
Published as a conference paper at ICLR 2017

A COMPARE-AGGREGATE MODEL FOR MATCHING
TEXT SEQUENCES

Shuohang Wang
School of Information Systems
Singapore Management University
shwang.2014@phdis.smu.edu.sg

Jing Jiang
School of Information Systems
Singapore Management University
jingjiang@smu.edu.sg

ABSTRACT

Many NLP tasks including machine comprehension, answer selection and text en-
tailment require the comparison between sequences. Matching the important units
between sequences is a key to solve these problems. In this paper, we present a
general “compare-aggregate” framework that performs word-level matching fol-
lowed by aggregation using Convolutional Neural Networks. We particularly fo-
cus on the different comparison functions we can use to match two vectors. We
use four different datasets to evaluate the model. We find that some simple com-
parison functions based on element-wise operations can work better than standard
neural network and neural tensor network.

1 INTRODUCTION

Many natural language processing problems involve matching two or more sequences to make a
decision. For example, in textual entailment, one needs to determine whether a hypothesis sentence
can be inferred from a premise sentence (Bowman et al., 2015). In machine comprehension, given
a passage, a question needs to be matched against it in order to find the correct answer (Richardson
et al., 2013; Tapaswi et al., 2016). Table 1 gives two example sequence matching problems. In the
first example, a passage, a question and four candidate answers are given. We can see that to get
the correct answer, we need to match the question against the passage and identify the last sentence
to be the answer-bearing sentence. In the second example, given a question and a set of candidate
answers, we need to find the answer that best matches the question. Because of the fundamental
importance of comparing two sequences of text to judge their semantic similarity or relatedness,
sequence matching has been well studied in natural language processing.

With recent advances of neural network models in natural language processing, a standard practice
for sequence modeling now is to encode a sequence of text as an embedding vector using models
such as RNN and CNN. To match two sequences, a straightforward approach is to encode each
sequence as a vector and then to combine the two vectors to make a decision (Bowman et al.,
2015; Feng et al., 2015). However, it has been found that using a single vector to encode an entire
sequence is not sufficient to capture all the important information from the sequence, and therefore
advanced techniques such as attention mechanisms and memory networks have been applied to
sequence matching problems (Hermann et al., 2015; Hill et al., 2016; Rocktäschel et al., 2015).

A common trait of a number of these recent studies on sequence matching problems is the use of a
“compare-aggregate” framework (Wang & Jiang, 2016b; He & Lin, 2016; Parikh et al., 2016). In
such a framework, comparison of two sequences is not done by comparing two vectors each rep-
resenting an entire sequence. Instead, these models first compare vector representations of smaller
units such as words from these sequences and then aggregate these comparison results to make the
final decision. For example, the match-LSTM model proposed by Wang & Jiang (2016b) for tex-
tual entailment first compares each word in the hypothesis with an attention-weighted version of the
premise. The comparison results are then aggregated through an LSTM. He & Lin (2016) proposed
a pairwise word interaction model that first takes each pair of words from two sequences and applies
a comparison unit on the two words. It then combines the results of these word interactions using a
similarity focus layer followed by a multi-layer CNN. Parikh et al. (2016) proposed a decomposable
attention model for textual entailment, in which words from each sequence are compared with an

1



Published as a conference paper at ICLR 2017

Plot: ... Aragorn is crowned King of Gon-
dor and taking Arwen as his queen before all
present at his coronation bowing before Frodo
and the other Hobbits . The Hobbits return to
the Shire where Sam marries Rosie Cotton . ...

Qustion: Where does Sam marry Rosie?

Candidate answers: 0) Grey Havens. 1) Gon-
dor. 2) The Shire. 3) Erebor. 4) Mordor.

Question: can i have auto insurance without a
car

Ground-truth answer: yes, it be possible have
auto insurance without own a vehicle. you will
purchase what be call a name ...

