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Abstract

The great success of Language Models (LMs)
for various Natural Language Processing (NLP)
tasks is accompanied by computational chal-
lenges during both pre-training and fine-tuning.
Pre-training has attracted significant attention
due to its huge computational footprint. We
focus on the fine-tuning of pre-trained LMs,
which is expected to be performed much
more frequently as the pre-trained models are
adapted to downstream tasks. During fine-
tuning, the presence of variable-length input
sequences necessitates the use of padding to-
kens when batching sequences. These padding
tokens lead to ineffectual computations, ad-
versely impacting the efficiency of fine-tuning.
We also observe that LMs memorize the lim-
ited task-specific training data despite the use of
known regularization methods. Based on these
insights, we present TokenDrop + BucketSam-
pler, a framework that simultaneously improves
efficiency and accuracy of LM fine-tuning.
BucketSampler generates batches of samples
with lower variance in sequence lengths to re-
duce the number of padding tokens, but does so
without the accompanying accuracy drop seen
in previous approaches. TokenDrop is a new
regularizer that prunes a random subset of in-
significant tokens from each input sequence in
every epoch to prevent overfitting. TokenDrop
drops more tokens from the longer sequences
in each batch to further reduce variance in input
lengths and the need for padding. TokenDrop
+ BucketSampler accelerates fine-tuning on di-
verse downstream tasks by up to 10.61×, while
also producing models that are up to 1.17%
more accurate compared to conventional fine-
tuning. Code is available at https://github.
com/amrnag/TokenDrop-BucketSampler.

.

1 Introduction

Language Models (LMs) derived from attention-
based Transformer networks have significantly ad-
vanced the field of Natural Language Processing

(NLP), with recent models showing remarkable per-
formance on a wide range of tasks (Bubeck et al.,
2023). LMs are typically characterized by large
model sizes, and are pre-trained on very large text
corpora. Pre-trained LMs are subsequently fine-
tuned to solve a range of downstream tasks. While
pre-training is the most expensive step by far in LM
creation, and hence has attracted the most attention,
we observe that the relatively high frequency of
fine-tuning makes it an important challenge in its
own right. Data available from public-domain pre-
trained LMs such as BERT (Devlin et al., 2019)
and OPT (Zhang et al., 2022) suggests that these
LMs have been fine-tuned millions of times by dif-
ferent users on a diverse range of downstream tasks.
Further, LMs are notoriously sensitive to the ini-
tialization of the task-specific final layer and the
order in which training data is presented during
fine-tuning (Dodge et al., 2020). As a result, multi-
ple runs of fine-tuning with different hyperparam-
eters are often required to achieve high accuracy
on a given downstream task. Finally, due to large
model sizes of LMs (that continue to grow), even
a single fine-tuning run is compute-intensive and
can take several GPU-days. In summary, while the
enormous computational costs of pre-training have
attracted a lot of attention, it is likely that compara-
ble if not more compute time and energy have been
spent on fine-tuning compared to pre-training since
the inception of LMs.

While several prior efforts have focused on re-
ducing the costs of pre-training, relatively little
attention has been paid to the computational chal-
lenges of fine-tuning. We observe that LM fine-
tuning presents a unique set of challenges. First,
fine-tuning is performed on variable-length text se-
quences, with significant spread in lengths. When
batches of variable-length sequences are generated
for fine-tuning, shorter sequences in a batch are
"padded" to the length of the longest sequence
in the batch by adding padding tokens. However,
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computations on padding tokens are useless, and
adversely affect throughput during fine-tuning. Sec-
ond, fine-tuning is performed in a supervised man-
ner and requires expensive human annotations. As
a result, fine-tuning datasets are several orders of
magnitude smaller than pre-training datasets. In
addition, when overparameterized LMs are trained
on small task-specific datasets, overfitting leads to
sub-optimal generalization performance (Fig. 1),
even with the use of popular regularizers such as
Dropout (Srivastava et al., 2014). Consequently,
fine-tuning is performed over a very small number
of epochs (typically ≤5). Finally, we observe that
fine-tuned LMs are adversely impacted by even
minor grammatical errors in inputs during infer-
ence when only grammatically perfect sequences
are used for fine-tuning (Fig. 2). This sensitivity
is problematic since the assumption of seeing only
grammatically correct sequences during inference
does not always hold in real-world scenarios, espe-
cially when LM inputs are provided by users with
different levels of language proficiency.

Figure 1: Training curve obtained from fine-tuning
Roberta-base on RTE, a language understanding
task with 2.5K training samples, with dropout rate =
0.1. We report loss averaged across 10 random seeds.

To address the aforementioned challenges, we
present TokenDrop + BucketSampler, the synergis-
tic combination of a new regularizer and batching
method for accurate and efficient LM fine-tuning.

Our first contribution, BucketSampler, generates
batches of samples with reduced spread in sequence
lengths, thereby reducing computational overheads
due to padding. In addition, the batch size is varied
based on the lengths of the samples in the batch
to maximize hardware utilization. Improved batch-
ing strategies have been incorporated into popular
NLP libraries such as HuggingFace Transformers
(Wolf et al., 2019) and Lingvo (Shen et al., 2019).
However, these methods are optimized for training
LMs from scratch. When applied to fine-tuning

Figure 2: Impact of minor grammatical errors on a
Roberta-Base model fine-tuned using only grammati-
cally correct examples. We generate inputs with minor
grammatical errors by pruning articles (’a’, ’an’, ’the’)
and punctuation marks (comma, fullstop, apostrophe,
etc.) from samples in the development set.

on small datasets for very few epochs, we find
that these prior batching methods lead to signif-
icant drop in accuracy. BucketSampler includes
key algorithmic enhancements that tune the opti-
mal batch size and learning rate schedules, thereby
enabling fine-tuning to achieve high accuracy while
also maintaining high hardware utilization.

Our second contribution is TokenDrop, a novel
regularizer that identifies and drops a random sub-
set of insignificant tokens from each sequence in
every epoch. More tokens are dropped from the
longer sequences in each batch, further reducing
the need for padding (Fig. 3). Further, TokenDrop
reduces overfitting by ensuring that the model does
not see the same sequence repeatedly over the
course of fine-tuning. As a side effect, it also im-
proves the resilience of LMs to grammatical errors
during inference by exposing the model to gram-
matically incorrect inputs during fine-tuning.

