is especially critical for
interactive question answering (for example as part of search engines or mobile assistants), as it
requires the user to wait patiently for the answer.

Recent development of “attention only” models Parikh et al. (2016); Vaswani et al. (2017) in various
tasks, allows modeling of long range dependencies without regard to their distance. By paralleliza-
tion within one instance, these models can have much better inference time than those which depend
on recurrent units. However, their token-pair based attention requires O(n2) memory consumption
within the GPUs, where n denotes the length of the document. This quadratic growth prevents their
use with most real-world documents, such as e.g. Wikipedia pages.

In this work we propose, Gated Linear Dilated Residual Network(GLDR), a different architecture
to avoid recurrent units in text precessing. More specifically, we use a combination of residual
networks (He et al., 2016), dilated convolutions (Yu & Koltun, 2016) and gated linear units (Dauphin
et al., 2017).

1.1 READING COMPREHENSION TASKS

Reading comprehension tasks focus on one’s ability to read a piece of text and subsequently answer
questions about it (see Trival QA examples in Figure 1). We follow the typical reading compression
setting and assume that the correct answer can be given as a snippet of the original text. This
reduces the problem to a search problem, where the question functions as a query. Sometimes these
tasks involve easy type and query term matching (e.g., answering what philosopher taught Plato
and Aristophanes? mainly involves matching the entity names and a keyword); but they can also
contain difficult language understanding (e.g., answering who was the choreographer of the dance
troupe Hot Gossip? may involve the understanding that dance troupe is less informative than Hot
Gossip for finding the correct answer.) and even real world knowledge (e.g., answer What is the next
in the series: Carboniferous, Permian, Triassic, Jurassic? potentially involves understanding the
semantics of next, and applying it on a structured data such as a knowledge base). Figure 2 shows an

1

Under review as a conference paper at ICLR 2018

Q: What is the next in the series: Carboniferous, Permian, Triassic, Jurassic?
... The Jurassic North Atlantic Ocean was relatively narrow , while the South
Atlantic did not open until the following Cretaceous period , when ...

Q: Plato and Xenophon were both pupils of which Greek philosopher?
Socrates ... philosophy. He is an enigmatic figure known chiefly through the
accounts of classical writers, especially the writings of his students Plato and
Xenophon and the plays of his contemporary Aristophanes. ...

Q: Who was the choreographer of the dance troupe Hot Gossip?
Arlene Phillips, ... Lee Mack. Hot Gossip In Britain, Phillips first became
a household name as the director and choreographer of Hot Gossip, a British
dance troupe which she formed in 1974 ...

Figure 1: Samples from Trivia QA (Joshi et al., 2017)

adversary example of a question that is answered incorrectly by matching the first occurrence of the
query word “composed” in the answer text. This study will use two popular reading comprehension
tasks – Trivia QA (Joshi et al., 2017), and SQUAD (Rajpurkar et al., 2016) – as its test bed. Both
tasks have openly available training and validation data sets and are associated with competitions
over a hidden test set on a public leaderboard.

Because of the sequential nature of documents and text, and complex long-distance relationships
between words, recurrent neural networks (especially LSTMs Hochreiter & Schmidhuber (1997)
and GRUs Cho et al. (2014)) are a natural class for modeling reading comprehension. Indeed, on
both reading comprehension tasks we study here, every published result on the leader-board 1 2 uses
some kind of recurrent mechanism. Below, we will discuss two specific models in detail, but we
begin by motivating a one-dimensional convolution architecture for the reading comprehension task.

1.2 TEXT UNDERSTANDING WITH DILATED CONVOLUTIONS

Our goal is to substitute complicated and costly sequential models through simple feed-forward net-
work architectures. Bidirectional recurrent units can in theory model arbitrarily long dependencies
in text, but in practice we may be able to capture these dependencies through other mechanisms.
There are two important criteria of language that LSTMs model, that we also want to capture. First,
we may need to model relationships between individual words, even when they are separated from
each through many words (e.g. Figure 1). Second, we want to model the compositional nature of
natural language semantics, where the meaning of large phrases are composed of the meaning of
their sub-phrases.