Another candidate answer: insurance not be
a tax or merely a legal obligation because auto
insurance follow a car...

Table 1: The example on the left is a machine comprehension problem from MovieQA, where the
correct answer here is The Shire. The example on the right is an answer selection problem from
InsuranceQA.

attention-weighted version of the other sequence to produce a series of comparison vectors. The
comparison vectors are then aggregated and fed into a feed forward network for final classification.

Although these studies have shown the effectiveness of such a “compare-aggregate” framework for
sequence matching, there are at least two limitations with these previous studies: (1) Each of the
models proposed in these studies is tested on one or two tasks only, but we hypothesize that this
general framework is effective on many sequence matching problems. There has not been any study
that empirically verifies this. (2) More importantly, these studies did not pay much attention to the
comparison function that is used to compare two small textual units. Usually a standard feedforward
network is used (Hu et al., 2014; Wang & Jiang, 2016b) to combine two vectors representing two
units that need to be compared, e.g., two words. However, based on the nature of these sequence
matching problems, we essentially need to measure how semantically similar the two sequences
are. Presumably, this property of these sequence matching problems should guide us in choosing
more appropriate comparison functions. Indeed He & Lin (2016) used cosine similarity, Euclidean
distance and dot product to define the comparison function, which seem to be better justifiable. But
they did not systematically evaluate these similarity or distance functions or compare them with a
standard feedforward network.

In this paper, we argue that the general “compare-aggregate” framework is effective for a wide
range of sequence matching problems. We present a model that follows this general framework
and test it on four different datasets, namely, MovieQA, InsuranceQA, WikiQA and SNLI. The first
three datasets are for Question Answering, but the setups of the tasks are quite different. The last
dataset is for textual entailment. More importantly, we systematically present and test six different
comparison functions. We find that overall a comparison function based on element-wise subtraction
and multiplication works the best on the four datasets.

The contributions of this work are twofold: (1) Using four different datasets, we show that our model
following the “compare-aggregate” framework is very effective when compared with the state-of-
the-art performance on these datasets. (2) We conduct systematic evaluation of different comparison
functions and show that a comparison function based on element-wise operations, which is not
widely used for word-level matching, works the best across the different datasets. We believe that
these findings will be useful for future research on sequence matching problems. We have also made
our code available online.1

2 METHOD

In this section, we propose a general model following the “compare-aggregate” framework for
matching two sequences. This general model can be applied to different tasks. We focus our discus-
sion on six different comparison functions that can be plugged into this general “compare-aggregate”
model. In particular, we hypothesize that two comparison functions based on element-wise oper-
ations, SUB and MULT, are good middle ground between highly flexible functions using standard
neural network models and highly restrictive functions based on cosine similarity and/or Euclidean

1https://github.com/shuohangwang/SeqMatchSeq

2

https://github.com/shuohangwang/SeqMatchSeq


Published as a conference paper at ICLR 2017

Figure 1: The left hand side is an overview of the model. The right hand side shows the details about
the different comparison functions. The rectangles in dark represent parameters to be learned. ×
represents matrix multiplication.

distance. As we will show in the experiment section, these comparison functions based on element-
wise operations can indeed perform very well on a number of sequence matching problems.

2.1 PROBLEM DEFINITION AND MODEL OVERVIEW

The general setup of the sequence matching problem we consider is the following. We assume there
are two sequences to be matched. We use two matrices Q ∈ Rd×Q and A ∈ Rd×A to represent
the word embeddings of the two sequences, where Q and A are the lengths of the two sequences,
respectively, and d is the dimensionality of the word embeddings. In other words, each column
vector of Q or A is an embedding vector representing a single word. Given a pair of Q and A, the
goal is to predict a label y. For example, in textual entailment, Q may represent a premise and A a
hypothesis, and y indicates whether Q entails A or contradicts A. In question answering, Q may
be a question and A a candidate answer, and y indicates whether A is the correct answer to Q.

