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Abstract

Symbolic search, using Binary Decision Diagrams (BDDs) to
represent sets of states, is a competitive approach to optimal
planning. Yet heuristic search in this context remains chal-
lenging. The many advances on admissible planning heuris-
tics are not directly applicable, as they evaluate one state at
a time. Indeed, progress using heuristic functions in sym-
bolic search has been limited and even very informed heuris-
tics have been shown to be detrimental. Here we show how
this connection can be made stronger for LP-based poten-
tial heuristics. Our key observation is that, for this family
of heuristic functions, the change of heuristic value induced
by each operator can be precomputed. This facilitates their
smooth integration into symbolic search. Our experiments
show that this can pay off significantly: we establish a new
state of the art in optimal symbolic planning.

1 Introduction

A™ search with admissible heuristics and symbolic search
are currently the two main contenders for the state of the
art in cost-optimal planning. In principle, these are two or-
thogonal enhancements of a vanilla search algorithm. On
the one hand, admissible heuristics aim to reduce the num-
ber of explored states. On the other hand, symbolic search
uses Binary Decision Diagrams (BDDs) (Bryant 1986) to
efficiently represent and manipulate sets of states, greatly
speeding up exhaustive search. A natural idea is to combine
the two, and indeed that idea has been presented decades
ago in the BDDA™ algorithm (Edelkamp and Reffel 1998;
Edelkamp 2002).

Yet that combination has not been an unqualified suc-
cess. For a heuristic to be effective in symbolic search,
two properties are required: (1) it must be possible to effi-
ciently evaluate sets of states represented as BDDs, without
evaluating the heuristic on each represented state individu-
ally; and (2) it must induce a good partitioning, so that sets
of states with the same g- and h-value can be efficiently
represented as BDDs. Property (1) is fulfilled by some of
the strongest heuristics for explicit-state search (e.g. sym-
bolic PDBs (Kissmann and Edelkamp 2011; Franco et al.
2017; Torralba, Lépez, and Borrajo 2018)) so they can be
used in BDDA*. However, it has been shown that even
very informative heuristics can be detrimental in symbolic
search (Speck, Geiller, and Mattmiiller 2020), when they do

not fulfill property (2). The main reason is that reducing the
amount of expanded states may be detrimental if the under-
lying BDD representation is less efficient. Due to all this,
symbolic bidirectional blind search (without heuristics) is
considered the dominant symbolic search approach, and the
use of heuristic search in this context has lost traction.

Here we challenge this trend by showing that potential
heuristics (Pommerening et al. 2015) yield fresh synergy be-
tween heuristic and symbolic search. Such heuristics assign
a numeric value (a potential) to each fact of the planning
task, in a way so that the sum of the potentials of the facts
true in a state is an admissible estimate of the state’s goal
distance. As we show, potential heuristics are particularly
well suited for combination with symbolic search.

Our key observation is that potentials can be computed for
each operator rather than for each fact. Such operator po-
tentials combine synergically with symbolic search as they
have property (1): It turns out that under certain conditions,
the operator potential of an operator o is equal to the dif-
ference in heuristic values h(s’) — h(s) for any state tran-
sition s — s’ induced by the operator o. This enables us
to efficiently encode potential heuristic information in sym-
bolic search without having to compute the heuristic value
of each state during the search (Jensen, Veloso, and Bryant
2008). The main difficulty in doing so is that these operator
potentials are real (floating-point) numbers, which can lead
to rounding and precision issues. Naively rounding these
values may lead to an inconsistent heuristic. We show that
this can be dealt with by rounding operator potentials within
the integer linear program (ILP) that derives the potential
heuristics.

Our empirical analysis shows that potential heuristics also
fulfill property (2). That is, they not only reduce the num-
ber of explored states, but also lead to improvements on
the number of BDD nodes on average. This makes poten-
tial heuristic very helpful in symbolic search across a large
number of benchmark domains. Overall, symbolic forward
search with potential heuristics soundly outperforms sym-
bolic bidirectional search, thus establishing a new state of
the art in optimal symbolic planning.

2 Preliminaries

We consider the finite domain representation (FDR) of plan-
ning tasks (Béckstrom and Nebel 1995). An FDR planning



task IT is specified by a tuple IT = (V, O, I, G). V is a finite
set of variables, each variable V' € V has a finite domain
dom(V). A fact (V, v) is a pair of a variable V' € V and one
of its values v € dom(V'). The set of all facts is denoted by
F={{V,v) | V € V,v € dom(V)}, and the set of facts
of variable V' is denoted by Fy = {(V,v) | v € dom(V)}.
A partial state p is a variable assignment over some vari-
ables vars(p) C V. We write p[V] for the value assigned
to the variable V' € vars(p) in the partial state p. We
also identify p with the set of facts contained in p, i.e.,
p={(V,p[V]) | V € vars(p)}. A partial state s is a state if
vars(s) = V. I is an initial state. G is a partial state called
goal, and a state s is a goal state iff G C s. Let p, t be partial
states. We say that ¢ extends p if p C t.