Since TokenDrop + BucketSampler improves
fine-tuning efficiency by eliminating ineffectual
computations, it can be combined with previously
proposed approaches for parameter-efficient fine-
tuning, such as freezing layers (Lee et al., 2019;
Zaken et al., 2022) and the use of adapters (Houlsby
et al., 2019), to achieve further efficiency gains. We
summarize our main contributions as follows:

• We propose TokenDrop + BucketSampler, a
framework for accurate and efficient LM fine-
tuning.

• BucketSampler is a length-aware batching
method that generates batches of sequences with
similar lengths to reduce padding. Bucket-
Sampler incorporates optimizations that enable
fine-tuning convergence while maintaining high



throughput.

• TokenDrop is a regularizer that drops a random
subset of insignificant tokens from each sequence
in every epoch to prevent LMs from memorizing
fine-tuning data, while also further minimizing
the need for padding.

• We demonstrate that TokenDrop can be synergis-
tically combined with BucketSampler to simulta-
neously improve both accuracy (up to 1.2%) and
efficiency (up to 10.61×) of LM fine-tuning.

2 Method

TokenDrop + BucketSampler is a framework for ac-
curate and efficient fine-tuning of pre-trained LMs.
The first component, TokenDrop, is a regularizer
that randomly drops a subset of insignificant to-
kens from each sequence in every epoch. The sec-
ond component, BucketSampler, is a length-aware
batching method that generates batches of sam-
ples with lower spread in sequence lengths. We
demonstrate how TokenDrop and BucketSampler
can be synergistically combined (hence the name
TokenDrop + BucketSampler) to simultaneously re-
duce overfitting and eliminate the need for padding
tokens, resulting in both accuracy and speed im-
provements (Fig. 3).

Figure 3: Illustration of different batching methods.

2.1 TokenDrop
Fine-tuning datasets for LMs are often small due
to the need for expensive human annotations. As a
result, we find that pre-trained LMs quickly mem-
orize the training samples during fine-tuning (Fig.
1). Dropout (Srivastava et al., 2014), which drops a
random subset of neurons in each training epoch,
is currently the most widely used regularizer. How-
ever, we find that dropout is ineffective at prevent-
ing overfitting during fine-tuning of LMs (Fig. 1).

In addition, most fine-tuning datasets are only com-
posed of sentences and phrases that are grammat-
ically correct. As a result, minor errors in user-
provided inputs during inference (such as missing
punctuation marks) can degrade the quality of out-
puts produced by the LM (Fig. 2).

To address these challenges, we propose Tok-
enDrop, a regularizer that drops a random subset of
words from each sequence in every training epoch.
Unlike Dropout, TokenDrop introduces data diver-
sity between the different training epochs, thereby
making the models unlikely to see the same se-
quence twice over the course of fine-tuning, and
hence, less likely to overfit. We find that the choice
of words selected for dropping has a significant im-
pact on training convergence, since the semantics
of the input text sequence can change if important
tokens are dropped (see Appendix C). For instance,
if the word "not" in the sequence "the movie was
not good" is dropped, the sentiment of the sen-
tence changes from negative to positive. In order
to overcome this challenge, TokenDrop only drops
stopwords from sequences. Stopwords are words
in any language that do not contribute to the mean-
ing of a sentence, but are added to make sentences
grammatically correct. For instance, the words
"the" and "was" in the aforementioned sequence
are stopwords. In effect, TokenDrop provides a
stronger regularization effect compared to Dropout
(see Appendix D), and also improves the efficiency
of fine-tuning by reducing the sequence length with-
out affecting the meaning of the sequence. To-
kenDrop also improves the resilience of LMs to
grammatical errors during inference by exposing
the model to grammatically incorrect sequences
during fine-tuning. In particular, TokenDrop gener-
ates grammatically incorrect sequences by pruning
stopwords from grammatically correct sequences.

The procedure for applying TokenDrop to
a given dataset is described in Algorithm 1.
Given a dataset and a list of stopwords, we
identify and prune a random subset of stopwords
in each sequence. The number of stopwords
pruned in each sequence is determined by the
Tokens_to_drop(sequence) parameter. When
a global TokenDrop_Rate (analogous to
Dropout_Rate in Dropout) is used, i.e., the
same fraction of stopwords are dropped in each
sequence, then Tokens_to_drop(sequence) =
number_of_stopwords(sequence) ∗
TokenDrop_Rate. We note that it is not



necessary to use the same TokenDrop_Rate for
all sequences, and a different fraction of stopwords
can be dropped in each sequence, as described in
Section 2.3. The complete list of stopwords used
in our experiments is provided in Appendix C.

Algorithm 1: TokenDrop
Input :Input Dataset (Dataset), List of stopwords

(Stopwords), Number of stopwords to drop
in each sample (Tokens_to_drop)

Output :Dataset after applying TokenDrop
(Filtered_Dataset)

1 Filtered_Dataset = Dataset
2 for sample in Filtered_Dataset do
3 Stopwords = random_shuffle(Stopwords)
4 while Tokens_to_drop(sample) > 0 do
5 for word in Stopwords do
6 if word in sample then
7 sample.pop(word)
8 Tokens_to_drop(sample) -= 1

9 return Filtered_Dataset

2.2 BucketSampler
BucketSampler combines a sequence-length-aware,
variable-batch-size batching strategy with algorith-
mic optimizations to enable faster fine-tuning. The
method for generating batches with BucketSampler
is illustrated in Algorithm 2. All samples in the
dataset are divided into buckets such that sequences
that fall into the same bucket have similar se-
quence lengths. Each bucket is defined by a triplet
(min_seq_len, max_seq_len, HWCap). Here,
min_seq_len and max_seq_len denote the mini-
mum and maximum sequence lengths of sequences
in the bucket, respectively, i.e., all sequences whose
lengths lie between min_seq_len (inclusive) and
max_seq_len (exclusive) of a bucket fall into that
bucket (lines 20-23 in Alg. 2). Then, batches are
generated by only combining sequences from the
same bucket (lines 24-32 in Alg. 2). In effect,
BucketSampler reduces the spread of sequence
lengths in a batch, thereby reducing the need for
padding tokens. BucketSampler also provides sup-
port for variable batch sizes. In particular, since the
peak memory requirements for processing a batch
scale quadratically with sequence length due to the
quadratic complexity of self-attention, we propose
using large batch sizes when generating batches
from buckets with small max_seq_len and vice-
versa. The HWCap parameter associated with
each bucket encodes the maximum batch size that
can be used for generating batches from that bucket
on a given hardware platform. HWCap is experi-

mentally determined by profiling on-chip memory
usage for different sequence lengths.