We treat the problem as a supervised learning task. We assume that a set of training examples in the
form of (Q,A, y) is given and we aim to learn a model that maps any pair of (Q,A) to a y.

An overview of our model is shown in Figure 1. The model can be divided into the following four
layers:

1. Preprocessing: We use a preprocessing layer (not shown in the figure) to process Q and
A to obtain two new matrices Q ∈ Rl×Q and A ∈ Rl×A. The purpose here is to use some
gate values to control the importance of different words in making the predictions on the
sequence pair. For example, qi ∈ Rl, which is the ith column vector of Q, encodes the ith
word in Q.

2. Attention: We apply a standard attention mechanism on Q and A to obtain attention
weights over the column vectors in Q for each column vector in A. With these attention
weights, for each column vector aj in A, we obtain a corresponding vector hj , which is an
attention-weighted sum of the column vectors of Q.

3. Comparison: We use a comparison function f to combine each pair of aj and hj into a
vector tj .

3



Published as a conference paper at ICLR 2017

4. Aggregation: We use a CNN layer to aggregate the sequence of vectors tj for the final
classification.

Although this model follows more or less the same framework as the model proposed by Parikh et al.
(2016), our work has some notable differences. First, we will pay much attention to the comparison
function f and compare a number of options, including some uncommon ones based on element-
wise operations. Second, we apply our model to four different datasets representing four different
tasks to evaluate its general effectiveness for sequence matching problems. There are also some
other differences from the work by Parikh et al. (2016). For example, we use a CNN layer instead of
summation and concatenation for aggregation. Our attention mechanism is one-directional instead
of two-directional.

In the rest of this section we will present the model in detail. We will focus mostly on the comparison
functions we consider.

2.2 PREPROCESSING AND ATTENTION

Inspired by the use of gates in LSTM and GRU, we preprocess Q and A with the following formulas:

Q = σ(WiQ+ bi ⊗ eQ)� tanh(WuQ+ bu ⊗ eQ),

A = σ(WiA+ bi ⊗ eA)� tanh(WuA+ bu ⊗ eA), (1)

where � is element-wise multiplication, and Wi,Wu ∈ Rl×d and bi,bu ∈ Rl are parameters to
be learned. The outer product (· ⊗ eX) produces a matrix or row vector by repeating the vector
or scalar on the left for X times. Here σ(WiQ + bi ⊗ eQ) and σ(WiA + bi ⊗ eA) act as gate
values to control the degree to which the original values of Q and A are preserved in Q and A. For
example, for stop words, their gate values would likely be low for tasks where stop words make little
difference to the final predictions.

In this preprocessing step, the word order does not matter. Although a better way would be to use
RNN such as LSTM and GRU to chain up the words such that we can capture some contextual
information, this could be computationally expensive for long sequences. In our experiments, we
only incorporated LSTM into the formulas above for the SNLI task.

The general attention (Luong et al., 2015) layer is built on top of the resulting Q and A as follows:

G = softmax
(
(WgQ+ bg ⊗ eQ)

TA
)
,

H = QG, (2)

where Wg ∈ Rl×l and bg ∈ Rl are parameters to be learned, G ∈ RQ×A is the attention weight
matrix, and H ∈ Rl×A are the attention-weighted vectors. Specifically, hj , which is the jth column
vector of H, is a weighted sum of the column vectors of Q and represents the part of Q that best
matches the jth word in A. Next we will combine hj and aj using a comparison function.

2.3 COMPARISON

The goal of the comparison layer is to match each aj , which represents the jth word and its context
in A, with hj , which represents a weighted version of Q that best matches aj . Let f denote a
comparison function that transforms aj and hj into a vector tj to represent the comparison result.

A natural choice of f is a standard neural network layer that consists of a linear transformation
followed by a non-linear activation function. For example, we can consider the following choice:

NEURALNET (NN): tj = f(aj ,hj) = ReLU(W

[
aj
hj

]
+ b), (3)

where matrix W ∈ Rl×2l and vector b ∈ Rl are parameters to be learned.