O is a finite set of operators, each operator o € O
has a precondition pre(o) and effect eff (0), which are par-
tial states over V, and a cost cost(o) € R{. An operator
o is applicable in a state s iff pre(o) C s. The result-
ing state of applying an applicable operator o in a state
s is another state ofs] such that o[s][V] = eff(o)[V] for
every V€ wvars(eff(o)), and o[s][V] = s[V] for ev-
ery V€ V \ vars(eff(0)). We also assume that for every
V€ vars(pre(o)) N vars(eff (0)) it holds that pre(o)[V] #
eff (0)[V].

Given a non-negative integer n € Zg, [n] denotes the
set {1,...,n} with [0] defined as an empty set. A sequence

of operators m = (01,...,0,) is applicable in a state sq if
there are states sy, ..., S, such that o; is applicable in s;_;
and s; = o;]s;—1] for i € [n]. The resulting state of this
application is 7[so] = s, and cost(r) = DI, cost(o;)

denotes the cost of this sequence of operators. A sequence
of operators 7 is called an s-plan iff 7 is applicable in a state
s and 7[s] is a goal state. An s-plan 7 is called optimal if
its cost is minimal among all s-plans.

A state s is reachable if there exists an operator sequence
m applicable in I such that 7[I] = s. Otherwise, we say that
s is unreachable. The set of all reachable states is denoted
by R. An operator o is reachable iff it is applicable in some
reachable state. A state s is a dead-end state iff G Z s
and there is no s-plan. A set of facts M C F is a mutex if
M & s for every reachable state s € R.

A heuristic i : R — R U {co} estimates the cost of opti-
mal s-plans. The optimal heuristic #*(s) maps each reach-
able state s to the cost of the optimal s-plan or to oo if s is
a dead-end state. A heuristic h is called (a) admissible iff
h(s) < h*(s) for every reachable state s € R; (b) goal-
aware iff 2(s) < 0 for every reachable goal state s; and
(c) consistent iff h(s) < h(o[s]) + cost(o) for all reach-
able states s € R and operators o € O applicable in s. It
is well-known that goal-aware and consistent heuristics are
also admissible. In the context of heuristic search, h-value of
a state node s refers to the heuristic value of s, g-value to the
cost of the sequence of operators leading to s, and f-value
is simply a sum of h-value and g-value.

3 Symbolic Search Background

Explicit state-space search operates on individual states,
whereas symbolic search (McMillan 1993) works on sets of

states represented by their characteristic functions. A char-
acteristic function fg of a set of states S is a Boolean func-
tion assigning 1 to states that belong to .S and 0 to states that
do not belong to S. Operations like the union (U), intersec-
tion (N), and complement of sets of states correspond to the
disjunction (V), conjunction (A), and negation (—) of their
characteristic functions, respectively. Binary Decision Dia-
grams (BDDs) (Bryant 1986) are a efficient data-structure to
represent Boolean functions in the form of a directed acyclic
graph. The size of a BDD is the number of nodes in this
representation. The main advantage of using BDDs is that
often a BDD is much smaller than the number of states it
represents. In fact, BDDs can be exponentially smaller, as
certain sets containing exponentially many states can be rep-
resented by BDDs of polynomial size (Edelkamp and Kiss-
mann 2008). Most operations on BDDs take only polyno-
mial time in the size of the BDD, which enables the efficient
manipulation of large sets of states.

The most prominent implementation of a symbolic
heuristic search in the context of automated planning is
BDDA* (Edelkamp and Reffel 1998) which is a variant of
A* (Hart, Nilsson, and Raphael 1968) using BDDs to rep-
resent sets of states. In BDDA*, operators of planning tasks
are represented as transition relations, also using BDDs. A
transition relation (TR) of an operator o is a characteristic
function of pairs of states (s, ofs])) for all states s such that s
is (possibly) reachable and o is applicable in s. Having a TR
T, for every operator o € O, we can construct a TR of a set
of operators with the same cost cas T, = Voeo,cost(o)=c 7.
As the size of T, may be exponential in the number of op-
erators with cost ¢, in practice, it is often a good idea to use
disjunctive partitioning. Disjunctive partitioning represents
T. with as few BDDs as possible while keeping the size at
bay (Jensen, Veloso, and Bryant 2008; Torralba et al. 2017).
Moreover, mutexes can be used for a more accurate approx-
imation of states that are reachable (Torralba et al. 2017).

Like A™, BDDA" expands states by ascending order of
their f-value. To take advantage of the symbolic represen-
tation, BDDA™ represents all states with the same g and h
value in a single BDD S, j, (disjunctive partitioning of Sy 5,
can also be used). Given a set of states Sy 5 and a TR T¢,
image(Sy 5, T.) computes the set of successor states reach-
able from any state in S by applying any operator repre-
sented by T..! The g-value of the resulting set of succes-
sor states is then simply the g-value of S, ;, plus c. These
successor states have to be split according to their h value.
This can usually be performed efficiently (e.g. with symbolic
PDBs (Kissmann and Edelkamp 2011)) by representing the
heuristic as a BDD .S}, per heuristic value that represents the
set of states with that value and performing a conjunction.

