
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRIVACY-PRESERVING LOGISTIC REGRESSION
TRAINING WITH A FASTER GRADIENT VARIANT

Anonymous authors
Paper under double-blind review

ABSTRACT

Training logistic regression over encrypted data has been a compelling approach in
addressing security concerns for several years. In this paper, we introduce an effi-
cient gradient variant, called quadratic gradient, for privacy-preserving logistic
regression training. We enhance Nesterov’s Accelerated Gradient (NAG), Adap-
tive Gradient Algorithm (Adagrad) and Adam algorithms by incorporating their
quadratic gradients and evaluate these improved algorithms on various datasets.
Experimental results demonstrate that the enhanced algorithms achieve signifi-
cantly improved convergence speed compared to traditional first-order gradient
methods. Moreover, we applied the enhanced NAG method to implement homo-
morphic logistic regression training, achieving comparable results within just 4
iterations. There is a good chance that the quadratic gradient approach could inte-
grate first-order gradient descent/ascent algorithms with the second-order Newton-
Raphson methods, and that it could be applied to a wide range of numerical opti-
mization problems.

1 INTRODUCTION

Given a person’s healthcare data related to a certain disease, we can train a logistic regression (LR)
model capable of telling whether or not this person is likely to develop this disease. However,
such personal health information is highly private to individuals. The privacy concern, therefore,
becomes a major obstacle for individuals to share their biomedical data. The most secure solution
is to encrypt the data into ciphertexts first by Homomorphic Encryption (HE) and then securely
outsource the ciphertexts to the cloud, without allowing the cloud to access the data directly. iDASH
is an annual competition that aims to call for implementing interesting cryptographic schemes in a
biological context. Since 2014, iDASH has included the theme of genomics and biomedical privacy.
The third track of the 2017 iDASH competition and the second track of the 2018 iDASH competition
were both to develop HE-based solutions for building an LR model over encrypted data.

Several studies on logistic regression models are based on homomorphic encryption. Kim et al.
(2018b) discussed the problem of performing LR training in an encrypted environment. They em-
ployed full-batch gradient descent during the training process and utilized the least-squares method
to approximate the sigmoid function. In the 2017 iDASH competition, Bonte & Vercauteren (2018),
Kim et al. (2018a), Chen et al. (2018), and Crawford et al. (2018) all addressed the same problem
explored by Kim et al. (2018b). In the 2018 iDASH competition, Kim et al. (2019b) and Blatt et al.
(2019) further developed the problem, focusing on efficient packing and a semi-parallel algorithm.
There are other related works (Kim et al., 2019a; Bergamaschi et al., 2019; Ogilvie et al., 2020)
focusing on various aspects but the papers most relevant to this work are (Bonte & Vercauteren,
2018) and (Kim et al., 2018a). Bonte & Vercauteren (2018) developed a practical algorithm called
the simplified fixed Hessian (SFH) method. Our study extends their work and adopts the ciphertext
packing technique proposed by Kim et al. (2018a) for efficient homomorphic computation.

Our specific contributions in this paper are as follows:

1. We propose a new gradient variant, quadratic gradient, which can combine the first-
order gradient algorithms and the second-order Newton-Raphson method (aka Newton’s
method).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2. We develop three enhanced gradient algorithms by equipping the original ones with
quadratic gradient. The resulting algorithms all converge and, in most cases, demonstrate
strong performance in terms of convergence speed.

3. We implement privacy-preserving logistic regression training using the enhanced NAG
method, to our best knowledge, which seems to be a great choice without compromising
much on computation and storage.

2 PRELIMINARIES

We use the square brackets “[]” to denote the index of a vector or matrix element in what follows.
For example, for a vector v ∈ R(n) and a matrix M ∈ Rm×n, v[i] or v[i] means the i-th element of
vector v and M [i][j] or M[i][j] the j-th element in the i-th row of M .

2.1 FULLY HOMOMORPHIC ENCRYPTION

Fully Homomorphic Encryption (FHE) is a type of cryptographic scheme that can be used to com-
pute an arbitrary number of additions and multiplications directly on the encrypted data. It was
not until 2009 that Gentry constructed the first FHE scheme via a bootstrapping operation (Gen-
try, 2009). FHE schemes themselves are computationally time-consuming; the choice of dataset
encoding matters likewise to the efficiency. In addition to these two limits, how to manage the mag-
nitude of plaintext (Jäschke & Armknecht, 2016) also contributes to the slowdown. Cheon et al.
(2017) proposed a method to construct an HE scheme with a rescaling procedure which could
eliminate this technical bottleneck effectively. We adopt their open-source implementation HEAAN
while implementing our homomorphic LR algorithms. In addition, it is inevitable to pack a vector
of multiple plaintexts into a single ciphertext for yielding a better amortized time of homomorphic
computation. HEAAN supports a parallel technique (aka SIMD) to pack multiple complex numbers
in a single polynomial and provides rotation operation on plaintext slots. The underlying HE scheme
in HEAAN is well described in (Kim et al., 2018a;b; Han et al., 2019).