These constraints lead us to choose dilated convolutional networks (Yu & Koltun, 2016) with gated
linear units (Dauphin et al., 2017). By increasing the receptive field in our convolutional units, dila-
tion can help to model arbitrarily long-distance dependencies. Unfortunately, the receptive region is
pre-determined, which prevents us from examining long range dependencies in detail. For instance,

1 https://competitions.codalab.org/competitions/17208
2 https://rajpurkar.github.io/SQuAD-explorer

Q: Who composed the works The Fountains of Rome and The Pines of Rome in
1916 and 1924 respectively?
Adversary example . Wolfgang Amadeus Mozart composed The Magic Flute
, and Requiem . Ottorino Respighi (; 9 July 1879 - 18 April 1936) was an
Italian violinist , composer and musicologist , best known for his three orchestral
tone poems Fountains of Rome (1916) , Pines of Rome (1924) , and Roman
Festivals (1928).

Figure 2: DrQA gives a wrong answer ”Wolfgang Amadeus Mozart” rather than ”Ottorino Respighi”
by simply matching the verb ”composed”.

2

https://competitions.codalab.org/competitions/17208
https://rajpurkar.github.io/SQuAD-explorer

Under review as a conference paper at ICLR 2018

Figure 3: An illustration of dilated convolution. With a dilation of 1 (left), dilated convolution reverts
to standard convolution. With a dilation of 2 (right) every other word is skipped, allowing the output
y3 to relate words x1 and x5 despite their large distance and a relatively small convolutional kernel.

Layer type Computations
per layer

Minimum depth D
to cover length n

Longest
computation path

Overall
computations

Recurrent Units O(d2n) O(1) O(nD) O(d2n)
Self-Attention O(dn2) O(1) O(D) O(dn2)

Dilated Convolution O(kd2n) O(log(n)) O(D)
O(kd2nD) or
O(kd2n log(n))

Table 1: Comparison among three sequence encoding layers with input sequence length n, network
width d, kernel size k, and network depth D. Recurrent units and self-attention become slow as n
grows. When the receptive field of a dilated convolution covers the longest possible sequence n, its
overall computation is proportional to O(log n).

in the co-reference example from Figure 1, we would need to directly convolve representations for
“his” and “Socrates”, but an increasing dilation will miss this. In practice, “Socrates” is combined
with its context to give a fixed size representation for a long context. We alleviate some of this
effect by using Gated Linear Units (Dauphin et al., 2017) in our convolutions. These units allow us
to selectively retain (and compute gradients for) important features of low-level words and phrases,
even at convolutions with larger dilations.

Figure 4: The recep-
tive field of repeated
dilated convolution
grows exponentially
with network depth.

Dilated Convolution. Given a 1-D convolutional kernel k =
[k−l, k−l+1, ..., kl] of size 2l − 1 and the input sequence x = [x1, x2, ..., xn]
of length n, a d dilated convolution of x with respect the kernel k can be
described as

(k ∗ x)t =
l∑

i=−l

ki · xt−d·i

where t ∈ {1, 2, · · · , n}. Here we assume zero-padding, so tokens outside the
sequence will be treated as zeros. Unlike normal convolutions (i.e. d = 1) that
convolve each contiguous subsequence of the input sequence with the kernel,
dilated convolution uses every dth element in the sequence, but shifting the
input by one at a time. Figure 3 shows an example of dilated convolution.
Here, the green output is a weighted combination of the red input words.
Why Dilated convolution? Repeated dilated convolution (Yu & Koltun,
2016) increases the receptive region of ConvNet outputs exponentially with
respect to the network depth, which results in drastically shortened computa-
tion paths. See Figure 4 for an illustration of an architecture with four dilated
convolutional layers with exponentially increasing dilations. Table 1 shows
a brief comparison between bidirectional recurrent units, self-attention, and
dilated convolution. Self-attention suffers from the fact that the overall com-
putation is quadratic with respect to the sequence length n. This may be
tolerable in settings like machine translation, where a typical document con-
sists of less than n < 100 words and a wide network is often used (i.e. d
is large); however, for reading comprehension tasks, where long documents
and narrow networks are typical (i.e. n � d), self-attention becomes expen-

3

Under review as a conference paper at ICLR 2018

Figure 5: Schematic layouts of the BiDAF (left) and DrQA (right) architectures.

sive. In addition, bidirectional recurrent units have the intrinsic problem that their sequential nature
precludes parallel processing.

Admittedly, dilation has its limitations. It requires more overall computations than recurrent nets and
the reception region is predetermined. We argue that to provide answers as a web service, one cares
more about the response latency for a single question. Therefore, a short compute of the longest
computation is favored.