GHSETA™ (Jensen, Veloso, and Bryant 2008) encodes the
heuristic function as part of the transition relation, creating
multiple TRs depending on the impact of the operators on
heuristic value. This is a very efficient way of evaluating the
heuristics within symbolic search. However, up to now, all
heuristics known to be suitable for this representation were

!The details how the function image works are not important
here—Torralba et al. (2017) provide a detailed description.



either non-informative, inadmissible, or domain dependent.

4 Potential Heuristics Background

Potential heuristics, introduced by Pommerening et al.
(2015), assign a numerical value to each fact, and the heuris-
tic value for a state s is then simply a sum of the potentials
of all facts in s.

Definition 1. Let IT denote a planning task with facts F. A
potential function is a function P : 7 — R. A potential
heuristic for P maps each state s € R to the sum of poten-
tials of facts in s, i.e., h¥(s) = 3" s P(f).

We will leverage prior work on so-called disambiguation
(Alcazar et al. 2013) to strengthen potential heuristics (FiSer,
Horc¢ik, and Komenda 2020). A disambiguation of a variable
V for a given set of facts p is simply a set of facts F' C Fy
from variable V' such that every reachable state extending p
contains one of the facts from F'.

Definition 2. Let II denote a planning task with facts F and
variables V, let V' € V denote a variable, and let p denote a
partial state. A set of facts F' C Fy is called a disambigua-
tion of V for p if for every reachable state s € R such that
p C sitholds that F' N's # 0 (i.e., (V,s[V]) € F).

Clearly, every Fy is a disambiguation of V for all possi-

ble partial states, and if (V, v) € p and there exists a reach-
able state extending p, then {(V,v)} is a disambiguation of
V' for p. Moreover, if the disambiguation of V' for p is an
empty set (for any V), then all states extending p are un-
reachable. Therefore, we can use empty disambiguations to
determine unsolvability of planning tasks (if G extends p), or
to prune unreachable operators (if a precondition of the oper-
ator extends p). So, from now on we will consider only non-
empty disambiguations. Fiser, Hor¢ik, and Komenda (2020)
showed how to use mutexes to find disambiguations, so here
we will assume we already have disambiguations inferred.
Furthermore, to simplify the notation, we introduce a dis-
ambiguation map.
Definition 3. A mapping D : (O x V) UV > 27 is called
a disambiguation map if (i) for every operator o € O and
every variable V' € vars(eff (o)) it holds that D(o, V') C Fy
is a disambiguation of V" for pre(o) such that |D (o, V)| > 1;
and (ii) for every variable V' € V it holds that D(V') C Fy
is a disambiguation of V' for G such that |D(V)| > 1.

Now we can state sufficient conditions for the potential
heuristic to be admissible, which we will need later on.

Theorem 4. (Fiser, Horc¢ik, and Komenda 2020) Let 11 =
(V,0,1,G) denote a planning task with facts F, and let P
denote a potential function, and let D denote a disambigua-
tion map.

If
max P(f) <0 (1)

and for every operator o € O it holds that
P — P < cost 2
> [ max P(f) D P(f) < cost(o),  (2)
V evars(eff (0)) feeff(o)

then the potential heuristic for P is admissible.

The conditions from Theorem 4 can be formulated as con-
straints of a linear program (LP) and any solution (for any
objective function) to such LP provides potentials for an ad-
missible potential heuristic. So far, potential heuristics have
been used as described in Definition 1, i.e., each fact gets
assigned a potential value and the heuristic value for a state
s is the sum of potentials of all facts in s.

5 Operator-Potential Heuristics

Our key observation is that potentials can also be designed
in a different way, yielding a new synergy with symbolic
search: We can assign a potential to each operator and com-
pute an admissible heuristic value for a state s reached by a
sequence of operators 7 as a sum of operator potentials of all
operators in 7. We start by introducing an operator-potential
function.

Definition 5. Given a potential function P, and a disam-
biguation map D, a function Q : O +— R is called an
operator-potential function for P and D if

Qo) => P(f)— >

feeff(o) Vevars(eff (o))

sohax P(f) ()

for every operator o € O.

Note that the value of Q(o) is just the value of the left hand
side of Eq. (2) with the opposite sign. Or in other words,
the operator-potential function for an operator o gives us the
lower bound on the change of the heuristic value of the cor-
responding potential heuristic for the given potential func-
tion P and disambiguation map D. Also note that we can use
a different disambiguation map for the inference of poten-
tial function P and for the operator-potential function Q, but
we do not see a reason to do that, because we would always
want to use a disambiguation as strong as possible.

Next, we show that, if the disambiguation map D maps
every operator o and every effect variable V' € vars(eff (o))
to a singleton, then 7 (I) + 3=, ¢, Q(o;) = h¥(s) for every
sequence of operators m = (01, ..., 0,) such that 7[I] = s.
That is, as long as the preconditions on the variables affected
by any operator o are known precisely, the potential heuris-
tic value for any state s can be computed as the potential
heuristic value for the initial state plus the sum of opera-
tor potentials of operators from any sequence of operators 7
leading to s. Lemma 6 shows that equality holds for any two
consecutive states, and Lemma 7 shows that it holds over
any sequence of operators applicable in the initial state.