While the BucketSampler algorithm described
above provides some improvements in the effi-
ciency of fine-tuning, it still leaves room for fur-
ther improvement along two directions. (1) The
constraint that batches can only be formed using
samples from the same bucket leads to "residual"
batches with small numbers of samples, adversely
affecting hardware utilization. Therefore, we pro-
pose Residual Batch Merging (RBM) to merge
residual batches in different buckets into larger
batches. (2) From an accuracy standpoint, we find
that the convergence of fine-tuning is adversely im-
pacted when using (a) very large batch sizes, and
(b) a single learning rate schedule with variable
batch sizes, since fine-tuning is often performed on
small datasets for a very small number of epochs.
To overcome these challenges, we propose Batch-
Cap to progressively increase the maximum batch
size over the course of fine-tuning. We also propose
Learning Rate Modulation (LRM) to dynamically
scale the learning rate based on the batch size. We
explain these optimizations in greater detail in the
following subsections.

Residual Batch Merging (RBM): Peak hardware
utilization is achieved when the number of sam-
ples in each bucket is an exact multiple of the
bucket’s HWCap. However, in reality, it is highly
likely that the aforementioned condition is not sat-
isfied, resulting in one batch in most buckets with
batch_size < HWCap. We term these batches
as "residual" batches, and the hardware is under-
utilized when processing residual batches. In order
to reduce the impact of residual batches, we pro-
pose merging residual batches from different buck-
ets into larger batches. We present the Residual
Batch Merging (RBM) algorithm to maximize hard-
ware utilization, while also minimizing the number
of additional padding tokens introduced as a result
of merging sequences from different buckets (lines
5-18 in Algorithm 2). New batches are created
by appending samples one-by-one from residual
batches in each bucket, with buckets processed in
increasing order of max_seq_len (lines 7, 11-12).
When the number of samples in the new batch be-
comes an exact multiple of the bucket_batch_size
of the bucket corresponding to the longest sequence
in this new batch, the new batch is added to the
list of batches used for fine-tuning (lines 13-15).
Lines 8-10 account for corner cases where the num-



Algorithm 2: BucketSampler
Input :Input Dataset (Dataset), Training epoch (epoch)
Output :Batches generated from Dataset (batches)

1 Function BatchCap(HWCap, epoch):
2 EpochCap = scaling_factorepoch× base_batch_size
3 bucket_batch_size = min(HWCap, EpochCap)
4 return bucket_batch_size

5 Function Residual_Batch_Merging(batches, residual_batches):
6 new_batch = []
7 for (residual_batch, bucket_batch_size) in residual_batches do
8 if cardinality(new_batch) >= bucket_batch_size then
9 batches.append(new_batch)

10 new_batch = []

11 for sequence in residual_batch do
12 new_batch.append(sequence)
13 if (cardinality(new_batch) > 0) and (cardinality(new_batch) % bucket_batch_size = 0) then
14 batches.append(new_batch)
15 new_batch = []

16 if new_batch is not empty then
17 batches.append(new_batch)

18 return batches

19 buckets: List of buckets, where bucket is defined by the triplet (min_seq_len, max_seq_len, HWCap)
20 for sample in Dataset do
21 for bucket in buckets do
22 if bucket.min_seq_len <= seq_len(sample) < bucket.max_seq_len then
23 bucket.append(sample)

24 batches = []
25 residual_batches = []
26 for bucket in buckets do
27 bucket = random_shuffle(bucket)
28 bucket_batch_size = BatchCap(bucket.HWCap, epoch)
29 index = 0
30 while index < (floor_division(cardinality(bucket), bucket_batch_size) * bucket_batch_size) do
31 batches.append(bucket[index : index + bucket_batch_size])
32 index = index + bucket_batch_size

33 residual_batches.append((bucket[index :], bucket_batch_size))

34 batches = Residual_Batch_Merging(batches, residual_batches)
35 return batches

ber of samples in the new batch is less than the
bucket_batch_size corresponding to the longest
sequence in the new batch, but is larger than the
bucket_batch_size corresponding to the next se-
quence to be added to the new batch. In this case,
the new batch is considered to be "full", and is
added to the list of batches used for fine-tuning.
In effect, RBM reduces the number of possible
residual buckets from n, where n is the number of
buckets, to 1 (only the final batch can be a resid-
ual batch, see lines 16-17). Since buckets are in-
spected in increasing order of max_seq_len, RBM
also ensures that only residual samples from adja-
cent buckets are combined to form larger batches,
thereby minimizing the number of padding tokens
used in merged batches.

BatchCap: Since fine-tuning is performed on

small datasets for small numbers of epochs, we
find that fine-tuning does not converge when very
large batch sizes are used due to the sparsity of
weight updates. For instance, RTE (one of the
GLUE (Wang et al.) datasets) contains 2.5K
training samples, and fine-tuning on RTE is
typically performed over 3 epochs. When a batch
size of 1024 is used, only 3 weight updates are
performed in each epoch, for a total of 9 weight
updates during fine-tuning. As a result, fine-tuning
does not converge, and models exhibit high
training loss and low test accuracy at the end of
fine-tuning. With BucketSampler, the HWCap for
buckets with small max_seq_len can be large (for
instance, HWCap = 2525 for max_seq_len = 5
when fine-tuning Roberta-Base on a NVIDIA RTX
2080Ti GPU). To ensure fine-tuning convergence,



BucketSampler uses smaller batch sizes in the
first epoch of fine-tuning, and progressively
increases the cap on the maximum allowable
batch size in the later epochs of fine-tuning
(Smith et al., 2018). We introduce BatchCap to
find the maximum allowable batch size in each
epoch (lines 1-4 in Alg. 2). In every epoch,
BatchCap limits the maximum batch size of each
bucket as bucket_batch_size(bucket, epoch) =
min(HWCap(bucket), EpochCap(epoch)),
where EpochCap(epoch) =
scaling_factorepoch ∗ base_batch_size. Here,
base_batch_size and scaling_factor are hy-
perparameters that control the batch size used
in the first epoch of fine-tuning, and the growth
rate of the maximum batch size across epochs,
respectively. We note that BatchCap leads to
hardware under-utilization in the early epochs
of fine-tuning. However, BatchCap is necessary
to achieve convergence when fine-tuning with
BucketSampler, and our exponential scaling rule
ensures high utilization in the majority of epochs.