2.2 DATABASE ENCODING METHOD

Kim et al. (2018a) proposed an efficient and promising database-encoding method by using SIMD
technique, which could make full use of the computation and storage resources. Suppose a database
contains a training dataset Z comprising n samples and (1 + d) covariates. The dataset matrix Z is
packed into a single ciphertext in a row-by-row manner.

When employing this encoding scheme, we can manipulate the data matrix Z through HE operations
on the ciphertext Enc[Z], utilizing only three HE operations - rotation, addition, and multiplication.
For instance, if we wish to isolate the first column of Enc[Z] and exclude the other columns, we can
create a constant matrix F with ones in the first column and zeros elsewhere. Multiplying Enc[Z]
by F will yield the desired ciphertext.

Han et al. (2019) mentioned several basic but important operations used by Kim et al. (2018a) in
their implementation, such as a procedure named “SumColVec” to compute the summation of
the columns of a matrix. With these fundamental operations, more intricate computations, like
computing gradients in logistic regression models, become achievable.

2.3 LOGISTIC REGRESSION MODEL

Logistic regression is widely used in binary classification tasks to infer whether a binary-valued vari-
able belongs to a certain class or not. LR can be generalized from linear regression (Murphy, 2012)
by mapping the whole real line (β⊤x) to (0, 1) via the sigmoid function σ(z) = 1/(1 + exp(−z)),
where the vector β ∈ R(1+d) is the main parameter of LR and the vector x = (1, x1, . . . , xd) ∈
R(1+d) the input covariate. Thus logistic regression can be formulated with the class label y ∈ {±1}
as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Pr(y = +1|x,β) = σ(β⊤x) =
1

1 + e−β⊤x
,

Pr(y = −1|x,β) = 1− σ(β⊤x) =
1

1 + e+β⊤x
.

LR sets a threshold (usually 0.5) and compares its output with it to decide the resulting class label.

The logistic regression problem can be transformed into an optimization problem that seeks a param-
eter β to maximize L(β) =

∏n
i=1 Pr(yi|xi,β) or its log-likelihood function l(β) for convenience

in the calculation:

l(β) = lnL(β) = −
n∑

i=1

ln(1 + e−yiβ
⊤xi),

where n is the number of examples in the training dataset. LR does not have a closed form of
maximizing l(β) and two main methods are adopted to estimate the parameters of an LR model:
(a) gradient descent method via the gradient; and (b) Newton’s method by the Hessian matrix. The
gradient and Hessian of the log-likelihood function l(β) are given by, respectively:

∇βl(β) =
∑
i

(1− σ(yiβ
⊤xi))yixi,

∇2
βl(β) =

∑
i

(yixi)(σ(yiβ
⊤xi)− 1)σ(yiβ

⊤xi)(yixi)

= X⊤SX,

where S is a diagonal matrix with entries Sii = (σ(yiβ
⊤xi)− 1)σ(yiβ

⊤xi) and X the dataset.

The log-likelihood function l(β) of LR has at most a unique global maximum (Allison, 2008), where
its gradient is zero. Newton’s method is a second-order technique to numerically find the roots of a
real-valued differentiable function, and thus can be used to solve the β in∇βl(β) = 0 for LR.

3 TECHNICAL DETAILS

It is quite time-consuming to compute the Hessian matrix and its inverse in Newton’s method for
each iteration. One way to limit this downside is to replace the varying Hessian with a fixed matrix
H̄ . This novel technique is called the fixed Hessian Newton’s method. Böhning & Lindsay (1988)
have shown that the convergence of Newton’s method is guaranteed as long as H̄ ≤ ∇2

βl(β), where
H̄ is a symmetric negative-definite matrix independent of β and “≤” denotes the Loewner ordering
in the sense that the difference ∇2

βl(β) − H̄ is non-negative definite. With such a fixed Hessian
matrix H̄ , the iteration for Newton’s method can be simplified to:

βt+1 = βt − H̄−1∇βl(β).

Böhning and Lindsay also suggest the fixed matrix H̄ = − 1
4X

⊤X is a good lower bound for the
Hessian of the log-likelihood function l(β) in LR.

3.1 SIMPLIFIED FIXED HESSIAN

Bonte & Vercauteren (2018) simplify this lower bound H̄ further due to the need for inverting the
fixed Hessian in the encrypted domain. They replace the matrix H̄ with a diagonal matrix B whose
diagonal elements are simply the sums of each row in H̄ . They also suggest a specific order of
calculation to optimize the computation of B more efficiently. Their new approximation B of the
fixed Hessian is:

B =

∑d

i=0 h̄0i 0 . . . 0

0
∑d

i=0 h̄1i . . . 0
...

...
. . .

...
0 0 . . .