Lemma 6. Let P denote a potential function, let D denote
a disambiguation map, let Q denote an operator-potential
Sfunction for P and D, let s denote a reachable state, and
let o denote an operator applicable in s. If |D(o, V)| = 1
for every V' € vars(eff(0)), then 37, P(f) + Qo) =

> teops) PUF)-

Proof. Let A = Uy cars(efi (o)) P(0, V). Since [D(o, V)| =
1 for every V' € vars(eff (o)), Equation (3) can be rewritten

as Q(0) = X jceri(o) P(f) — 2244 P(f). And since s is
reachable and o is applicable in s, it holds that A C s.



Let B = s\ A. Clearly, o[s] = B U eff(o) and B N
eff(0) = 0. Therefore, 3, (P(f) +Q(0) = X e, P(f)
can be rewritten to > . P(f) + 274 P(f) + Qo) =
> e P(f) + 2 scen(o) P(f), and further simplified to
S 1eaP(f) + Q0) = X cuo) P(F)- Expanding Qo)
gives us ZfeA P(f) + ZfECf‘f(o) P(f) — ZfeAP(f) =
>_ peefi(o) P(f), which concludes the proof. O

Lemma 7. Let P denote a potential function, let D denote
a disambiguation map, let Q denote an operator-potential
function for P and D, let 1 = (01,...,0,) denote a se-
quence of operators applicable in I, and let s = w[I]. If
|D(0,V)| = 1foreveryo € O and every V € vars(eff(0)),
then Zfe[ P(f)+ qug[n] Q(o;) = Zf/eg P(f").

Proof. (By induction) It clearly holds for an empty sequence
. Let s’ denote a state reachable from I by a sequence m =
(01,...,0n_1), and let 0,, € O denote an operator applica-
blein s’,and let s = 0,,[s']. Now, assume that } © ;. ; P(f)+

>iein—1Q(0i) = >_ ey P(f'), and we need to prove that
Zfe[ P(f) + Zie[n] Q(o;) = Zf’es P(f"). From the as-
sumption, it follows that 3., P(f) 4+ >2;c,—1) Qlos) +
Q(on) = > ey P(f') +Q(0n), so it is enough to show that

> pres P() +Q(0n) = 3 fc, P(f), which follows from
Lemma 6. O

Now, getting to the main result of this section, we formu-
late an operator-potential heuristic and we prove that this
heuristic is well-defined and it equals to the corresponding
(fact) potential heuristic.

Definition 8. Let Q denote an operator-potential function for
P and D such that [D(o,V)| = 1 for every o € O and
every V € vars(eff(0)). A operator-potential heuristic
R : R — RU {oo} for Q is defined as

h(s) =Y P(f)+ > Qo) )

fer i€[n]

for any sequence of operators 7 = (o, ...
w[I] = s.

Theorem 9. Let D denote a disambiguation map such that
|D(o, V)| =1foreveryo € O and every V & vars(eff(0)),
let P denote a potential function, and let Q denote an
operator-potential function for P and D. Then hY is well-
defined, and hY(s) = hF(s) for every reachable state s, and
hQ is admissible (goal-aware, consistent) if h¥ is admissible
(goal-aware, consistent).

,0n) such that

Proof. 1t follows directly from Lemma 7. O

Note that every planning task can be transformed into an-
other task where |D(o0, V)| = 1 holds for every operator o
and variable V' € vars(eff(0)). Here, we decided to enforce
this property simply by enumerating all possible combina-
tions of facts from all disambiguations D(o, V') such that
|D(o,V)| > 1 for all operators’ preconditions. For exam-
ple, given an operator o with vars(eff(0)) = {v1,v2}, and
D(o,v1) = {f1, f2} and D(0,v2) = {fs3, fa}, we replace

01,51 __02

}As:;{

Figure 1: Let cost(o;) = 0 for all ¢ € [4], and cost(05) = 1,
andletQ(o1) = 1,Q(02) = 0,Q(03) = 0.9,Q(04) = 0.1, and
Q(os5) = —1, and let h?(I) = 0. A simple example showing
inconsistency after rounding operator potentials down to the
nearest integers.

the operator o with four new operators o1, ..., 04 with the
same effect eff (01) = eff(03) = eff (03) = eff(04) = eff(0),
but we set preconditions to pre(o;) = pre(o) U {f1, f3},
pre(0z) = pre(o) U {f1, fa} pre(os) = pre(o) U {f2, fs},
and pre(o4) = pre(o) U{ fa, f4}. This way, the transformed
planning task can grow exponentially in the number of op-
erators. However, in our experiments, we ran out of memory
in only one planning task.”

6 Handling Floating-Point Potentials

Although Theorem 9 identifies conditions under which
operator-potential heuristics are consistent and equal to the
corresponding potential heuristics, in practice there is an ad-
ditional complication resulting from the fact that the Q(o)
values are typically represented as floating-point numbers.
This means we should not compare the Q(o) values on
equality. Moreover, having floating-point heuristic values is
an even larger issue in symbolic search, as states are ag-
gregated based on their h-value. If floating-point numbers
are used, one could get different BDDs for every state in
the search, greatly reducing the effectiveness of symbolic
search. Therefore, it is desirable to represent in a single BDD
all states whose heuristic values are rounded to the same in-
teger value. Rounding operator potentials down to the near-
est integers would resolve this problem and it would keep
the heuristic function admissible. Unfortunately, this kind of
rounding could make the heuristic inconsistent.