Learning Rate Modulation (LRM): The use of
BucketSampler leads to large variance in batch
sizes during fine-tuning. For instance, when fine-
tuning Roberta-Base on a NVIDIA RTX 2080Ti
GPU, HWCap = 2525 for max_seq_len = 5 and
HWCap = 64 for max_seq_len = 128. Since the
choice of learning rate is highly sensitive to the
batch size used during training (Krizhevsky, 2014;
Smith et al., 2018), we find that fine-tuning using
BucketSampler fails to converge with a single
learning rate schedule, even when a grid search
is performed to find the best learning rate. We
propose Learning Rate Modulation (LRM) to over-
come the limitations of using a single learning rate
schedule when training with variable batch sizes.
LRM dynamically modulates the base learning
rate based on the batch size of each batch. LRM
scales the base_learning_rate for each batch as
learning_rate(batch) = base_learning_rate ∗
sqrt(batch_size(batch)/base_batch_size).
Here, base_learning_rate is the optimal learning
rate schedule when training with fixed batch size,
where all batches (except the last batch) have
batch_size = base_batch_size. The formula
for computing learning_rate(batch) is derived
from the square-root scaling law relating learning
rate and batch size (Krizhevsky, 2014), which
is a popular trick for parallelizing training of
deep neural networks using large batch sizes on

GPU clusters. In particular, when batch size is
changed to k ∗ batch_size, the learning rate is
changed to learning_rate ∗ sqrt(k) to find the
optimal learning rate for a given batch size when
the optimal learning rate is known for a different
batch size. In this work, we use this formulation
for modulating learning rate on a batch-by-batch
basis, i.e., changing learning rate for each batch
based on the size of the batch.

2.3 TokenDrop + BucketSampler

When batches are generated using BucketSampler,
the sequence lengths of all samples in a batch
lie between the min_seq_len and max_seq_len
of the bucket the batch was drawn from (ex-
cept in merged residual batches). TokenDrop
can be synergistically combined with BucketSam-
pler to further equalize the lengths of all se-
quences in a batch by pruning stopwords from
longer sequences in the batch, thereby eliminat-
ing the need for padding. To achieve this, we pro-
pose defining TokenDrop_Rate on a sequence-
by-sequence basis, rather than having a global
TokenDrop_Rate rate for all sequences. In par-
ticular, the number of stopwords to drop in a se-
quence is computed as Tokens_to_drop(sample)
= cardinality(sample) - min_seq_len(batch).
Consequently, all sequences in a batch are pruned
to min_seq_len(batch) by dropping a random
subset of stopwords (Algorithm 3), thereby elim-
inating padding tokens (except in merged resid-
ual batches, where tokens_to_drop(sample) may
be larger than num_stopwords(sample) due to
larger variance in sequence lengths across merged
buckets).

Algorithm 3: TokenDrop + BucketSampler
Input :Input Dataset (Dataset), Training epoch

(epoch), List of stopwords (Stopwords)
Output :Batches generated from Dataset (batches)

1 batches = BucketSampler(Dataset, epoch)
2 for batch in batches do
3 for sample in batch do
4 Tokens_to_drop(sample) =

cardinality(sample) - min_seq_len(batch)

5 batches = TokenDrop(batches, Stopwords,
Tokens_to_drop)

6 return batches

3 Experiments and Results

We implement TokenDrop + BucketSampler in Py-
Torch using Huggingface Transformers (Wolf et al.,



2019). We perform experiments on a NVIDIA RTX
2080 Ti GPU with 11 GB memory, and report re-
sults averaged across 10 runs with different random
seeds. We perform 3 epochs of fine-tuning for our
method and all baselines. The details of all hyper-
parameters used in our experiments are described
in Appendix A. We note that TokenDrop is not
used when fine-tuning on CoLA, since the task
involves identifying if a given sentence is linguis-
tically acceptable or not, and TokenDrop makes
linguistically acceptable sequences unacceptable.

3.1 TokenDrop + BucketSampler improves
the accuracy and efficiency of fine-tuning

Classification tasks: We present results of fine-
tuning the popular Roberta (Liu et al., 2019) and
Electra (Clark et al., 2020) models on the GLUE
(Wang et al.) and SQUADv1.1 (Rajpurkar et al.)
datasets in Table 1. We find that fine-tuning with
TokenDrop + BucketSampler consistently produces
more accurate models compared to conventional
fine-tuning with random batches (RandomSam-
pler). In addition, TokenDrop + BucketSampler
also reduces the wall-clock fine-tuning time by up
to 10.61× compared to conventional fine-tuning,
with an average speedup of 5.9× across the 10
GLUE and SQUAD tasks. With RandomSampler,
38.9% of all tokens used for training are padding
tokens, which reduces to just 0.2% with TokenDrop
+ BucketSampler (not exactly 0%, since padding is
needed in merged residual batches). We find that
the speedup from using TokenDrop + BucketSam-
pler on a given task is dependent on two factors:
(1) the sequence length histogram, and (2) the size
of the dataset. We provide a detailed analysis of
the relationship between the statistics of the fine-
tuning dataset and the speedup achieved from using
TokenDrop + BucketSampler in Appendix E. We
also provide supplementary results on fine-tuning
Roberta-Large in Appendix B to demonstrate the
benefits of using TokenDrop + BucketSampler for
fine-tuning larger models.
Generation tasks: We present results of fine-
tuning the T5-small seq2seq model (Raffel et al.,
2020) on text summarization using the XSum
(Narayan et al., 2018) and CNN/DailyMail (Nal-
lapati et al., 2016) datasets in Table 2. We find
that fine-tuning with TokenDrop + BucketSampler
improves the ROUGE-1 score by up to 0.3 points,
while also reducing the wall-clock fine-tuning time
by up to 8.62× compared to RandomSampler. We