1.3 BASELINE MODELS: BIDAF AND DRQA

In the following we briefly describe two popular open-sourced question answering systems: Bi-
directional Attention Flow (BiDAF) (Seo et al., 2017) and DrQA (Chen et al., 2017a), which are
relevant to our study. Figure 5 shows schematic layouts of their respective model structures and
highlight the BiLSTM layers (in red) which are the bottleneck for inference speed. Both models
require LSTMs to encode the query and passage. BiDAF is more complex than DrQA, with two
more LSTMs to make the classification decision.

1.4 RELATED WORK

The BiDAF model (Seo et al., 2017) has six components: 1) character embedding layer, 2) word
embedding layer, 3) contextual layer, 4) attention flow layer, 5) modeling layer, and 6) output layer,
but only three of them contains LSTMs. The contextual layer encodes the passage and the query
with two bidirectional LSTMs with shared weights. The modeling layer further employs a two-
layer stacked bidirectional LSTM to extract the higher order features of the words in the passage.
The output layer uses yet another bidirectional layers to produces features for predicting the end of
the answer span.
The DrQA system (Chen et al., 2017a) has a document retriever and a document reader. The
document retriever simply uses pre-defined features to retrieve documents when the corresponding
passage is not given in the question. The document reader uses two 3-layer stacked bidirectional
LSTMs to encode the query and the passage/document respectively.
ConvNets for Text There has been a lot of effort in applying ConvNet architecture to reduce the
sequential computation in sequence to sequence models such as Extended Neural GPU(Kaiser &
Bengio, 2016), ByteNet (Kalchbrenner et al., 2016) and ConvS2S Gehring et al. (2017) In these
models, the number of operations required to relate signals from two arbitrary input or output posi-
tions grows in the distance between positions, linearly for ConvS2S and logarithmically for ByteNet.

The improvements in speed are limited in these generative models, because the decoding procedure
still needs to be done token by token. In comparison, there is no generation in reading comprehen-
sion models (Seo et al., 2017; Chen et al., 2017a), therefore much more impressive speedups are
possible.

4

Under review as a conference paper at ICLR 2018

Reading Comprehension Models After the release of the Stanford Question Answering Dataset
(Rajpurkar et al., 2016), reading comprehension models kept springing up in the past year. All
of them use recurrent neural networks (Hochreiter & Schmidhuber, 1997; Cho et al., 2014) as a
common component, and most of the top performed models uses attention (Bahdanau et al., 2014)
in addition. DCN proposed to have interactions between question and answer multiple times.
BiDAF (Seo et al., 2017)introduced a bidirectional attention flow to incorporate the passage with
query and was the first open sourced state-of-the-art model at the time, RasorNet proposed to esti-
mate the joint distribution of the answer span directly rather than modeling the start and end points
independently. RNet, ..., demonstrates the effectiveness of the self-attention modules. Document
Reader (DrQA) provides an question answering system using a document database. Hu et al. (2017)
demonstrated how reinforcement learning can benefits the training procedure. Smarnet proposed to
mechanism to keep refining the prediction.

2 QUESTION ANSWERING WITH STRIDED CONVOLUTIONAL

2.1 GATED LINEAR DILATED RESIDUAL NETWORK (GLDR)

Figure 6: Dimensionality
reduction through convolu-
tion.

Our proposed GLDR structure contains a dimensionality reduction block
followed by a few residual blocks (shown in Figures 6 and 7 respec-
tively). The dimensionality reduction block comprises a dropout layer
(Hinton et al., 2012), a normal convolution (kernel size 3) and a gated
linear unit (GLU) as activation. A residual block has a two-layer Con-
vNet with input dropout before the convolutions and GLU activations.
The output of this small two-layer ConvNet is later summed up with the
input allowing the convnet to learning only the residual of the transfor-
mation. For simplicity all the convolutions are of kernel size 3 while
the dilations vary across layers. To be more specific, the dilations of the
convolutions in the first few residual blocks are increased exponential
(1, 2, 4, 8, · · ·), see Figure 4 for an illustration. The purpose of the di-
lated convolution is to increase the receptive field. After a small number
of layers O(log(n)), the receptive field is wide enough and we switch
back to the use of normal convolutions for the rest of the blocks.

Figure 7: Dimensionality
preserving residual block.

To show ConvNets are not limited to a particular architecture of ques-
tion answers models, we apply our method to two popular open-
sourced question answering systems: Bi-directional Attention Flow
(BiDAF) (Seo et al., 2017) and DrQA (Chen et al., 2017a).