Consider a planning task depicted in Figure 1. Clearly,
the operator-potential heuristic A% is both admissible and
consistent. Now, let Q denote an operator potential func-
tion obtained by rounding down Q to the nearest integers,
iA.e., Q(Ol) = 1, Q(Og) = O, Q(Og) = 0, Q(O4) = 0, and
Q(os) = —1.The sum _ . ; P(f) + > ;) Q0i) (cf. Defi-
nition 8) provides an admissible estimate, because rounding
down can make the sum only smaller. However, rounding
down can also make this estimate path-dependent, i.e., we
can obtain different values for a state depending on the path
by which we reached the state, and inconsistent.

Consider the states s1 and s2, and operator sequences ™ =
(01) and " = (03, 04) from Figure 1. Since the heuristic
value for the initial state is zero, the inequality h%(s;) —
h¥(sq) < cost(o02) holds, because h%(s1) = 1, h%(s2) = 1,

2A possibility for future work is the use of transition normal
form (Pommerening and Helmert 2015) which is polynomial, but
introduces a set of auxiliary operators, and requires a transforma-
tion of the resulting plan back to the original planning task.



and cost (o) = 0. But after rounding, we get Q(o;) = 1 and
Q(03) + Q(o4) = 0 resulting in a higher estimate for s; than
for so using Q.

We resolve this issue by encoding the rounding directly
into the (integer) linear program expressing the potentials.
Since the operator potential is just a left hand side of Eq. (2)
with the opposite sign, we can create a new integer variable

for each operator potential and add a new constraint

Qo) => P(HHl— > max P(f) (5)
f€D(0,V)
feeff(o) Vevars(eff (o))
for each operator o € O. This way, (fact) potentials P can
still be real-valued, but the operator potentials will have in-
teger values. Therefore a proper rounding of operator po-
tentials will be done by the ILP solver, and we can com-
pare them on equality without running into problems with
floating-point numbers.

7 Symbolic Search with Potential Heuristics

Using potential heuristics in BDDA* is not straightforward,
as the standard way of evaluating the heuristics by con-
structing a BDD S}, representing all states with a heuristic
value equal to & may not always be feasible. The naive ap-
proach would be to enumerate all possible sub-sets of fea-
tures whose potentials add up-to h. However, this requires
enumerating exponentially many sub-sets and it may easily
result in an exponentially large BDD. We overcome this dif-
ficulty by using operator-potential heuristics instead.

To do so, we use GHSETA* (Jensen, Veloso, and Bryant
2008), a symbolic heuristic search algorithm which parti-
tions the TRs not only by the cost of the corresponding op-
erators, but also by the change of the heuristic value they
induce. That is, instead of creating a TR 7 for all opera-
tors o having cost(o) = ¢, we create a TR T, , represent-
ing all operators o such that cost(o) = ¢ and Q(0) = gq.
For the initial state, the g-value is set to zero, and the h-
value is set to > ;. P(f). For all subsequent states S
expanded by the TR T, ,, the g-value and h-value of the re-
sulting state Sy, ;,, = image(Sg,n, Te,q) is setto g’ = g + ¢
and b’/ = h + q, respectively.

The pseudocode for the algorithm using a consistent
operator-potential heuristic is encapsulated in Algorithm 1.
On lines 1 and 2, the TRs corresponding to all unique
pairs of operator costs and Q(o) values are constructed. The
heuristic value for the initial state is computed on line 3. The
open list of sets of states (represented by BDDs) ordered by
f = g + h values is initialized with the initial state on line
4 and 5. On line 6, a BDD representing all closed states is
constructed. The while-cycle on lines 7-15 is an A* algo-
rithm adapted to the symbolic search. On line 8, we extract
the set of states with the lowest f-value from the open list
(the function PopMin () ) and remove all closed states from
this set. If a goal state is reached (line 9 and 10), an optimal
plan is extracted and returned (for details see (Torralba et al.
2017)). If the current set of states S, 5 does not contain a
goal state, then all these states are added to the set of closed
states (line 11). On lines 1215, all operators are applied and
the resulting states that were not closed yet are assigned the

Algorithm 1: Symbolic forward A* with consistent
operator-potential heuristic.

Input: A planning task II, an operator potential function Q
for P and D.
Output: An optimal plan or “unsolvable”.
for each ¢, g € {cost(0),Q(0) | 0 € O} do
| Construct Tt 4 from {o € O | cost(0) = ¢,Q(0) = q};
hr < Zfelp(f);
SO,hI — {I},
open <— {SO,}LI};
closed + 0;
while open # () do
Sg,n < PopMin (open) \ closed;
if Sy, contains a goal state then
‘ return ExtractPlan (Sgn);
closed <« closed U Sy 1;
for each T ; do
Sgte,htq < image(Sg n,Teq) \ closed;
if Sg+c,h+q §£ @ then
| InsertOrUpdate (open, Sgichiq);
return “unsolvable”;
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correct g and h values and either inserted into the open list
(if there is N0 Sy h+q in the open list), or the set of states
in the open list is extended with the new set of states.