∑d
i=0 h̄di

 ,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where h̄ki is the element of H̄ . This diagonal matrix B is in a very simple form and can be obtained
from H̄ without much difficulty. The inverse of B can even be approximated in the encrypted form
by computing the inverse of each diagonal element of B using an iterative Newton’s method with
an appropriate initial value. Their simplified fixed Hessian method can be formulated as follows:

βt+1 = βt −B−1 · ∇βl(β),

= βt −

b00 0 . . . 0
0 b11 . . . 0
...

...
. . .

...
0 0 . . . bdd

 ·

∇0

∇1

...
∇d

 = βt −

b00 · ∇0

b11 · ∇1

...
bdd · ∇d

 ,

where bii is the reciprocal of
∑d

i=0 h̄0i and ∇i is the element of∇βl(β).

Consider a special situation: if all the elements b00, . . . , bdd had the same value −η with η > 0, the
iterative formula of the SFH method could be given as:

βt+1 = βt − (−η) ·

∇0

∇1

...
∇d

 = βt + η · ∇βl(β),

which is the same as the formula of the naive gradient ascent method. Such a coincidence not
only helps generate the idea behind this work but also leads us to believe that there is a connection
between the Hessian matrix and the learning rate of the gradient (descent) method.

We regard B−1 · ∇i as a novel enhanced gradient variant and allocate a distinct learning rate to it.
As long as we ensure that this new learning rate decreases from a positive floating-point number
greater than 1 (such as 2) to 1 in a bounded number of iteration steps, the fixed Hessian Newton’s
method guarantees the algorithm will converge eventually.

The SFH method proposed by Bonte & Vercauteren (2018) has two limitations: (a) in the construc-
tion of the simplified fixed Hessian, all entries in the symmetric matrix H̄ need to be non-positive.
For machine learning applications, datasets are typically normalized in advance to the range [0,1],
satisfying the convergence condition of the SFH method. However, in other cases, such as numer-
ical optimization, this condition may not always hold; and (b) the simplified fixed Hessian matrix
B, as well as the fixed Hessian H̄ = − 1

4X
⊤X , can still be singular, especially when the dataset

is a high-dimensional sparse matrix, such as the MNIST datasets. We extend SFH by removing
these limitations to generalize this simplified fixed Hessian to be invertible in any case and propose
a faster gradient variant, which we term quadratic gradient.

3.2 QUADRATIC GRADIENT DEFINITION

Suppose that a differentiable scalar-valued function F (x) has its gradient g and Hessian matrix H ,
with any matrix H̄ ≤ H in the Loewner ordering for a maximization problem as follows:

g =

g0
g1
...
gd

 , H =

∇2

00 ∇2
01 . . . ∇2

0d
∇2

10 ∇2
11 . . . ∇2

1d
...

...
. . .

...
∇2

d0 ∇2
d1 . . . ∇2

dd

 , H̄ =

h̄00 h̄01 . . . h̄0d

h̄10 h̄11 . . . h̄1d

...
...

. . .
...

h̄d0 h̄d1 . . . h̄dd

 ,

where ∇2
ij = ∇2

ji = ∂2F
∂xi∂xj

. We construct a new diagnoal Hessian matrix B̃ with each diagnoal

element B̃kk being −ϵ−
∑d

i=0 |h̄ki|,

B̃ =

−ϵ−

∑d
i=0 |h̄0i| 0 . . .

0 −ϵ−
∑d

i=0 |h̄1i| . . .
...

...
. . .

0 0 . . .

 ,

where ϵ is a small positive constant to avoid division by zero (usually set to 1e− 8).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

As long as B̃ satisfies the convergence condition of the aforementioned fixed Hessian method,
namely B̃ ≤ H , we can use this approximation B̃ of the Hessian matrix as a lower bound. Given
that we have already assumed H̄ ≤ H , it suffices to demonstrate that B̃ ≤ H̄ . We establish B̃ ≤ H̄
in a manner similar to that employed by Bonte & Vercauteren (2018).

Lemma 3.1. Let A ∈ Rn×n be a symmetric matrix, and let B be the diagonal matrix whose
diagonal entries Bkk = −ϵ−

∑
i |Aki| for k = 1, . . . , n, then B ≤ A.

Proof. By definition of the Loewner ordering, we have to prove the difference matrix C = A − B
is non-negative definite, which means that all the eigenvalues of C need to be non-negative. By
construction of C we have that Cij = Aij + ϵ +

∑n
k=1 |Aik| for i = j and Cij = Aij for i ̸= j.

By means of Gerschgorin’s circle theorem, we can bound every eigenvalue λ of C in the sense that
|λ− Cii| ≤

∑
i̸=j |Cij | for some index i ∈ {1, 2, . . . , n}. We conclude that λ ≥ Aii + ϵ+ |Aii| ≥

ϵ > 0 for all eigenvalues λ and thus that B ≤ A.