Alternatively, another natural choice is a neural tensor network (Socher et al., 2013) as follows:

NEURALTENSORNET (NTN): tj = f(aj ,hj) = ReLU(aT
jT

[1...l]hj + b), (4)

where tensor T[1...l] ∈ Rl×l×l and vector b ∈ Rl are parameters to be learned.

4



Published as a conference paper at ICLR 2017

However, we note that for many sequence matching problems, we intend to measure the semantic
similarity or relatedness of the two sequences. So at the word level, we also intend to check how
similar or related aj is to hj . For this reason, a more natural choice used in some previous work is
Euclidean distance or cosine similarity between aj and hj . We therefore consider the following
definition of f :

EUCLIDEAN+COSINE (EUCCOS): tj = f(aj ,hj) =

[
‖aj − hj‖2
cos(aj ,hj)

]
. (5)

Note that with EUCCOS, the resulting vector tj is only a 2-dimensional vector. Although EUCCOS
is a well-justified comparison function, we suspect that it may lose some useful information from
the original vectors aj and hj . On the other hand, NN and NTN are too general and thus do not
capture the intuition that we care mostly about the similarity between aj and hj .

To use something that is a good compromise between the two extreme cases, we consider the fol-
lowing two new comparison functions, which operate on the two vectors in an element-wise manner.
These functions have been used previously by Mou et al. (2016).

SUBTRACTION (SUB): tj = f(aj ,hj) = (aj − hj)� (aj − hj), (6)
MULTIPLICATION (MULT): tj = f(aj ,hj) = aj � hj . (7)

Note that the operator� is element-wise multiplication. For both comparison functions, the resulting
vector tj has the same dimensionality as aj and hj .

We can see that SUB is closely related to Euclidean distance in that Euclidean distance is the sum
of all the entries of the vector tj produced by SUB. But by not summing up these entries, SUB
preserves some information about the different dimensions of the original two vectors. Similarly,
MULT is closely related to cosine similarity but preserves some information about the original two
vectors.

Finally, we consider combining SUB and MULT followed by an NN layer as follows:

SUBMULT+NN: tj = f(aj ,hj) = ReLU(W

[
(aj − hj)� (aj − hj)

aj � hj

]
+ b). (8)

In summary, we consider six different comparison functions: NN, NTN, EUCCOS, SUB, MULT and
SUBMULT+NN. Among these functions, the last three (SUB, MULT and SUBMULT+NN) have not
been widely used in previous work for word-level matching.

2.4 AGGREGATION

After we apply the comparison function to each pair of aj and hj to obtain a series of vectors tj ,
finally we aggregate these vectors using a one-layer CNN (Kim, 2014):

r = CNN([t1, . . . , tA]). (9)

r ∈ Rnl is then used for the final classification, where n is the number of windows in CNN.

3 EXPERIMENTS

MovieQA InsuranceQA WikiQA SNLI
train dev test train dev test train dev test train dev test

#Q 9848 1958 3138 13K 1K 1.8K*2 873 126 243 549K 9842 9824
#C 5 5 5 50 500 500 10 9 10 - - -

#w in P 873 866 914 - - - - - - - - -
#w in Q 10.6 10.6 10.8 7.2 7.2 7.2 6.5 6.5 6.4 14 15.2 15.2
#w in A 5.9 5.6 5.5 92.1 92.1 92.1 25.5 24.7 25.1 8.3 8.4 8.3

Table 2: The statistics of different datasets. Q:question/hypothesis, C:candidate answers for each
question, A:answer/hypothesis, P:plot, w:word (average).