Note that we need the operator-potential heuristic to be
consistent in order to avoid re-opening states (cf. lines 8 and
13). This also means that if the computation of consistent
operator-potentials require the transformation of the plan-
ning task described in Section 5, then the same transformed
task must be used also for the symbolic search.

8 Experimental Evaluation

We implemented our search algorithm in C. Operators and
facts are pruned with the h? heuristic in forward and back-
ward direction (Alcazar and Torralba 2015), and the transla-
tion from PDDL to FDR uses the inference of mutex groups
proposed by FiSer (2020). We used all planning domains
from the optimal track of International Planning Competi-
tions (IPCs) from 1998 to 2018 excluding the ones contain-
ing conditional effects after translation. We merged, for each
domain, all benchmark suites across different IPCs. This
leaves 48 domains overall.

The experiments were run on a cluster of computing
nodes with Intel Xeon Scalable Gold 6146 processors and
CPLEX solver v12.9 used for the computation of potentials.
The time and memory limits were set to 30 minutes and 8
GB, respectively. All variants use a time limit of 30 seconds
for applying mutexes on the BDD representing goal states
and 10 seconds time limit for merging BDDs representing
transition relations (Torralba et al. 2017).

We evaluated GHSETA* with the following variants of
operator-potential heuristics:

e I: optimization for the initial state (Pommerening et al.

2015), i.e., maximize the heuristic value for the initial

state.

e A+I: optimization for all syntactic states with added
constraint on the initial state (Seipp, Pommerening, and
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(a) Average number of BDD
nodes per expanded BDD.
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Figure 2: Comparison of symbolic forward uniform-cost search (bfw) against GHSETA™ with the best-performing variant of
the potential heuristic (A+I) on tasks that were solved by both variants.

Helmert 2015; FiSer, Horc¢ik, and Komenda 2020), i.e.,
maximize the heuristic value for an average (syntactic)
state while enforcing the maximum heuristic value for the
initial state.

e S,.+1I: optimization for an average over 1000 random
states with added constraint on the initial state (Seipp,
Pommerening, and Helmert 2015; FiSer, Horcik, and
Komenda 2020), i.e., sample 1000 states using random
walks and maximize the heuristic value for the average
state over the sampled states while enforcing the maxi-
mum heuristic value for the initial state.

e M,+I: optimization for all reachable states approximated
with mutexes with added constraint for the initial state
(FiSer, Hor¢ik, and Komenda 2020), i.e., approximate the
number of reachable states by enumerating all possible
pairs of facts, and then use mutexes to approximate the
number of reachable states containing each fixed pair of
facts.

We compare these to symbolic uniform-cost search us-
ing forward (bfw) and bidirectional search (bbi). Further-
more, we compare to other state-of-the-art planners. We ran
A with the LM-Cut (1mc) heuristic (Helmert and Domshlak
2009), with the merge-and-shrink (ms) heuristic with SCC-
DFP merge strategy and non-greedy bisimulation shrink
strategy (Helmert et al. 2014; Sievers, Wehrle, and Helmert
2016), and with the potential heuristic (pot,;) optimized
for all syntactic states with added constraint for the ini-
tial state (Fiser, HorCik, and Komenda 2020) (i.e., a vari-
ant of A+I for A*). We further compare to two of the best-
performing non-portfolio planners from IPC 2018: Comple-
mentary?2 (comp2) (Franco et al. 2017; Franco, Lelis, and
Barley 2018), and Scorpion (scrp) (Seipp 2018; Seipp and
Helmert 2018).

Table 1 shows the coverage comparison across all plan-
ners, in terms of total coverage, and in terms of the number
of domains in which each planner is superior to others. Ta-
ble 2 gives detailed per-domain coverage results.
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n < = O n o o H o g | tot
scrp — 20 22 19 24 27 26 29 31 33 36|1112
A+T1 14 — 9 16 20 21 24 31 29 33 34|1109
Mo+1 14 1 — 14 18 20 24 27 27 32 34|1097
comp2 [16 16 18 — 24 19 26 26 30 32 33|1091
Su+I (12 3 8 16 — 19 22 29 27 31 30|1081
bbi 14 14 14 12 17 - 24 23 27 26 26|1010
pot,yr| 5 10 12 13 14 17 - 21 23 17 24|1002
I 9 1 3 9 415 14 — 20 17 21| 989
bfw 10 4 4 6 8 6 17 10 - 19 16| 933
ms 2 6 7 71014 9 1522 - 19| 933
Imc 2 5 6 6 913 14 17 23 18 — 911

Table 1: Summary of domain coverage. A value in row z
and column y is the number of domains where = solved
more tasks than y, it is bold if higher than the value in row y
and column z. “tot” shows overall number of solved tasks.
Highlighted rows correspond to GHSETA* with operator-
potential heuristics.