Definition 3.2 (Quadratic Gradient). Given the previously defined B̃, we define the
quadratic gradient as G = B̄ · g with a new learning rate Nt, where B̄ is a diagonal matrix with di-
agonal entries B̄kk = 1/|B̃kk|. The learning rate Nt should always be no less than 1 and is designed
to decrease to 1 over a limited number of iterations. It is important to note that G remains a column
vector of the same dimension as the gradient g. To maximize the function F (x), we can employ the
iterative formula: xt+1 = xt +Nt ·G, similar to the naive gradient approach.

Minimizing the function F (x) is equivalent to maximizing the function −F (x). In this context, we
need to construct B̃ using either a good lower bound H̄ for the Hessian −H of −F (x) or a good
upper bound H̄ for the Hessian H of F (x). It is worth noting that H̄ can be taken as the Hessian
H itself, thereby eliminating the need to find either lower or upper bounds.

Böhning & Lindsay (1988) did not propose a systematic method for determining or constructing a
constant Hessian approximation for their fixed Hessian method. This may be due to the absence of
such matrices for most objective functions. We note that our quadratic gradient approach does not
require a constant (fixed) Hessian replacement and instead allows for the use of the original Hessian
itself to construct our varying diagonal matrix B̃ for the quadratic gradient. Under this less restric-
tive condition, we present a methodical approach to evaluate whether a fixed Hessian matrix can be
employed for efficient computation. Specifically, we first construct B̃ from the Hessian of the given
objective function and then check if, for each diagonal element B̃kk, there is a constant maximum
for B̄kk = 1/|B̃kk| (or a constant minimum |B̃kk|). If each diagonal element |B̃kk| achieves its
minimum |M̃kk|, then a constant diagonal matrix with the corresponding diagonal elements |M̃kk|
would satisfy the convergence condition for the SFH method. Finally, we should evaluate the per-
formance of such a fixed Hessian replacement, as it might not always provide a good bound. This
search method can be applied to any optimization function to identify a fixed Hessian. However, the
absence of a constant Hessian replacement via this method does not necessarily imply that such an
approximation does not exist.

3.3 QUADRATIC GRADIENT ALGORITHMS

Quadratic gradient can be used to enhance various first-order gradient algorithms:

1. NAG is a different variant of the momentum method to give the momentum term much
more prescience. The iterative formulas of the gradient ascent method for NAG are as
follows:

Vt+1 = βt + ηt · ∇J(βt), (3)
βt+1 = (1− γt) · Vt+1 + γt · Vt, (4)

where Vt+1 is the intermediate variable used for updating the final weight βt+1 and
γt ∈ (0, 1) is a smoothing parameter of moving average to evaluate the gradient at an
approximate future position (Kim et al., 2018a). The enhanced NAG is to replace equa-
tion 3 with Vt+1 = βt + Nt · G, where Nt is the new learning rate for the enhanced
algorithm usually setted to 1 + ηt. Our enhanced NAG is described in Algorithm 1 .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 The Enhanced Nesterov’s Accelerated Gradient Algorithm

Input: training dataset X ∈ Rn×(1+d); training label Y ∈ Rn×1; learning rate lr ∈ R; and the
number κ of iterations;

Output: the parameter vector V ∈ R(1+d)

1: Set H̄ ← − 1
4X

⊤X , V ← 0, W ← 0, B̄ ← 0
2: for i := 0 to d do ▷ ϵ is a small positive constant such as 1e− 8
3: B̄[i][i]← ϵ
4: for j := 0 to d do
5: B̄[i][i]← B̄[i][i] + |H̄[i][j]|
6: end for
7: end for
8: Set alpha0 ← 0.01, alpha1 ← 0.5× (1 +

√
1 + 4× alpha20)

9: for count := 1 to κ do
10: Set Z ← 0 ▷ Z ∈ Rn will store the inputs for Sigmoid function
11: for i := 1 to n do
12: for j := 0 to d do
13: Z[i]← Z[i] + Y [i]× V [j]×X[i][j]
14: end for
15: end for
16: Set σ ← 0 ▷ σ ∈ Rn will store the outputs of Sigmoid function
17: for i := 1 to n do
18: σ[i]← 1/(1 + exp(−Z[i]))
19: end for
20: Set g ← 0
21: for j := 0 to d do
22: for i := 1 to n do
23: g[j]← g[j] + (1− σ[i])× Y [i]×X[i][j]
24: end for
25: end for
26: Set G← 0
27: for j := 0 to d do
28: G[j]← B̄[j][j]× g[j]
29: end for
30: Set η ← (1− alpha0)/alpha1, γ ← (10

1+t)/n
31: for j := 0 to d do
32: wtemp ← V [j] + (1+ γ)×G[j], V [j]← (1− η)×wtemp + η×W [j], W [j]← wtemp

33: end for
34: alpha0 ← alpha1, alpha1 ← 0.5× (1 +

√
1 + 4× alpha20)

35: end for
36: Return V

2. Adagrad is a gradient-based algorithm suitable for dealing with sparse data. The updated
operations of Adagrad and its quadratic-gradient version, for every parameter β[i] at each
iteration step t, are as follows, respectively:

β
(t+1)
[i] = β

(t)
[i] −

ηt

ϵ+
√∑t

k=1 g
(t)
[i] · g

(t)
[i]

· g(t)
[i] ,

β
(t+1)
[i] = β

(t)
[i] −

Nt

ϵ+
√∑t

k=1 G
(t)
[i] ·G

(t)
[i]

·G(t)
[i] .