note that TokenDrop is only applied to input se-
quences, and bucketing is performed based on input
sequence lengths for generation tasks. As a result,
padding is still necessary for the target sequences.
Resilience to minor grammatical errors in in-
puts: We find that training with TokenDrop signifi-
cantly enhances the resilience of fine-tuned mod-
els to minor grammatical errors in inputs. For in-
stance, when articles (’a’, ’an’, ’the’) and punctu-
ation marks are removed from the test sequences,
the average accuracy on GLUE (except CoLA) and
SQUAD drops by 5.2% (Roberta-Base), and the
average ROUGE-1 score drops by 3.1 points (T-
5 small) for the baseline models. On the other
hand, models fine-tuned with TokenDrop incur
only 0.3% and 0.06 points drop in average accu-
racy and ROUGE-1 scores, respectively, thereby
demonstrating significantly higher resilience to mi-
nor grammatical errors. The enhanced resilience
to grammatical errors in models fine-tuned with
TokenDrop can also be observed in Fig. 4, where
there is negligible loss in accuracy even when 40%
of all stopwords in each sequence are randomly
chosen and deleted during inference.

3.2 TokenDrop + BucketSampler enables
accurate and efficient inference

While the primary objective of TokenDrop + Buck-
etSampler is to improve fine-tuning efficiency, we
describe how they can also be used to improve
the efficiency of both real-time and server-mode
inference in the following subsections.
Real-time inference (batch size = 1): Real-time
inference workloads have strict latency require-
ments and bursty input rates, and hence, inputs
are typically processed as soon as they arrive with
a batch size of 1. To reduce the latency of real-
time inference, we propose filtering out stopwords
in the input text sequence by applying TokenDrop
during inference also. Inference-time TokenDrop
offers a promising approach for accelerating real-
time inference, enabling speedups of 2.2X when
all stopwords are pruned (TokenDrop_Rate = 1
in Fig. 4). However, we find that models fine-
tuned without TokenDrop suffer from large accu-
racy drop when TokenDrop is applied at inference
time. On the other hand, models trained with To-
kenDrop exhibit significantly higher resilience to
inference-time TokenDrop, enabling 1.5× reduc-
tion in inference latency with no loss in accuracy,
and 2.2× speedup with < 1% loss in accuracy (Fig.



Table 1: Results of fine-tuning Roberta-base and Electra-base on the GLUE and SQUAD v1.1 development
sets. We report F1 score for SQUAD, Matthews correlation for CoLA, Pearson Correlation for STS-B and accuracy
for all other tasks. We report only “matched” accuracy for MNLI. Subscripts indicate standard deviation.

Model Batching Method SQUAD MRPC STS-B SST-2 CoLA QQP QNLI RTE MNLI WNLI Avg
Roberta- RandomSampler 90.460.2 88.091.0 89.850.3 94.150.5 59.350.6 91.360.1 92.580.1 69.311.6 87.560.1 53.513.5 81.62

Base TokenDrop+BucketSampler 90.590.1 88.630.8 90.060.4 94.330.2 59.491.1 91.480.3 92.640.1 70.42.8 87.660.1 54.572.8 81.98
Electra- RandomSampler 90.740.3 88.280.8 89.740.4 95.010.3 65.480.4 91.930.1 92.411.1 77.070.9 88.330.6 54.222.6 83.32

Base TokenDrop+BucketSampler 90.880.2 88.510.3 89.790.3 95.120.3 66.030.6 92.110.1 93.090.3 78.240.7 88.740.3 54.382.8 83.7
Average Fine-tuning Speedup 9.87X 2.75X 7.73X 10.61X 9.39X 5.51X 3.18X 2.05X 4.09X 3.8X 5.9X

Table 2: Results of fine-tuning the T5-small seq2seq
model on text summarization. We report the ROUGE-
1 score. Subscripts indicate standard deviation.

Batching Method XSum CNN/DailyMail
RandomSampler 32.580.4 24.510.6

TokenDrop+BucketSampler 32.840.3 24.810.8
Speedup 8.62× 7.77×

4). In addition, TokenDrop can be combined with
progressive token pruning methods that prune the
least-important tokens in each layer based on atten-
tion scores (Wang et al., 2021; Goyal et al., 2020),
to achieve further gains in efficiency.

Figure 4: Accuracy drop and speedups from using To-
kenDrop during inference with Roberta-base (batch
size = 1). We report the average score on the 9 GLUE
tasks and SQUADv1.1. For 0 < TokenDrop Rate <
1, we randomly prune (num_stopwords(sequence)×
TokenDrop_Rate) stopwords in each sequence.

Server-mode inference (batch size > 1): In the
server-mode inference setting, inputs arrive simul-
taneously from several sources. Consequently, in-
puts are processed in batches, with the goal of max-
imizing throughput. In the server-mode inference
setting, we propose utilizing TokenDrop + Bucket-
Sampler to batch the inference queries. Here, we
set BatchCap(bucket) = HWCap(bucket) for
all buckets to maximize hardware utilization, and
hence, throughput. We find that using BucketSam-
pler leads to a 4.5× speedup over random batching.
In addition, TokenDrop can also be synergistically
combined with BucketSampler at inference time

in models fine-tuned with TokenDrop to achieve
4.9× speedup with no loss in accuracy (Table 3).