8.1 Operator Potentials in Symbolic Search

Consider first the comparison of symbolic potential variants
against the baseline forward search without heuristics (bfw).
This clearly demonstrates that potential heuristics are bene-
ficial for the performance of symbolic search over a wide
range of different domains. The best variant of GHSETA*
with an operator-potential heuristic (A+I) solves 176 more
tasks than the baseline (bfw). It increases coverage on 29
different domains, and it is detrimental in only 4 domains.
Among the different variants of potential heuristics, we ob-
serve that the optimization criteria can have a significant im-
pact on performance. The best variant is A+I, closely fol-
lowed by Six+I and My+I, and significantly better than I.
These results are well in line with the results of the same
potential heuristics in explicit search (FiSer, Hor¢ik, and
Komenda 2020).

For a heuristic to be beneficial in symbolic search, it is re-
quired that sets of states with the same g and h are efficiently



Domain GHSETA™ + potentials

I A+I Six+I Mo+I |bfw bbi \ Imc ms pot,,; comp2 scrp
agricolal8 (20) 15 19 17 200 19 20 0 4 3 10 6
airport04 (50) 26 26 26 24| 24 26| 30 21 36 28 40
barmanl11/14 (34) 11 14 14 14| 15 16| 10 11 11 15 11
blocks00 (35) 21 31 29 31| 22 33| 28 21 28 31 28
calderal8 (20) 16 17 17 16 18 18| 12 12 12 15 13
cavediving14 (20) 7 7 7 7 7 8 7 7 7 7 7
childsnack14 (20) 4 5 5 51 5§ 5/ 0 O 0 2 0
data-network18 (20) 8 13 9 13| 11 13| 12 13 9 13 14
depot02 (22) 7 11 10 11 6 8 7 11 11 8 14
driverlog02 (20) 13 14 13 14| 11 14| 14 13 13 15 15
elevators08/11 (50) 35 35 35 35| 35 43| 40 35 31 4 4
floortile11/14 (40) 17 18 17 17 17 34| 34 16 11 34 16
freecell00 (80) 47 68 68 67| 20 27| 15 62 72 32 72
ged14 (20) 15 15 16 15 15 20| 19 19 15 20 20
gripper98 (20) 20 20 20 201 20 20 8 9 8 20 8
hiking14 (20) 14 16 15 16| 16 18 11 14 14 20 15
logistics98/00 (63) 23 28 27 28| 21 251 26 25 24 28 37
maintenancel4 (5) 5 5 5 5 5 5 5 5 5 5 5
movie98 (30) 30 30 30 30| 30 30| 30 30 30 30 30
mprime98 (35) 27 31 28 31| 27 16| 25 24 24 24 31
mystery98 (30) 15 19 19 19| 15 10 17 17 18 15 19
nomysteryl1 (20) 13 19 16 19] 12 16| 16 14 14 20 20
openstacks06/08/11/14 (100) | 91 91 91 91| 8 86| 51 56 57 74 55
organic-synthesis18 (20) 10 10 10 10| 10 100 10 7 10 10 10
parcprinter08/11 (50) 44 48 47  47] 40 37| 41 44 48 43 50
parking11/14 (40) 0 13 12 131 0 6| 8 2 16 5 16
pathways06 (30) 5 5 5 51 5§ 5/ 5§ 4 4 5 5
pegsol08/11 (50) 48 48 46 48| 46 48| 48 48 48 48 50
petri-net-alignment18 (20) 9 10 10 10| 16 19, 9 O 13 19 0
pipesworld-notankage04 (50) | 22 26 26 24| 17 17| 18 23 30 25 26
pipesworld-tankage04 (50) 18 19 18 19| 17 15| 13 16 19 19 18
psr-small04 (50) 50 50 50 50 50 50| 49 50 50 50 50
rovers06 (40) 13 14 14 14| 14 14| 9 8 8 13 10
satellite02 (36) 7 10 9 10 7 12| 9 6 6 10 10
scanalyzer08/11 (50) 23 21 19 21| 21 211 31 23 23 21 33
snakel8 (20) 10 10 11 8| 7 o 7 15 15 13 15
sokoban08/11 (50) 48 50 50 48| 48 48| 50 50 50 48 50
spider18 (20) 12 13 11 12 7 71 11 12 16 13 16
storage06 (30) 15 16 16 16| 15 15 15 15 16 15 16
termes18 (20) 12 12 12 12 12 18| 6 14 12 16 14
tetris14 (17) 13 16 16 16| 9 10 9 13 17 13 13
tidybot11/14 (40) 29 33 32 33| 25 121 30 30 32 39 35
tpp06 (30) 11 12 12 12| 8 8 7 8 8 15 8
transport08/11/14 (70) 23 24 24 24| 26 34| 23 27 24 33 38
trucks06 (30) 16 16 15 16| 13 14 13 10 14 14 16
visitall11/14 (40) 22 22 22 22| 17 19 18 29 30 33 30
woodworking08/11 (50) 38 46 48 46| 38 48] 42 29 29 48 50
zenotravel02 (20) 11 13 12 13] 9 12 13 11 11 13 13
> (1697) [989 1109 1081 1097|933 1010|911 933 1002 1091 1112

Table 2: Number of solved tasks per domain and overall. The best results in each row are highlighted in bold.

represented with BDDs. The positive coverage results from
Table 1 suggest that this is indeed the case for the operator-
potential heuristics. To confirm this, Figure 2 compares the
performance of the baseline, symbolic search without any
heuristics (bfw), against the best configuration of our sym-
bolic search with potential heuristics (A+I), according to dif-
ferent metrics.