3. Adam is an optimization algorithm that combines the benefits of Adagrad, which adapts
learning rates for each parameter, with momentum, allowing it to converge faster and han-
dle sparse gradients more effectively. Similar to how Adagrad transitions to its enhanced
version, the update formula for enhanced Adam, also employs a new learning rate Nt and
replaces the gradient with its quadratic form.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50

−10

−8

−6

−4

−2

·103

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(a) The iDASH dataset

0 10 20 30 40 50

−800

−600

−400

−200

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(b) The edin dataset

0 10 20 30 40 50

−130

−120

−110

−100

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(c) The lbw dataset

0 10 20 30 40 50

−1.4

−1.2

−1

−0.8

−0.6

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(d) The nhanes3 dataset

0 10 20 30 40 50
−400

−350

−300

−250

−200

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(e) The pcs dataset

0 10 20 30 40 50
−500

−450

−400

−350

−300

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(f) The uis dataset

0 10 20 30 40 50

−8,000

−6,000

−4,000

−2,000

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(g) The MNIST dataset

0 10 20 30 40 50

−2

−1.8

−1.6

−1.4

−1.2
·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

NAG
Enhanced NAG

(h) The financial dataset

Figure 1: The training results of NAG and Enhanced NAG in the clear.

0 10 20 30 40 50

−2.5

−2

−1.5

−1

−0.5

0

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(a) The iDASH dataset

0 10 20 30 40 50

−800

−600

−400

−200

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(b) The edin dataset

0 10 20 30 40 50

−160

−140

−120

−100

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(c) The lbw dataset

0 10 20 30 40 50

−2

−1.5

−1

−0.5

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(d) The nhanes3 dataset

0 10 20 30 40 50

−500

−400

−300

−200

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(e) The pcs dataset

0 10 20 30 40 50

−600

−500

−400

−300

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(f) The uis dataset

0 10 20 30 40 50

−6

−4

−2

0

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(g) The MNIST dataset

0 10 20 30 40 50

−3

−2.5

−2

−1.5

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adagrad
Enhanced Adagrad

(h) The financial dataset

Figure 2: The training results of Adagrad and Enhanced Adagrad in the clear.

Performance Evaluation We evaluate the performance of various algorithms in a non-encrypted
context using Python on a desktop computer with an Intel Core G640 CPU at 1.60 GHz and 7.3
GB of RAM. Given that our focus is on the convergence speed of the algorithms during training,
we use the loss function l(β), specifically maximum likelihood estimation (MLE), as the only in-
dicator. We evaluate six algorithms—NAG, Adagrad, Adam, and their quadratic-gradient variants
(denoted as Enhanced NAG, Enhanced Adagrad, and Enhanced Adam, respectively)—using the
datasets adopted by Kim et al. (2018a): the iDASH genomic dataset (iDASH), the Myocardial In-
farction dataset from Edinburgh (edin), the Low Birth Weight Study (lbw), Nhanes III (nhanes3),
the Prostate Cancer Study (pcs), and the Umaru Impact Study datasets (uis). The genomic dataset
from the third task of the 2017 iDASH competition comprises 1,579 records, each featuring 103
binary genotypes and a binary phenotype indicating whether the patient has cancer. The remaining
five datasets each contain a single binary dependent variable. We also evaluate these algorithms on
two large datasets from Han et al. (2019): a real financial dataset with 422,108 samples and 200
features, and the restructured public MNIST dataset, which includes 11,982 samples from the train-
ing set with 196 features. For a fair comparison with the baseline work by Kim et al. (2018a), the
enhanced NAG algorithm employs the learning rate 1 + 10

1+t , consistent with Kim et al.’s choice of
10
1+t for their learning rate. The enhanced Adagrad algorithm utilizes Nt = 1 + 0.01 as the learning
rate, while the enhanced Adam algorithm adopts the following learning rate settings: α = 1+0.001,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50

−25

−20

−15

−10

−5

0

·103

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(a) The iDASH dataset

0 10 20 30 40 50

−800

−600

−400

−200

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(b) The edin dataset

0 10 20 30 40 50

−160

−140

−120

−100

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(c) The lbw dataset

0 10 20 30 40 50

−2

−1.5

−1

−0.5

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(d) The nhanes3 dataset

0 10 20 30 40 50

−500

−400

−300

−200

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(e) The pcs dataset

0 10 20 30 40 50

−600

−500

−400

−300

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(f) The uis dataset

0 10 20 30 40 50

−2.5

−2

−1.5

−1

−0.5

0
·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(g) The MNIST dataset

0 10 20 30 40 50
−3.5

−3

−2.5

−2

−1.5

·104

Iteration Number

M
ax

im
um

L
ik

el
ih

oo
d

E
st

im
at

io
n

Adam
Enhanced Adam

(h) The financial dataset

Figure 3: The training results of Adam and Enhanced Adam in the clear.