5



Published as a conference paper at ICLR 2017

Models MovieQA InsuranceQA WikiQA SNLI
dev test dev test1 test2 MAP MRR train test

Cosine Word2Vec 46.4 45.63 - - - - - - -
Cosine TFIDF 47.6 47.36 - - - - - - -
SSCB TFIDF 48.5 - - - - - - - -
IR model - - 52.7 55.1 50.8 - - - -
CNN with GESD - - 65.4 65.3 61.0 - - - -
Attentive LSTM - - 68.9 69.0 64.8 - - - -
IARNN-Occam - - 69.1 68.9 65.1 0.7341 0.7418 - -
IARNN-Gate - - 70.0 70.1 62.8 0.7258 0.7394 - -
CNN-Cnt - - - - - 0.6520 0.6652 - -
ABCNN - - - - - 0.6921 0.7108 - -
CubeCNN - - - - - 0.7090 0.7234 - -
W-by-W Attention - - - - - - - 85.3 83.5
match-LSTM - - - - - - - 92.0 86.1
LSTMN - - - - - - - 88.5 86.3
Decomp Attention - - - - - - - 90.5 86.8
EBIM+TreeLSTM - - - - - - - 93.0 88.3

NN 31.6 - 76.8 74.9 72.4 0.7102 0.7224 89.3 86.3
NTN 31.6 - 75.6 75.0 72.5 0.7349 0.7456 91.6 86.3
EUCCOS 71.9 - 70.6 70.2 67.9 0.6740 0.6882 87.1 84.0
SUB 64.9 - 70.0 71.3 68.2 0.7019 0.7151 89.8 86.8
MULT 66.4 - 76.0 75.2 73.4 0.7433 0.7545 89.7 85.8
SUBMULT+NN 72.1 72.9 77.0 75.6 72.3 0.7332 0.7477 89.4 86.8

Table 3: Experiment Results

Models MovieQA InsuranceQA WikiQA SNLI
dev test dev test1 test2 MAP MRR train test

SUBMULT+NN (no preprocess) 72.0 - 72.8 73.8 70.7 0.6996 0.7156 89.6 82.8
SUBMULT+NN (no attention) 60.4 - 69.4 70.4 67.8 0.7164 0.7238 89.0 84.4

Table 4: Ablation Experiment Results. “no preprocess”: remove the preprocessing layer by directly
using word embeddings Q and A to replace Q and A in Eqn. 1; “no attention”: remove the attention
layer by using mean pooling of Q to replace all the vectors of H in Eqn. 2.

In this section, we evaluate our model on four different datasets representing different tasks. The first
three datasets are question answering tasks while the last one is on textual entailment. The statistics
of the four datasets are shown in Table 2. We will fist introduce the task settings and the way we
customize the “compare-aggregate” structure to each task. Then we will show the baselines for the
different datasets. Finally, we discuss the experiment results shown in Table 3 and the ablation study
shown in Table 4.

3.1 TASK-SPECIFIC MODEL STRUCTURES

In all these tasks, we use matrix Q ∈ Rd×Q to represent the question or premise and matrix Ak ∈
Rd×Ak (k ∈ [1,K]) to represent the kth answer or the hypothesis. For the machine comprehension
task MovieQA (Tapaswi et al., 2016), there is also a matrix P ∈ Rd×P that represents the plot of a
movie. Here Q is the length of the question or premise, Ak the length of the kth answer, and P the
length of the plot.

For the SNLI (Bowman et al., 2015) dataset, the task is text entailment, which identifies the relation-
ship (entailment, contradiction or neutral) between a premise sentence and a hypothesis sentence.
Here K = 1, and there are exactly two sequences to match. The actual model structure is what we
have described before.