First, we observe that the average number of BDD
nodes per expanded BDD was almost always lower (Fig-
ure 2a). This means that indeed, the partitioning induced by
operator-potential heuristics is often beneficial, resulting on
sets of states during the search that have a concise BDD rep-
resentation. This property, however, is not guaranteed by the
method. In particular, the average number of BDD nodes per

expanded BDD was higher for bfw in only ten tasks, though
only by a small margin. On the other hand, the number of ex-
panded BDDs is almost always increased (Figure 2b), which
is not surprising, as sets of states during the search are not
only partitioned by g value, but also by & value.

Most remarkably, the number of BDD nodes from all ex-
panded BDDs (sets of states) often decreased with poten-
tial heuristics (Figure 2¢). This confirms that these heuris-
tics are not only informative for explicit-state search, avoid-
ing the expansion of certain states, but also are beneficial in
symbolic search by inducing a good BDD partitioning. This
contrasts with previous results on very informative heuristics
(3h*, 2h*), that despite their accuracy are often detrimental
for the performance of symbolic search (Speck, Geiller, and
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(a) Number of operators. (b) Inference time of potentials.

Figure 3: Comparison of (a) the number of operators be-
fore and after the transformation, and (b) a time (in seconds)
spent in a computation of potentials for the original formu-
lation (LP) and with added constraints on integer operator
potentials (ILP).

Mattmiiller 2020).

Furthermore, the runtime of the planner is often decreased
(Figure 2d), confirming that partitioning the TRs according
to the operator potentials is a very effective way of evalu-
ating the heuristic in symbolic search. Therefore, not only
potential heuristics can be informative for symbolic search,
but they can be efficiently evaluated also. The increase in
the runtime for some of the planning tasks is often due to in-
creased computational effort in the inference of integer op-
erator potentials, as we analyze in detail next.

Compared against symbolic bidirectional uniform cost
search (bbi), which has state-of-the-art performance in sym-
bolic search planning (Torralba et al. 2014; Torralba, Linares
Lépez, and Borrajo 2016), A+I solves 99 more tasks. The
two algorithms are still quite complementary though, with
A+T being superior in 21 domains and bbi in 14. This sug-
gests that there is still potential to further improve results by
integrating operator potential heuristics in symbolic bidirec-
tional heuristic search.

8.2 Comparison Against Explicit-State Search
with Potential Heuristics

Compared to the potential heuristics in explicit-state search,
A+1 solves 107 instances more than pot,, ;. Moreover, there
are only 10 domains where using symbolic search is detri-
mental, compared to 24 domains where it is beneficial.

Note that these two configurations are using the same op-
timization criteria to compute the potentials. However, as ex-
plained in Section 6, in order to obtain consistent operator-
potential heuristics, we must (1) split the operators so that
all variables mentioned in the effect appear in the precon-
ditions; and (2) use ILP to ensure that operator potentials
have an integer value. This sometimes has an overhead, as
illustrated by Figure 3, which makes the improvements in
coverage even more remarkable.

Figure 3a compares the number of operators in the orig-
inal planning task and in the corresponding task where all
variables affected by operators are explicitly defined in pre-
conditions, i.e., in the planning task transformed using the

method described in Section 6. It shows that in most cases
the transformation does not significantly increase the size of
the task. However, there are few domains where the number
of operators increases significantly. In particular, the trans-
formed tasks are more than five times bigger in two domains:
agricolal8 and calderal8. Note that these are two out of five
domains where our configurations had lower coverage than
the baseline (see Table 2), suggesting that the few negative
results are not due to potential heuristics being detrimental
but rather due to the overhead of the pre-processing stage.

Figure 3b shows that the inference of the integer opera-
tor potentials using ILP takes often significantly longer than
finding (fact) potentials with LP. However, it turns out there
is usually enough time left for the search part.

8.3 Comparison Against State of the Art

Compare finally the performance of our best-performing
variants (A+I, Mo+I, and Sy+I) against the unrelated ap-
proaches 1mc, ms, comp2, and scrp. Our planners clearly
beat lmc and ms in terms of overall coverage and fre-
quency of per-domain superiority. The state-of-the-art plan-
ners comp2 and scrp are roughly on par in overall coverage.
In terms of individual domains, the clear conclusion is that
our new techniques are highly complementary to the previ-
ous state of the art: A+I, Mo+I, and Sy,+I outperform comp?2
and scrp in 12-16 domains.

9 Conclusion

While heuristic search and symbolic search are both con-
tenders for the throne in optimal planning, and their com-
bination is a natural and promising avenue, the results with
that combination have thus far been disappointing. As we
show, this picture changes dramatically when leveraging the
fact that potential heuristics can be viewed as potentials over
operators, which enables their smooth integration into sym-
bolic search. We have shown that and how this can be done,
in particular while retaining consistency. Our empirical re-
sults show that this boosts the performance of optimal sym-
bolic planning, which is now on par with the best heuristic
search based optimal planners.
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