2.2 CONVOLUTIONAL BIDAF

In our convolutional version of BiDAF, we replaced all bidirectional
LSTMs with ConvNets. We have two 5-layer ConvNets in the contextual
layer whose weights are un-tied because we saw a performance gain. In
the modeling layer, a 17-layer ConvNets with dilation 1, 2, 4, 8, 16 in
the first 5 residual blocks is used, which results in a reception region of
65 words. A 3-layer ConvNet replaces the bidirectional LSTM in the
output layer. For simplicity, we use same-padding and kernel size 3 for
all convolutions unless specified. The hidden size of the ConvNet is 100
which is the same as the LSTM in BiDAF.

2.3 CONVOLUTIONAL DRQA

Since the query is much shorter than the document, we can afford us-
ing a 17-layer ConvNet without dilation for encoding the query. On the
other hand, a 9-layer ConvNet whose 4 residual blocks have dialtion 1,
2, 4, and 8, respectively is used to capture the context information in the
passage, which results a reception region of 33 words. The hidden size
of the ConvNet is 128 which is the same as the LSTM in DrQA.

5

Under review as a conference paper at ICLR 2018

3 EXPERIMENTS

3.1 STANFORD QUESTION ANSWERING DATASET (SQUAD)

The Stanford Question Answering Dataset or SQuAD (Rajpurkar et al., 2016) is one of the most
popular reading comprehension datasets, which contains more than 100K questions-answer-passage
tuples labeled by crowdsource workers. Given a passage a group of workers were asked to generate
questions based on it, and another group of workers attempted to highlight a span in the passage
as the answer. This ensures that the passage also contains sufficient information and the answer is
always there.

We show that Conv BiDAF achieves comparable results to BiDAF on SQuAD development set
while being much efficient during both training and inference. On the other hand, the Conv DrQA
inferences even faster than Conv BiDAF while sacrificing the performance.
Experiment Setup We adopted the open-sourced BiDAF implementation3 which is written in Ten-
sorFlow (Abadi et al., 2016) and DrQA implementation4 in PyTorch 5, and followed their prepro-
cessing and experiment setup. We conducted experiments on the SQuAD validation set since we
were not aiming at the state-of-the-art performance. The models were trained with either a NVIDIA
Tesla P100 GPU or a NVIDIA Titan X (Pascal) GPU, but the timing experiments were only con-
ducted on a single Titan X (Pascal) GPU. We only timed GPU eclipsed time (i.e. forwarding and
backwarding through the networks) in all experiments since CPU bounded operations are not our
focuses.

For BiDAF, we used batch size 60, dropout rate 0.2 (Srivastava et al., 2014), and trained the model
for 20000 as the default setting in BiDAF. In addition, we used stochastic gradient descend with mo-
mentum 0.1 and weight decay 10−4, which we found improved the performance of BiDAF slightly.
For our Conv BiDAF, we trained the model for 60000 with Adam optimizer (Kingma & Ba, 2014)
using the default settings in TensorFlow (α = 0.0001, β1 = 0.9, β2 = 0.999), dropped α by a
factor of 10 every 20000 iterations, and used an additional word dropout rate 0.1 (Dai & Le, 2015).
Word dropout wasn’t found helpful for BiDAF in our experiment. Because of the GPU memory
constraint, the model was trained with the documents shorter than or equal to 400 word tokens as
what the authors did in the paper.

For all DrQA variants, we adopted batch size 32, dropout rate 0.3, and trained both models for 60
epochs with Adamax (Kingma & Ba, 2014) optimizer using the default setting in PyTorch (α =
0.002, β1 = 0.9, β2 = 0.999). Weight decay and word dropout didn’t result in a fair amount of
improvement on either of the models, so they were abandoned in the reported models. The models
were trained on the SQuAD training set without removing long documents.
Results As we can see in Figure 8, Conv BiDAF achieved one to two order of magnitude speed-up
during training and inference and performed as well as BiDAF. More detailed comparison between
BiDAF and Conv BiDAF was shown in Table 2.

On Table 3, we show different variants of BiDAF models and their performance.