For the InsuranceQA (Feng et al., 2015) dataset, the task is an answer selection task which needs
to select the correct answer for a question from a candidate pool. For the WikiQA (Yang et al.,
2015) datasets, we need to rank the candidate answers according to a question. For both tasks,

6



Published as a conference paper at ICLR 2017

there are K candidate answers for each question. Let us use rk to represent the resulting vector
produced by Eqn. 9 for the kth answer. In order to select one of the K answers, we first define
R = [r1, r2, . . . , rK ]. We then compute the probability of the kth answer to be the correct one as
follows:

p(k|R) = softmax(wT tanh(WsR+ bs ⊗ eK) + b⊗ eK), (10)

where Ws ∈ Rl×nl, w ∈ Rl, bs ∈ Rl, b ∈ R are parameters to be learned.

For the machine comprehension task MovieQA, each question is related to Plot Synopses written by
fans after watching the movie and each question has five candidate answers. So for each candidate
answer there are three sequences to be matched: the plot P, the question Q and the answer Ak. For
each k, we first match Q and P and refer to the matching result at position j as tq

j , as generated by
one of the comparison functions f . Similarly, we also match Ak with P and refer to the matching
result at position j as ta

k,j . We then define

tk,j =

[
tq
j

ta
k,j

]
,

and

rk = CNN([tk,1, . . . , tk,P ]).

To select an answer from the K candidate answers, again we use Eqn. 10 to compute the probabili-
ties.

The implementation details of the modes are as follows. The word embeddings are initialized from
GloVe (Pennington et al., 2014). During training, they are not updated. The word embeddings not
found in GloVe are initialized with zero.

The dimensionality l of the hidden layers is set to be 150. We use ADAMAX (Kingma & Ba,
2015) with the coefficients β1 = 0.9 and β2 = 0.999 to optimize the model. We do not use L2-
regularization. The main parameter we tuned is the dropout on the embedding layer. For WikiQA,
which is a relatively small dataset, we also tune the learning rate and the batch size. For the others,
we set the batch size to be 30 and the learning rate 0.002.

3.2 BASELINES

Here, we will introduce the baselines for each dataset. We did not re-implement these models but
simply took the reported performance for the purpose of comparison.

SNLI: •W-by-W Attention: The model by Rocktäschel et al. (2015), who first introduced attention
mechanism into text entailment. • match-LSTM: The model by Wang & Jiang (2016b), which
concatenates the matched words as the inputs of an LSTM. • LSTMN: Long short-term memory-
networks proposed by Cheng et al. (2016). • Decomp Attention: Another “compare-aggregate”
model proposed by Parikh et al. (2016). • EBIM+TreeLSTM: The state-of-the-art model proposed
by Chen et al. (2016) on the SNLI dataset.

InsuranceQA: • IR model: This model by Bendersky et al. (2010) learns the concept information
to help rank the candidates. • CNN with GESD: This model by Feng et al. (2015) uses Euclidean
distance and dot product between sequence representations built through convolutional neural net-
works to select the answer. • Attentive LSTM: Tan et al. (2016) used soft-attention mechanism
to select the most important information from the candidates according to the representation of the
questions. • IARNN-Occam: This model by Wang et al. (2016) adds regularization on the attention
weights. • IARNN-Gate: This model by Wang et al. (2016) uses the representation of the question
to build the GRU gates for each candidate answer.

WikiQA: • IARNN-Occam and IARNN-Gate as introduced before. • CNN-Cnt: This model
by Yang et al. (2015) combines sentence representations built by a convolutional neural network
with logistic regression. • ABCNN: This model is Attention-Based Convolutional Neural Network
proposed by Yin et al. (2015). • CubeCNN proposed by He & Lin (2016) builds a CNN on all pairs
of word similarity.

MovieQA: All the baselines we consider come from Tapaswi et al. (2016)’s work: • Cosine
Word2Vec: A sliding window is used to select the answer according to the similarities computed

7



Published as a conference paper at ICLR 2017

through Word2Vec between the sentences in plot and the question/answer. • Cosine TFIDF: This
model is similar to the previous method but uses bag-of-word with tf-idf scores to compute similar-
ity. • SSCB TFIDF: Instead of using the sliding window method, a convolutional neural network is
built on the sentence level similarities.