3.3 Ablation: Breakdown of benefits from the
different BucketSampler optimizations

We study the impact of the different BucketSam-
pler optimizations on accuracy and efficiency of
fine-tuning in Table 4 and Figure 5. When no opti-
mizations are used, BucketSampler achieves 5.3×
speedup, but incurs substantial accuracy drop due
to insufficient training convergence. When Resid-
ual Batch Merging (RBM) is used, "stray" batches
from different buckets are combined to form larger
batches. In addition to improving efficiency by
reducing hardware under-utilization, RBM also im-
proves accuracy by reducing variability in batch
sizes, thereby enabling better convergence with a
single learning rate schedule. BatchCap further
improves accuracy by using small batch sizes in
early epochs, thereby ensuring sufficient numbers
of weight updates to achieve training convergence.
While BatchCap is necessary for achieving conver-
gence, it leads to small drop in training efficiency
due to hardware under-utilization in early epochs.
Finally, the use of LRM to dynamically adjust the
learning rate for each batch ensures that fine-tuning
with BucketSampler results in near-identical train-
ing curves (Fig. 5) and hence, accuracy (Table 4)
compared to fine-tuning with RandomSampler.

4 Related Work
Prior works have developed batching strategies for
variable-length inputs to improve the efficiency of
LM training. RandomSampler is the most com-
monly used batching technique, and is the default
method in most NLP libraries. RandomSampler
randomly selects samples from the training dataset
to generate batches, and pads all sequences in
a batch to the maximum length of sequences in
the batch. Consequently, training with Random-
Sampler requires substantial padding, and hence,
substantial wasted computations. LengthGrouped-
Sampler (introduced in Huggingface Transformers



Table 3: Results of using TokenDrop + BucketSampler during batched inference with Roberta-base. We report
the average score across the 9 GLUE tasks and SQUADv1.1. We assume that all samples in the test dataset arrive
simultaneously, and speedup is computed by comparing the wall-clock time taken to infer on all test samples.

Batching Method Accuracy (Trained Accuracy (Trained Fraction of Speedup
(Inference) without TokenDrop) with TokenDrop) padding tokens

RandomSampler 81.62 82.02 40.1% 1X
BucketSampler 81.64 81.98 9.3% 4.5X

TokenDrop+BucketSampler 80.21 82.01 0.3% 4.9X

Table 4: Impact of the different BucketSampler opti-
mizations when fine-tuning Roberta-base. We report
the average score across GLUE and SQUAD.

Optimizations Accuracy Speedup
None 76.9 5.3×
RBM 78.42 5.8×

RBM + BatchCap 81.29 5.2×
RBM + BatchCap + LRM 81.64 5.2×

(Wolf et al., 2019)) sorts sequences in order of in-
creasing sequence length, and generates batches
of adjacent sequences in the sorted list. While
LengthGroupedSampler reduces padding, it uses
fixed batch sizes, resulting in hardware under-
utilization. Packing (Krell et al., 2022) generates
batches by concatenating different inputs along the
sequence length dimension. However, we find that
unlike when training from scratch, the overheads of
packing and the additional computations in atten-
tion layers (computing irrelevant scores, followed
by masking to prevent cross-contamination be-
tween different sequences) are not amortized over
the small number of fine-tuning epochs. Finally,
Tensorflow’s tf.data.bucket_by_sequence_length
divides the training dataset into buckets based
on sequence length, and generates batches
only from sequences in the same bucket, sim-
ilar to BucketSampler. While packing and
tf.data.bucket_by_sequence_length support vari-
able batch sizes to maximize hardware utilization,
they incur accuracy drop during fine-tuning. In
summary, while prior works have demonstrated ef-
ficiency gains when training LMs from scratch,
the unique characteristics of fine-tuning (small
datasets, very few epochs) make these methods in-
effective. As a result, TokenDrop + BucketSampler
significantly outperforms prior methods in terms of
both accuracy and fine-tuning efficiency (Table 5).

5 Conclusion
In this work, we presented TokenDrop + Bucket-
Sampler for accurate and efficient fine-tuning of
LMs. TokenDrop prunes a random subset of stop-
words in each sequence in every epoch to reduce

Figure 5: Average training loss across GLUE and
SQUAD when fine-tuning Roberta-base.

Table 5: Accuracy and efficiency of fine-tuning
Roberta-base with different batching strategies. Re-
sults are averaged across the GLUE tasks and SQUAD.

Batching Strategy Accuracy Speedup
RandomSampler 81.62 1X

LengthGroupedSampler 81.65 3.8X
Packing 80.69 4.2X

tf.bucket_by_sequence_length 76.9 5.3X
BucketSampler 81.67 5.1X

TokenDrop+BucketSampler 81.98 5.9X

overfitting, while BucketSampler creates batches of
sequences with similar sequence lengths to reduce
the number of padding tokens. We also introduced
algorithmic optimizations – Residual Batch Merg-
ing (RBM), BatchCap and Learning Rate Modula-
tion (LRM) – to maximize throughput and enable
convergence when fine-tuning with BucketSampler.
We demonstrated that TokenDrop can be syner-
gistically combined with BucketSampler to drop
more tokens from longer sequences in each batch,
thereby further reducing the need for padding. In
effect, fine-tuning with TokenDrop + BucketSam-
pler produced more accurate models in a shorter
time compared to conventional fine-tuning.
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7 Limitations

(1) TokenDrop is not universally applicable to all
fine-tuning tasks. In particular, TokenDrop cannot
be used when dropping stopwords can potentially
change the labels associated with sequences. For
instance, when fine-tuning a LM to identify if a
given sequence is grammatically correct or not (as
in CoLA), dropping stopwords from sequences will
make all sequences grammatically incorrect. (2)
BucketSampler is not useful for self-supervised
training with the Masked Language Modelling
(MLM) objective. When LMs are trained with
MLM, the text corpus is divided into fixed-size
blocks and fed to the model, thereby resulting
in constant input sizes. (3) The use of Batch-
Cap in BucketSampler introduces hardware under-
utilization in the first epoch of fine-tuning. We find
that BatchCap is necessary to achieve convergence
when fine-tuning with TokenDrop + BucketSam-
pler with the same set of hyperparameters as Ran-
domSampler. However, it is possible that the use of
advanced optimizers and/or learning rate schedules
can enable convergence without the need for Batch-
Cap, thereby further increasing efficiency. We plan
to explore this as part of future work.
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A List of hyperparameters

The hyperparameters used in our experiments are
described in Table 6. We reduce the dropout rate

when training with TokenDrop + BucketSampler
compared to training with RandomSampler in or-
der to account for the regularization effect of To-
kenDrop. In particular, we set the dropout rate to
0 on small datasets (<10K training samples) to
enable convergence within 3 epochs. For larger
datasets with >10K training samples, we reduce
the dropout rate to 0.025, since sufficient weight
updates are performed to enable convergence even
when small amount of dropout is used, and the ad-
ditional regularization from dropout leads to higher
test accuracy.