β1 = 0.9, and β2 = 0.999. Refer to (Kingma & Ba, 2014) for further details regarding these pa-
rameters. In our experiments, we consistently use H̄ = − 1

4X
⊤X to construct B̃ for the function

l(β).

From the empirical results presented in Figures 1, 2, and 3, we conclude that all the enhanced
algorithms converge, and that the enhanced NAG algorithm consistently outperforms the original
NAG method in terms of convergence rate. Although the enhanced Adagrad and Adam methods
do not achieve faster convergence than their original counterparts on the iDASH genomic dataset,
they demonstrate clear advantages in all other cases. The reason for this discrepancy is beyond the
scope of this paper and will be addressed as part of future work. One possible explanation for the
superior performance of the enhanced algorithms is that the quadratic gradient integrates curvature
information into first-order gradient methods.

An important observation is that the enhanced algorithms demonstrate better performance with
learning rates between 1 and 2 compared to other values. When the learning rate exceeds 3, the
algorithm is nearly guaranteed not to converge. For quadratic gradient algorithms, we recommend
employing an exponentially decaying learning rate, such as 1+A · γt, where t denotes the iteration
number, A is a positive constant typically set to no less than 1, and γ is a positive number less than
1 that controls the rate of decay.

Gradient And Quadratic Gradient We executed the raw gradient ascent algorithm and the raw
quadratic gradient algorithm on the lbw dataset using various learning rates. Figure 4 presents the
detailed results of this experiment. It was precisely these results that directly inspired the authors
to develop the concept of the quadratic gradient. Similar to the gradient, the quadratic gradient,
which incorporates curvature, also demonstrates smooth progression. In particular, as the learning
rate is gradually increased, both the gradient and the quadratic gradient reveal corresponding gradual
changes in performance, rather than sudden jumps.

4 SECURE TRAINING

We adopt the enhanced NAG method to implement secure logistic regression training based on HE.
The difficulty in applying the quadratic gradient is to invert the diagonal matrix B̃ in order to obtain
B̄. We leave the computation of matrix B̄ to data owner and let the data owner upload the ciphertext
encrypting the B̄ to the cloud. Since data owner has to prepare the dataset and normalize it, it
would also be practicable for the data owner to calculate the B̄ owing to no leaking of sensitive data
information.

Privacy-preserving logistic regression training based on HE techniques faces a difficult dilemma
that no homomorphic schemes are capable of directly calculating the sigmoid function in the LR

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50

−130

−120

−110

−100

Iteration Number

M
a
x
im

u
m

L
ik
e
li
h
o
o
d
E
s
t
im

a
t
io
n

lr = 0.011

lr = 0.012

lr = 0.013

lr = 0.014

lr = 0.015

lr = 0.016

lr = 0.017

lr = 0.018

lr = 0.019

lr = 0.020

lr = 0.021

(a) The raw first-order gradient ascent algorithm
with iterative formulas: βt+1 = βt + lr · g

0 10 20 30 40 50

−130

−120

−110

−100

Iteration Number

M
a
x
im

u
m

L
ik
e
li
h
o
o
d
E
s
t
im

a
t
io
n

LR = 1.0

LR = 1.1

LR = 1.2

LR = 1.3

LR = 1.4

LR = 1.5

LR = 1.6

LR = 1.7

LR = 1.8

LR = 1.9

LR = 2.0

(b) The raw quadratic gradient ascent algorithm
with iterative formulas: βt+1 = βt + LR ·G

Figure 4: The training outcomes for both the raw gradient algorithm and the raw quadratic gradient
ascent algorithm in the clear setting, conducted on the lbw dataset.

model. A common solution is to replace the sigmoid function with a polynomial approximation by
using the widely adopted least-squares method. We can call a function named “ polyfit(·) ”
in the Python package Numpy to fit the polynomial in a least-square sense. We adopt the degree 5
polynomial approximation g(x) developed by Kim et al. (2018a), utilizing the least squares approach
to approximate the sigmoid function over the interval [−8, 8]: g(x) = 0.5+0.19131·x−0.0045963·
x3 + 0.0000412332 · x5 .