3.3 ANALYSIS OF RESULTS

We use accuracy as the evaluation metric for the datasets MovieQA, InsuranceQA and SNLI, as there
is only one correct answer or one label for each instance. For WikiQA, there may be multiple correct
answers, so evaluation metrics we use are Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR).

We observe the following from the results. (1) Overall, we can find that our general “compare-
aggregate” structure achieves the best performance on MovieQA, InsuranceQA, WikiQA datasets
and very competitive performance on the SNLI dataset. Especially for the InsuranceQA dataset,
with any comparison function we use, our model can outperform all the previous models. (2) The
comparison method SUBMULT+NN is the best in general. (3) Some simple comparison functions
can achieve better performance than the neural networks or neural tensor network comparison func-
tions. For example, the simplest comparison function EUCCOS achieves nearly the best performance
in the MovieQA dataset, and the element-wise comparison functions, which do not need parameters
can achieve the best performance on the WikiQA dataset. (4) We find the preprocessing layer and
the attention layer for word selection to be important in the “compare-aggregate” structure through
the experiments of removing these two layers separately. We also see that for sequence matching
with big difference in length, such as the MovieQA and InsuranceQA tasks, the attention layer
plays a more important role. For sequence matching with smaller difference in length, such as
the WikiQA and SNLI tasks, the pre-processing layer plays a more important role. (5) For the
MovieQA, InsuranceQA and WikiQA tasks, our preprocessing layer is order-insensitive so that it
will not take the context information into consideration during the comparison, but our model can
still outperform the previous work with order-sensitive preprocessing layer. With this finding, we
believe the word-by-word comparison part plays a very important role in these tasks. We will further
explore the preprocessing layer in the future.

3.4 FURTHER ANALYSES

To further explain how our model works, we visualize the max values in each dimension of the
convolutional layer. We use two examples shown in Table 1 from MovieQA and InsuranceQA
datasets respectively. In the top of Figure 2, we can see that the plot words that also appear in
either the question or the answer will draw more attention by the CNN. We hypothesize that if the
nearby words in the plot can match both the words in question and the words in one answer, then
this answer is more likely to be the correct one. Similarly, the bottom one of Figure 2 also shows
that the CNN will focus more on the matched word representations. If the words in one answer
continuously match the words in the question, this answer is more likely to be the correct one.

4 RELATED WORK

We review related work in three types of general structures for matching sequences.

Siamense network: These kinds of models use the same structure, such as RNN or CNN, to build
the representations for the sequences separately and then use them for classification. Then cosine
similarity (Feng et al., 2015; Yang et al., 2015), element-wise operation (Tai et al., 2015; Mou et al.,
2016) or neural network-based combination Bowman et al. (2015) are used for sequence matching.

Attentive network: Soft-attention mechanism (Bahdanau et al., 2014; Luong et al., 2015) has been
widely used for sequence matching in machine comprehension (Hermann et al., 2015), text entail-
ment (Rocktäschel et al., 2015) and question answering (Tan et al., 2016). Instead of using the
final state of RNN to represent a sequence, these studies use weighted sum of all the states for the
sequence representation.

Compare-Aggregate network: This kind of framework is to perform the word level match-
ing (Wang & Jiang, 2016a; Parikh et al., 2016; He & Lin, 2016; Trischler et al., 2016; Wan et al.,

8



Published as a conference paper at ICLR 2017

Figure 2: An visualization of the largest value of each dimension in the convolutional layer of CNN.
The top figure is an example from the dataset MovieQA with CNN window size 5. The bottom
figure is an example from the dataset InsuranceQA with CNN window size 3. Due to the sparsity
of the representation, we show only the dimensions with larger values. The dimensionality of the
raw representations is 150.

2016). Our work is under this framework. But our structure is different from previous models and
our model can be applied on different tasks. Besides, we analyzed different word-level comparison
functions separately.