10 2 10 1 100 101

Inference GPU Time (batch size = 1)

0.0

0.2

0.4

0.6

0.8

1.0

SQ
uA

D
De

v
F1

 sc
or

e

speed-up: 22x

speed-up: 2x

doc length = 63
(mean of top 10% shortest docs)

R-Net
BiDAF
DrQA
Conv BiDAF
Conv DrQA

10 2 10 1 100 101

Inference GPU Time (batch size = 1)

0.0

0.2

0.4

0.6

0.8

1.0

SQ
uA

D
De

v
F1

 sc
or

e

speed-up: 45x

speed-up: 2x

doc length = 142
(mean of all docs)

R-Net
BiDAF
DrQA
Conv BiDAF
Conv DrQA

10 2 10 1 100 101

Inference GPU Time (batch size = 1)

0.0

0.2

0.4

0.6

0.8

1.0

SQ
uA

D
De

v
F1

 sc
or

e

speed-up: 95x

speed-up: 4x

doc length = 282
(mean of top 10% longest docs)

R-Net
BiDAF
DrQA
Conv BiDAF
Conv DrQA

Figure 8: Dev F1 Score on SQuAD vs Inference GPU Time

3https://github.com/allenai/bi-att-flow
4https://github.com/facebookresearch/DrQA
5http://pytorch.org/

6

https://github.com/allenai/bi-att-flow
https://github.com/facebookresearch/DrQA
http://pytorch.org/

Under review as a conference paper at ICLR 2018

Model BiDAF Conv BiDAF
(5-17-3 conv layers)

of params 2.70M 2.76M
Dev EM (Multiplied by 100) 67.66± 0.41 68.28± 0.56
Dev F1 (Multiplied by 100) 77.29± 0.38 77.27± 0.41
Training time (h)
(1 GPU, until convergence 7) 21.5 3.4 (6.3x)
Training time per iteration (sec),
batch size = 60, 1 GPU 3.88± 2.14 0.204± 0.135 (19x)
Inference time per iteration (sec),
batch size = 60, 1 GPU 1.74± 0.75 0.0808± 0.0021 (21x)
Inference time per iteration (sec),
batch size = 1, 1 GPU 1.58± 0.058 0.0161± 0.0026 (98x)

Table 2: BiDAF v.s. Conv BiDAF. For timing, we only reported the GPU time. EM stands for exact
match score.

Model # of params Dev EM Dev F1
BiDAF (trained by us) 2.70M 67.94 77.65
Conv BiDAF (5-17-3 conv layers) 2.76M 68.87 77.76
Conv BiDAF (9-9-3 conv layers) 2.76M 67.79 77.11
Conv BiDAF (0-31-3 conv layers) 3.36M 63.52 72.39
Conv BiDAF (11-51-3 conv layers) 5.53M 69.49 78.15
Conv BiDAF (31-31-3 conv layers) 6.73M 68.69 77.61
DrQA (trained by us) 33.82M 69.85 78.96
Conv DrQA (9 conv layers) 32.95M 62.65 73.35

Table 3: Comparing variants with different number of layers. EM stands for exact match score. The
scores are multiplied by 100. DrQA uses a much larger pre-trained word embedding resulting in
more parameters.

3.2 TRIVIAQA

TriviaQA is new large-scale reading comprehension dataset with 95K question-answer pairs and
650K question-answer-evidence tuples which is more challenging than SQuAD because it 1) con-
tains more complex questions, 2) has substantial syntactic and lexical variability in the text, 3)
requires a significant amount of cross-sentence reasoning, and 4) the answer and the sufficient infor-
mation are guaranteed in the evidence. For each question-answer pair, it used distant supervision to
provide relevant evidence from wikipedia or web search. Besides the full development and test set.
A verified subset for each is also provided.

With the same hyperparamters used for SQuAD, our Conv DrQA outperformed all models reported
in the published literatures while being on par with unpublished ones on the wiki split leader-board.
Again, we can see a trade-off between performance and speed.
Experiment Setup We processed the data into SQuAD format with the script provided by Trivia
QA8. Precisely, for each document in the candidate set of a question-answer pair, it produces a
question-answer-passage pair for training as long as any of the answers appear in the first 800 tokens
in the document. For evaluation, we truncated each document down to 1600 tokens and predict a
span among them.
Results On Wikipedia split of TriviaQA, our proposed Conv DrQA is slight worse than our DrQA
baseline which beats all previous models, it can still be on a par with the previous state-of-the-art
performance of recurrent networks. The numbers are shown in Table 5 The Conv DrQA model only
encode every 33 tokens in the passage, which shows that such a small context is enough most of the
question.

8https://github.com/mandarjoshi90/triviaqa

7

Under review as a conference paper at ICLR 2018

Model Dev EM Dev F1
Conv BiDAF (5-17-3 conv layers) 68.87 77.76
without dilation 68.15 76.99
Using ReLU instead of GLU 63.91 73.39

Table 4: Ablation Test. EM stands for exact match score. The scores are multiplied by 100.