Given the training dataset X ∈ Rn×(1+d) and training label Y ∈ Rn×1, we adopt the same method
that Kim et al. (2018a) used to encrypt the data matrix consisting of the training data combined
with training-label information into a single ciphertext ctZ . The weight vector β(0) consisting of
zeros and the diagnoal elements of B̄ are copied n times to form two matrices. The data owner then
encrypt the two matrices into two ciphertexts ct(0)β and ctB̄ , respectively. The ciphertexts ctZ , ct(0)β

and ctB̄ are as follows:

X =

1 x11 . . . x1d

1 x21 . . . x2d

...
...

. . .
...

1 xn1 . . . xnd

 ,Y =

y1
y2
...
yn

 , ctZ = Enc

y1 y1x11 . . . y1x1d

y2 y2x21 . . . y2x2d

...
...

. . .
...

yn ynxn1 . . . ynxnd

 ,

ct(0)β = Enc

β
(0)
0 β

(0)
1 . . . β

(0)
d

β
(0)
0 β

(0)
1 . . . β

(0)
d

...
...

. . .
...

β
(0)
0 β

(0)
1 . . . β

(0)
d

 , ctB̄ = Enc

B̄[0][0] B̄[1][1] . . . B̄[d][d]

B̄[0][0] B̄[1][1] . . . B̄[d][d]

...
...

. . .
...

B̄[0][0] B̄[1][1] . . . B̄[d][d]

 ,

where B̄[i][i] is the diagonal element of B̄ that is built from − 1
4X

⊤X .

The pulbic cloud takes the three ciphertexts ctZ , ct(0)β and ctB̄ and evaluates the enhanced NAG

algorithm to find a decent weight vector by updating the vector ct(0)β . Refer to (Kim et al., 2018a)
for a detailed description about how to calculate the gradient by HE programming.

Limitations In a privacy-preserving setting, when compared to the NAG method, the primary
limitation of the Enhanced NAG method is that it requires one additional ciphertext multiplication
to construct the quadratic gradient. In addition, the data owner needs to upload one more ciphertext
encrypting the matrix B̄. However, the enhanced algorithm converges faster, and we believe it can
compensate for the mentioned shortcomings.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Implementation Results for iDASH datasets with 10-fold CV

Dataset Sample
Num

Feature
Num Method Iter

Num
Storage
(GB)

Learn
Time
(min)

Accuracy
(%) AUC

iDASH 1579 18 Ours 4 0.08 4.43 61.46 0.696
Baseline 7 0.04 6.07 62.87 0.689

Table 2: Implementation Results for other datasets with 5-fold CV

Dataset Sample
Num

Feature
Num Method Iter

Num
Storage
(GB)

Learn
Time
(min)

Accuracy
(%) AUC

Edin 1253 8 Ours 4 0.04 0.6 89.52 0.943
Baseline 7 0.02 3.6 91.04 0.958

lbw 189 8 Ours 4 0.04 0.6 71.35 0.667
Baseline 7 0.02 3.3 69.19 0.689

nhanes3 15649 15 Ours 4 0.31 4.5 79.23 0.637
Baseline 7 0.16 7.3 79.22 0.717

pcs 379 9 Ours 4 0.04 0.6 63.20 0.733
Baseline 7 0.02 3.5 68.27 0.740

uis 575 8 Ours 4 0.04 0.6 74.43 0.597
Baseline 7 0.02 3.5 74.44 0.603

5 EXPERIMENTS

Implementation We implement the enhanced NAG based on HE with the library HEAAN. The
C++ source code is publicly available at https://anonymous.4open.science/r/IDASH2017-245B . All
the experiments on the ciphertexts were conducted on a public cloud with 32 vCPUs and 64 GB
RAM.

For a fair comparison with the baseline (Kim et al., 2018a), we utilized the same 10-fold cross-
validation (CV) technique on the same iDASH dataset consisting of 1579 samples with 18 features
and the same 5-fold CV technique on the other five datasets. Like (Kim et al., 2018a), We consider
the average accuracy and the Area Under the Curve (AUC) as the main indicators. Tables 1 and 2
display the results of the two experiments, respectively. The two tables also provide the average
evaluation running time for each iteration and the storage (encrypted dataset for the baseline work
and encrypted dataset and B̄ for our method). We adopt the same packing method that Kim et al.
(2018a) proposed and hence our solution has similar storage of ciphertexts to (Kim et al., 2018a)
with some extra ciphertexts to encrypt the B̄. We chose 1 + 0.9t as our learning rate configuration.

The parameters of HEAAN we set are same to (Kim et al., 2018a): logN = 16, logQ = 1200,
logp = 30, slots = 32768, which ensure the security level λ = 80. We use a larger logp = 40 to
encrypt the matrix B̄ for preserving the precision of B̄. Refer to (Kim et al., 2018a) for details on
these parameters. Since our enhanced NAG method need one more ciphertext multiplication than
the baseline work, consuming more modulus, our solution thus can only perform 4 iterations of the
enhanced NAG method. Yet despite only 4 iterations, our enhanced NAG method still produces a
comparable result.