Choice of buckets: The parameters min_seq_len
and max_seq_len of a bucket determine the se-
quence length range of all samples in the bucket.
When TokenDrop is not used, we simply define
buckets in length increments of 1 i.e., bucket 1 will
have sequences of length 1, bucket 2 will have se-
quences of length 2, and so on. Therefore, the num-
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padding in residual batches. When TokenDrop is
used, the sequence length spread (max_seq_len
- min_seq_len + 1) of each bucket must be >1
to enable token dropping in non-residual batches
also. However, if the sequence length spread of
each bucket is too large, then it is highly likely
that Tokens_to_drop(sample) will be larger than
number_of_stopwords(sample) for most sam-
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Table 6: List of hyperparameters used in our experiments. We use the same set of hyperparameters for all
GLUE and SQUAD tasks. We also use the same set of hyperparameters when fine-tuning both Roberta-base and
Electra-base. HWCap is experimentally determined on a NVIDIA RTX 2080Ti GPU with 11GB memory.

Hyperparameter Value (RandomSampler) Value (TokenDrop + BucketSampler)
Batch Size 64 Variable

Learning Rate Best among {3, 4, 5} * e−5 Variable

Dropout Rate 0.1
0 for {MRPC, STS-B, CoLA, RTE, WNLI},

0.025 for {SST-2, QQP, QNL, MNLI, SQUAD}
Buckets (min_seq_len,

N/A
Defined in increments of 5, i.e., (0,5,2525), (5,10,1250),

max_seq_len, HWCap) (10,15,800), ..., (120,125,64), (125,128,64)
BatchCap: (scaling_factor, base_batch_size) N/A (2, 64); base_batch_size = Batch Size used for RandomSampler

LRM: (base_learning_rate,
N/A

(Learning Rate, Batch Size) used for RandomSampler
base_batch_size) i.e., (best among {3, 4, 5} * e−5, 64)

’themselves’, ’what’, ’which’, ’who’, ’whom’,
’this’, ’that’, "that’ll", ’these’, ’those’, ’am’, ’is’,
’are’, ’was’, ’were’, ’be’, ’been’, ’being’, ’have’,
’has’, ’had’, ’having’, ’do’, ’does’, ’did’, ’doing’,
’a’, ’an’, ’the’, ’and’, ’but’, ’if’, ’or’, ’because’,
’as’, ’until’, ’while’, ’of’, ’at’, ’by’, ’for’, ’with’,
’about’, ’against’, ’between’, ’into’, ’through’, ’dur-
ing’, ’before’, ’after’, ’above’, ’below’, ’to’, ’from’,
’up’, ’down’, ’in’, ’out’, ’on’, ’off’, ’over’, ’under’,
’again’, ’further’, ’then’, ’once’, ’here’, ’there’,
’when’, ’where’, ’why’, ’how’, ’all’, ’any’, ’both’,
’each’, ’few’, ’more’, ’most’, ’other’, ’some’,
’such’, ’only’, ’own’, ’so’, ’than’, ’too’, ’very’,
’can’, ’will’, ’just’, ’should’, "should’ve", ’now’, ’-
’, ’.’, ’;’, ’...’, ’(’, ’)’]. We remove all pronouns from
the stopword list on tasks where they are required
(such as WNLI, where the task is to select the ref-
erent of a given pronoun from a list of choices).

B Results of fine-tuning Roberta-Large

We present results of fine-tuning Roberta-Large
(Liu et al., 2019) on GLUE (Wang et al.) and
SQUADv1.1 (Rajpurkar et al.) in Table 7. We find
that fine-tuning with TokenDrop + BucketSampler
produces models that are up to 1.96% more accu-
rate, while also reducing the wall-clock fine-tuning
time by up to 10.12× compared to fine-tuning with
RandomSampler. The average accuracy gain from
using TokenDrop + BucketSampler on Roberta-
Large is more than the gain on Roberta-Base, since
overfitting is a bigger problem on larger models.
In particular, Roberta-Large has approximately 3×
the number of parameters as Roberta-Base, making
it more susceptible to memorizing the limited train-
ing samples during fine-tuning. On the other hand,
the fine-tuning speedup from using TokenDrop +
BucketSampler on Roberta-Large is similar to the
speedup on Roberta-Base, since speedup depends
on the dataset statistics rather than the model archi-

tecture.

C Ablation: Necessity of dropping a
random subset of stopwords with
TokenDrop

We demonstrate the need for dropping a random
subset of stopwords from sentences in Table 8.
When all tokens are considered for random drop-
ping, fine-tuning does not converge in the small
number of epochs typically used, since dropping
important tokens changes the meaning of the input
sequences. On the other hand, dropping only a ran-
dom subset of stopwords does not alter the meaning
of sentences, thereby enabling convergence while
also preventing overfitting. We also find that drop-
ping all stopwords in each sequence in every epoch
leads to loss in accuracy. This is because there is
no longer a regularization effect, since the same
sequences (with all stopwords dropped) are pre-
sented to the model in every epoch, and the pruning
of stopwords makes sequences shorter, and poten-
tially easier for the model to memorize (Table 8).

D Reducing overfitting with TokenDrop

We analyze the effectiveness of TokenDrop in
reducing overfitting when fine-tuning on three
datasets of different sizes – small (RTE, with 2.5K
training samples), medium (SST-2, with 67K train-
ing samples), and large (MNLI, with 393K training
samples) – in Fig. 6. We find that the training
loss decreases more gradually when TokenDrop is
used, since different data samples are presented in
each epoch. As a result, the model does not simply
memorize the training data within a few epochs,
leading to better generalization performance.