50 100 200 400 800 1600 3200 6400
document length

10 3

10 2

10 1

100

101

102

In
fe

re
nc

e
GP

U
tim

e
(s

ec
)

BiDAF (batch_size = 1)
BiDAF
Conv BiDAF

50 100 200 400 800
document length

10 3

10 2

10 1

100

101

102

In
fe

re
nc

e
GP

U
tim

e
(s

ec
)

BiDAF (batch_size = 64)
BiDAF
Conv BiDAF

50 100 200 400 800 1600 3200 6400
document length

10 3

10 2

10 1

100

101

102

In
fe

re
nc

e
GP

U
tim

e
(s

ec
)

DrQA (batch_size = 1)
DrQA
Conv DrQA

50 100 200 400 800 1600 3200 6400
document length

10 3

10 2

10 1

100

101

102

In
fe

re
nc

e
GP

U
tim

e
(s

ec
)

DrQA (batch_size = 64)
DrQA
Conv DrQA

100

101

102

103

Sp
ee

d-
up

 ra
tio

100

101

102

103

Sp
ee

d-
up

 ra
tio

100

101

102

103

Sp
ee

d-
up

 ra
tio

100

101

102

103

Sp
ee

d-
up

 ra
tio

Figure 9: Inference GPU time of four models with batch size 1 or 64. The time spent on data pre-
processing and decoding on CPUs are not included. We suspect the difference in speed-up is caused
by implementation difference between TensorFlow and PyTorch. The missing points for BiDAF and
Conv BiDAF were caused by running of out GPU memories.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia to answer open-
domain questions. In Association for Computational Linguistics (ACL), 2017a.

Zheqian Chen, Rongqin Yang, Bin Cao, Zhou Zhao, Deng Cai, and Xiaofei He. Smarnet: Teaching
machines to read and comprehend like human. 2017b.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–decoder

8

Under review as a conference paper at ICLR 2018

for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. As-
sociation for Computational Linguistics. URL http://www.aclweb.org/anthology/
D14-1179.

Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In Advances in Neural Infor-
mation Processing Systems, pp. 3079–3087, 2015.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 933–941, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 1243–1252, International Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778. IEEE Computer Society, 2016.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR,
abs/1207.0580, 2012.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Minghao Hu, Yuxing Peng, and Xipeng Qiu. Reinforced mnemonic reader for machine comprehen-
sion. 2017.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

Lukasz Kaiser and Samy Bengio. Can active memory replace attention? In NIPS, pp. 3774–3782,
2016.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aäron van den Oord, Alex Graves, and Koray
Kavukcuoglu. Neural machine translation in linear time. CoRR, abs/1610.10099, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In EMNLP, pp. 2249–2255. The Association for Computa-
tional Linguistics, 2016.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. ICLR, 2017.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning
research, 15(1):1929–1958, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR,
2016.

9

http://www.aclweb.org/anthology/D14-1179
http://www.aclweb.org/anthology/D14-1179

Under review as a conference paper at ICLR 2018

A DETAILED PERFORMANCE COMPARISONS

Full Verified Inference

Dataset Model EM F1 EM F1 GPU Time
per instance

Wikipedia

BiDAF (Joshi et al., 2017) 40.32 45.91 44.86 50.71
RMR (Hu et al., 2017) 46.94 52.85 54.45 59.46
Smarnet (Chen et al., 2017b) 42.41 48.84 50.51 55.90
Leader-board (unpublished) 9 48.64 55.13 53.42 59.92
DrQA 52.58 58.17 57.36 62.55 93.2 ms
Conv DrQA 49.01 54.52 54.11 59.90 8.7 ms

Web

BiDAF (Joshi et al., 2017) 40.74 47.06 49.54 55.80
RMR (Hu et al., 2017) 46.65 52.89 56.96 61.48
Smarnet (Chen et al., 2017b) 40.87 47.09 51.11 55.98
Leader-board (unpublished) 50.56 56.73 63.20 67.97
DrQA 51.49 57.87 62.55 67.84 93.2 ms
Conv DrQA 47.77 54.33 57.35 62.23 8.7 ms

Table 5: TriviaQA Performance. The scores are multiplied by 100.

10

	Introduction
	Reading Comprehension Tasks
	Text Understanding with Dilated Convolutions
	Baseline Models: BiDAF and DrQA
	Related Work

	Question Answering with Strided Convolutional
	Gated Linear Dilated Residual Network (GLDR)
	Convolutional BiDAF
	Convolutional DrQA

	Experiments
	Stanford Question Answering Dataset (SQuAD)
	TriviaQA

	Detailed Performance Comparisons

