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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3× 3 complex
matrix M with M−1 = M† and det[M ] = 1, where M† = (M∗)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, β
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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Figure 1: Neural network structure. In the first layer, a total of 4212 symmetry invariant products are
formed. Fully connected hidden layers with 1024, 512, and 256 nodes act on these features. Each
hidden layer uses a tanh activation function, with dropouts between layers.

Uµ(x)→ U ′µ(x) = Ω(x)Uµ(x)Ω†(x+ µ̂), where Ω(x) represents a set of arbitrary SU(3) matrices,
one for each space-time location x, and µ̂ denotes a unit displacement in the µ direction. Some
of these symmetries only manifest stochastically after ensemble averaging. Encoding the relevant
invariances within network structures, or equivalently using bases of symmetry-invariant input fea-
tures Simard et al. (1992); Király et al. (2014); Schölkopf et al. (1996); Burges & Schölkopf (1997),
reduces the degrees of freedom of the problem and mitigates the severity of the data hierarchy. Us-
ing such an approach allows successful and efficient regression of action parameters from LQCD
datasets (other approaches such as data augmentation to accelerate the stochastic learning of these
symmetries are computationally infeasible).

2 RESULTS

Since LQCD data is generated using MCMC, it is computationally cheaper to produce large en-
sembles at a few sets of action parameters rather than single samples at many parameter values
well-distributed in the space of interest. For the regression exercise, training (validation) datasets
were constructed by randomly selecting 850 (100) configurations from each of twenty ensembles
generated with LQCD action parameters β and m in a regular grid. Trained on this data set, a va-
riety of fully-connected network structures produced precise and accurate predictions of the action
parameters from the validation ensembles. However, these models failed to generalise to interme-
diate parameter values, always returning the mean of the training parameter grid. This indicates
that the models are overfitting the data, a result that might be expected given the challenging data
hierarchy. Although ultimately unsuccessful at the task at hand, these models identified a previously
unknown feature of the LQCD configurations with a longer MCMC autocorrelation time than any
known quantity.

In order to overcome the data hierarchy problem, neural networks trained using symmetry-
preserving features of reduced dimension were also considered. The structures that were con-
structed, called Wilson loops, correspond to closed paths of links (Uµ(x)) of various shapes and
sizes. Optimally, the selection of a set of such features would be part of the training prescrip-
tion. Because of the significant computational cost associated with the calculation of each possible
symmetry-preserving feature on each configuration, however, several categories of Wilson loops
were chosen by hand for this study. Network structures such as that illustrated in Fig. 1 were trained
on the Wilson loop feature sets constructed on the training data described above. Although no rig-
orous hyperparameter tuning was undertaken, many variations of this network structure, including
various numbers of nodes and layers, different activation functions (tanh, reLU, and sigmoid),
and different choices of dropout and normalisation hyperparameters were used. The best-performing
network configuration is shown and its output is detailed here. Various minimisation algorithms, in-
cluding stochastic gradient descent, Adam Kingma & Ba (2014), and Nesterov Nesterov (1983),
with various parameters, achieved the same minimum loss, although the numbers of epochs to
achieve convergence varied. An L1 loss function in the two-dimensional parameter space outper-
formed L2 for regression performance in all tests. Network biases were initialised to zero, and
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Figure 2: Parameter predictions for intermediate validation ensembles. The open circles show pa-
rameters of each validation ensemble, while the ellipses show the one–standard-deviation confidence
regions generated using the parameter predictions for the 100 validation configurations from each
ensemble. The greyed-out stars and ellipses show the training ensemble parameters and the confi-
dence regions for validation ensembles at the parameters of the training data.

weights to a truncated normal distribution centred at zero with a width of 0.02. An L2 regulariser
with weight decay 0.001 was used.

The predictions generated by a trained network instance are shown in Fig. 2. As well as achiev-
ing accurate and precise parameter predictions for the validation datasets at the same parameters as
the training data, the model generalises successfully to intermediate action parameter values. The
elongation of the prediction ellipses is in the direction of constant 1 × 1 Wilson loop, the simplest
and most precise gauge-invariant object that can be formed. It should be noted that there is a max-
imum possible regression performance for this set-up: individual gauge configurations are sampled
from a probability distribution and any given configuration could, with some probability, have been
generated from a range of actions with different parameters. This maximum resolution would be
sharpened by batched or ensemble-based regression, which will be investigated in future work. A
particularly challenging test of network performance is provided by two sets of validation ensem-
bles which were constructed to have constant physics properties, separated in parameter space at
distances much smaller than the training grid spacing. Under a principal component analysis, con-
figurations from ensembles in either of the sets cannot be distinguished. As illustrated in Fig. 2,
however, the parameter predictions from the trained network for the different datasets are distin-
guishable, and the central values have the correct relative positions in parameter space. This is a
definitive success, indicating that the network has accurately parameterised the relevant features of
the LQCD data.

3 SUMMARY

Neural networks trained on symmetry-invariant features solve a challenging parameter regression
task in LQCD, overcoming the dramatic inverted data hierarchy natural to such problems which
have orders of magnitude fewer samples available than the number of real numbers describing each
sample. Further study of efficient implementations of domain knowledge by imposing complicated
invariances and constraints into network structure, rather than feature selection, will have applica-
tions not only to these problems, but to related studies in statistical and condensed matter physics.
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