5 CONCLUSIONS

In this paper, we systematically analyzed the effectiveness of a “compare-aggregate” model on four
different datasets representing different tasks. Moreover, we compared and tested different kinds
of word-level comparison functions and found that some element-wise comparison functions can
outperform the others. According to our experiment results, many different tasks can share the
same “compare-aggregate” structure. In the future work, we would like to test its effectiveness on
multi-task learning.

6 ACKNOWLEDGMENTS

This research is supported by the National Research Foundation, Prime Ministers Office, Singapore
under its International Research Centres in Singapore Funding Initiative.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the International Conference on Learning Rep-
resentations, 2014.

9



Published as a conference paper at ICLR 2017

Michael Bendersky, Donald Metzler, and W Bruce Croft. Learning concept importance using a
weighted dependence model. In Proceedings of the third ACM International Conference on Web
Search and Data Mining. ACM, 2010.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large an-
notated corpus for learning natural language inference. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2015.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and Hui Jiang. Enhancing and combining sequen-
tial and tree LSTM for natural language inference. arXiv preprint arXiv:1609.06038, 2016.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks for machine read-
ing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
2016.

Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou. Applying deep learning
to answer selection: A study and an open task. In 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), pp. 813–820. IEEE, 2015.

Hua He and Jimmy Lin. Pairwise word interaction modeling with deep neural networks for semantic
similarity measurement. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Proceedings of the
Conference on Advances in Neural Information Processing Systems, 2015.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The Goldilocks principle: Read-
ing children’s books with explicit memory representations. In Proceedings of the International
Conference on Learning Representations, 2016.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures
for matching natural language sentences. In Advances in Neural Information Processing Systems,
2014.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the International Conference on Learning Representations, 2015.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing, 2015.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, and Zhi Jin. Natural language inference by
tree-based convolution and heuristic matching. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2016.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2016.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. GloVe: Global vectors for word
representation. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2014.

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. MCTest: A challenge dataset for
the open-domain machine comprehension of text. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2013.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, and Phil Blunsom.
Reasoning about entailment with neural attention. In Proceedings of the International Conference
on Learning Representations, 2015.

10



Published as a conference paper at ICLR 2017

Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a senti-
ment treebank. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2013.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the Conference on
Association for Computational Linguistics, 2015.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen Zhou. Improved representation learning for
question answer matching. In Proceedings of the Conference on Association for Computational
Linguistics, 2016.

Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba, Raquel Urtasun, and Sanja
Fidler. MovieQA: Understanding stories in movies through question-answering. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 2016.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He, Phillip Bachman, and Kaheer Suleman. A
parallel-hierarchical model for machine comprehension on sparse data. In Proceedings of the
Conference on Association for Computational Linguistics, 2016.

Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng. Match-srnn:
Modeling the recursive matching structure with spatial RNN. International Joint Conference on
Artificial Intelligence, 2016.

Bingning Wang, Kang Liu, and Jun Zhao. Inner attention based recurrent neural networks for answer
selection. In Proceedings of the Conference on Association for Computational Linguistics, 2016.

Shuohang Wang and Jing Jiang. Machine comprehension using match-LSTM and answer pointer.
arXiv preprint arXiv:1608.07905, 2016a.

Shuohang Wang and Jing Jiang. Learning natural language inference with LSTM. In Proceedings of
the Conference on the North American Chapter of the Association for Computational Linguistics,
2016b.

Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset for open-domain
question answering. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2015.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. ABCNN: Attention-based convolu-
tional neural network for modeling sentence pairs. arXiv preprint arXiv:1512.05193, 2015.

11


	Introduction
	Method
	Problem Definition and Model Overview
	Preprocessing and Attention
	Comparison
	Aggregation

	Experiments
	Task-specific Model Structures
	Baselines
	Analysis of Results
	Further Analyses

	Related Work
	Conclusions
	Acknowledgments