6 CONCLUSION

In this paper, we proposed a faster gradient variant, termed quadratic gradient, and imple-
mented the quadratic-gradient version of NAG in the encrypted domain to train a logistic regression
model. The quadratic gradient introduced in this work can be directly constructed from the Hessian,
effectively merging first-order gradient (descent) methods with the second-order Newton’s method.
There is a promising potential for the quadratic gradient to accelerate other gradient methods, and it
may serve as an alternative or even a replacement for the traditional line-search method.

10

https://anonymous.4open.science/r/IDASH2017-245B

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Paul D. Allison. Convergence failures in logistic regression. 2008. doi: https://doi.org/10.1002/
0471475769.ch10.

Flavio Bergamaschi, Shai Halevi, Tzipora T Halevi, and Hamish Hunt. Homomorphic training of
30,000 logistic regression models. In Applied Cryptography and Network Security: 17th Interna-
tional Conference, ACNS 2019, Bogota, Colombia, June 5–7, 2019, Proceedings 17, pp. 592–611.
Springer, 2019.

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, Kurt Rohloff, and Vinod Vaikuntanathan. Op-
timized homomorphic encryption solution for secure genome-wide association studies. IACR
Cryptology ePrint Archive, 2019:223, 2019. doi: https://doi.org/10.1186/s12920-020-0719-9.

Dankmar Böhning and Bruce G Lindsay. Monotonicity of quadratic-approximation algorithms.
Annals of the Institute of Statistical Mathematics, 40(4):641–663, 1988. doi: https://doi.org/10.
1007/BF00049423.

Charlotte Bonte and Frederik Vercauteren. Privacy-preserving logistic regression training. BMC
medical genomics, 11(4):86, 2018. doi: https://doi.org/10.1186/s12920-018-0398-y.

Hao Chen, Ran Gilad-Bachrach, Kyoohyung Han, Zhicong Huang, Amir Jalali, Kim Laine, and
Kristin Lauter. Logistic regression over encrypted data from fully homomorphic encryption. BMC
medical genomics, 11(4):3–12, 2018. doi: https://doi.org/10.1186/s12920-018-0397-z.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In International Conference on the Theory and Application of
Cryptology and Information Security, pp. 409–437. Springer, 2017. doi: https://doi.org/10.1007/
978-3-319-70694-8 15.

Jack LH Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup. Doing real work with
fhe: the case of logistic regression. In Proceedings of the 6th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, pp. 1–12, 2018. doi: https://doi.org/10.1145/3267973.
3267974.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pp. 169–178, 2009. doi: https://doi.org/10.
1145/1536414.1536440.

Kyoohyung Han, Seungwan Hong, Jung Hee Cheon, and Daejun Park. Logistic regression on homo-
morphic encrypted data at scale. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 9466–9471, 2019. doi: https://doi.org/10.1609/aaai.v33i01.33019466.

Angela Jäschke and Frederik Armknecht. Accelerating homomorphic computations on rational
numbers. In International Conference on Applied Cryptography and Network Security, pp. 405–
423. Springer, 2016. doi: https://doi.org/10.1007/978-3-319-39555-5 22.

Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon. Logistic regression
model training based on the approximate homomorphic encryption. BMC medical genomics, 11
(4):83, 2018a. doi: https://doi.org/10.1186/s12920-018-0401-7.

Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, and Xiaoqian Jiang. Secure logistic regres-
sion based on homomorphic encryption: Design and evaluation. JMIR medical informatics, 6(2):
e19, 2018b. doi: https://doi.org/10.2196/medinform.8805.

Miran Kim, Junghye Lee, Lucila Ohno-Machado, and Xiaoqian Jiang. Secure and differentially
private logistic regression for horizontally distributed data. IEEE Transactions on Information
Forensics and Security, 15:695–710, 2019a.

Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. Semi-parallel logistic regression
for gwas on encrypted data. IACR Cryptology ePrint Archive, 2019:294, 2019b. doi: https:
//doi.org/10.1186/s12920-020-0724-z.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv e-prints,
pp. arXiv–1412, 2014.

Kevin P Murphy. Machine learning: a probabilistic perspective. The MIT Press, Cambridge, MA,
2012. URL https://books.google.co.jp/books?id=NZP6AQAAQBAJ.

Tabitha Ogilvie, Rachel Player, and Joe Rowell. Improved privacy-preserving training using fixed-
hessian minimisation. Cryptology ePrint Archive, 2020.

12

https://books.google.co.jp/books?id=NZP6AQAAQBAJ

	Introduction
	Preliminaries
	Fully Homomorphic Encryption
	Database Encoding Method
	Logistic Regression Model

	Technical Details
	Simplified Fixed Hessian
	Quadratic Gradient Definition
	Quadratic Gradient Algorithms

	Secure Training
	Experiments
	Conclusion