Table 7: Results of fine-tuning Roberta-Large on the GLUE and SQUAD v1.1 development sets. We report F1
score for SQUAD, Matthews correlation for CoLA, Pearson Correlation for STS-B and accuracy for all other tasks.
We report only “matched” accuracy for MNLI. Subscripts indicate standard deviation.

Batching Method SQUAD MRPC STS-B SST-2 CoLA QQP QNLI RTE MNLI WNLI Avg
RandomSampler 91.330.3 89.710.8 91.650.7 96.281.0 65.491.4 92.380.1 93.720.1 87.12.1 89.580.1 72.124.2 86.94

TokenDrop+BucketSampler 91.680.2 90.560.5 91.820.7 96.510.6 65.541.3 92.740.3 93.990.2 88.342.6 89.880.1 74.083.7 81.98
Speedup 9.46X 2.91X 7.28X 10.12X 8.96X 5.6X 3.14X 2.02X 4.19X 3.92X 5.76X

Figure 6: Training curves obtained from fine-tuning Roberta-base. We report loss averaged across 10 random
seeds. Dropout rate = 0.1 is used for all datasets when fine-tuning without TokenDrop. When fine-tuning with
TokenDrop, Dropout Rate = {0 for RTE, 0.025 for SST-2 and MNLI}, as listed in Table 6.

Table 8: Evaluation of regularization strategies. We
report the average score across GLUE and SQUAD.

Regularization Method Accuracy
Dropout (Dropout rate = 0.1) 81.62

Drop any random token (Drop rate = 0.3) 78.44
TokenDrop: Drop only stopwords (TokenDrop rate = 0.3) 81.98

Drop all stopwords (TokenDrop rate = 1.0) 79.97

E Factors impacting speedup from using
TokenDrop + BucketSampler on a
given task

We find that the size of the fine-tuning dataset and
the sequence length spread play key roles in de-
termining the speedup achieved when using To-
kenDrop + BucketSampler on a given task. We
analyze these relationships in the following subsec-
tions.

E.1 Dataset size
Both TokenDrop and BucketSampler add small
overheads at fine-tuning time. When TokenDrop
is used, stopwords are first identified in each se-
quence. Then, a random subset of stopwords are
pruned from each sequence in every epoch. When
BucketSampler is used, the training dataset is first
divided into buckets. Then, batches are randomly
generated from each bucket in every epoch, and
residual batches from different buckets are merged.
Finally, the generated batches are shuffled to ran-
domly order batches from different buckets. As a
result, once the buckets are generated at the start

of fine-tuning, the other steps of BucketSampler
are very similar to those in RandomSampler (with
the exception of RBM, which accounts for a very
small fraction of the runtime), and hence, the over-
heads are negligible. We analyze the overheads of
TokenDrop + BucketSampler on three fine-tuning
datasets of different sizes – small (RTE, with 2.5K
training samples), medium (SST-2, with 67K train-
ing samples), and large (MNLI, with 393K training
samples) – in Figure 7. We find that the most time-
consuming parts of TokenDrop (identifying all stop-
words in each sequence) and BucketSampler (di-
viding the dataset into buckets) are performed only
once at the start of fine-tuning. On the other hand,
the operations performed in each epoch account
for only a small fraction of the total runtime. Con-
sequently, the overheads of TokenDrop and Buck-
etSampler are better amortized over the course of
fine-tuning when training on larger datasets, lead-
ing to higher speedups.

Further accelerating hyperparameter search
during fine-tuning. When hyperparameter tun-
ing is necessary, it is sufficient to split the dataset
into buckets and perform stopword identification
only once, during the first epoch of the first fine-
tuning run. They can then be re-used for subse-
quent runs with different hyperparameters. As a
result, if we compare the wall-clock time taken to
perform fine-tuning with 10 different random seeds,
TokenDrop + BucketSampler achieves an average



speedup of 6.8× over RandomSampler across the
9 GLUE tasks and SQUAD. We also note that all
speedups reported in Section 3 are not computed
this way. Instead, it is assumed that both steps
(stopword identification and bucket generation) are
performed in every fine-tuning run, even when re-
sults are averaged across multiple random seeds.

Figure 7: Overheads of TokenDrop + BucketSampler.
Times are measured on a NVIDIA RTX 2080 Ti GPU
with 11 GB memory.

E.2 Sequence length spread of a dataset

We quantify the sequence length spread of a dataset
using two parameters: Lavg and LK . Lavg is
the average sequence length of all sequences in
the dataset, while LK is the maximum possible
sequence length such that at least K% of all se-
quences in the dataset are longer than LK . When
K = 87.5% and assuming a batch size of 64
(HWCap = 64 when max_seq_len = 128 on a
NVIDIA RTX 2080 Ti GPU), the probability of
each batch having at least one sequence with length
> LK = (1− (87.5/100)64) = 0.9999 when batch-
ing with RandomSampler. As a result, it is ex-
pected that each batch will be padded to at least
L87.5. Consequently, padding_fraction_est =
((L87.5 − Lavg)/L87.5) is a conservative estimate
of the fraction of all tokens that are expected to be
padding tokens when batching with RandomSam-
pler. We observe that padding_fraction_est has
a direct correlation with speedup achieved when
using TokenDrop + BucketSampler (Fig. 8). We
observe some outliers when the datasets are very
small, as in the case of RTE (2.5k training samples)
and WNLI (634 training samples), since the over-
heads of TokenDrop + BucketSampler account for
a larger fraction of the wall-clock fine-tuning time
(see Fig. 7). We achieve maximum speedup on
SST-2, a relatively large dataset (67K training sam-
ples) with high padding_fraction_est (nearly

50% of all tokens are expected to be padding to-
kens with RandomSampler). In addition, SST-2 has
Lavg = 14, and hence, the majority of batches can
be processed with batch sizes >800 (HWCap =
800 for the bucket with max_seq_len = 15), lead-
ing to large speedups over RandomSampler (where
the batch size of all batches is determined by the
longest sequence in the dataset, leading to hard-
ware under-utilization when processing batches
with short sequences only).

Figure 8: Impact of sequence length spread of a
dataset on fine-tuning speedup achieved using To-
kenDrop + BucketSampler.


