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ABSTRACT

Generative Adversarial Networks (GANs) have been proposed as an approach to
learning generative models. While GANs have demonstrated promising perfor-
mance on multiple vision tasks, their learning dynamics are not yet well understood,
neither in theory nor in practice. In particular, the work in this domain has been
focused so far only on understanding the properties of the stationary solutions
that this dynamics might converge to, and of the behavior of that dynamics in this
solutions’ immediate neighborhood.
To address this issue, in this work we take a first step towards a principled study
of the GAN dynamics itself. To this end, we propose a model that, on one hand,
exhibits several of the common problematic convergence behaviors (e.g., vanishing
gradient, mode collapse, diverging or oscillatory behavior), but on the other hand,
is sufficiently simple to enable rigorous convergence analysis.
This methodology enables us to exhibit an interesting phenomena: a GAN with
an optimal discriminator provably converges, while guiding the GAN training
using only a first order approximation of the discriminator leads to unstable GAN
dynamics and mode collapse. This suggests that such usage of the first order
approximation of the discriminator, which is a de-facto standard in all the existing
GAN dynamics, might be one of the factors that makes GAN training so challenging
in practice. Additionally, our convergence result constitutes the first rigorous
analysis of a dynamics of a concrete parametric GAN.

1 INTRODUCTION

Generative modeling is a fundamental learning task of growing importance. As we apply machine
learning to increasingly sophisticated problems, we often aim to learn functions with an output
domain that is significantly more complex than simple class labels. Common examples include image
“translation” (Isola et al., 2017), speech synthesis (van den Oord et al., 2016), and robot trajectory
prediction (Finn et al., 2016). Due to progress in deep learning, we now have access to powerful
architectures that can represent generative models over such complex domains. However, training
these generative models is a key challenge. Simpler learning problems such as classification have a
clear notion of “right” and “wrong,” and the approaches based on minimizing the corresponding loss
functions have been tremendously successful. In contrast, training a generative model is far more
nuanced because it is often unclear how “good” a sample from the model is.

Generative Adversarial Networks (GANs) have recently been proposed to address this issue (Good-
fellow et al., 2014). In a nutshell, the key idea of GANs is to learn both the generative model and
the loss function at the same time. The resulting training dynamics are usually described as a game
between a generator (the generative model) and a discriminator (the loss function). The goal of the
generator is to produce realistic samples that fool the discriminator, while the discriminator is trained
to distinguish between the true training data and samples from the generator. GANs have shown
promising results on a variety of tasks, and there is now a large body of work that explores the power
of this framework (Goodfellow, 2017).

Unfortunately, reliably training GANs is a challenging problem that often hinders further research in
this area. Practitioners have encountered a variety of obstacles such as vanishing gradients, mode
collapse, and diverging or oscillatory behavior (Goodfellow, 2017). At the same time, the theoretical
underpinnings of GAN dynamics are not yet well understood. To date, there were no convergence
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proofs for GAN models, even in very simple settings. As a result, the root cause of frequent failures
of GAN dynamics in practice remains unclear.

In this paper, we take a first step towards a principled understanding of GAN dynamics. Our general
methodology is to propose and examine a problem setup that exhibits all common failure cases of
GAN dynamics while remaining sufficiently simple to allow for a rigorous analysis. Concretely, we
introduce and study the GMM-GAN: a variant of GAN dynamics that captures learning a mixture
of two univariate Gaussians. We first show experimentally that standard gradient dynamics of the
GMM-GAN often fail to converge due to mode collapse or oscillatory behavior. Interestingly, this also
holds for techniques that were recently proposed to improve GAN training such as unrolled GANs
(Metz et al., 2017). In contrast, we then show that GAN dynamics with an optimal discriminator do
converge, both experimentally and provably. To the best of our knowledge, our theoretical analysis of
the GMM-GAN is the first global convergence proof for parametric and non-trivial GAN dynamics.

Our results show a clear dichotomy between the dynamics arising from applying simultaneous gradient
descent and the one that is able to use an optimal discriminator. The GAN with optimal discriminator
provably converges from (essentially) any starting point. On the other hand, the simultaneous gradient
GAN empirically often fails to converge, even when the discriminator is allowed many more gradient
steps than the generator. These findings go against the common wisdom that first order methods are
sufficiently strong for all deep learning applications. By carefully inspecting our models, we are able
to pinpoint some of the causes of this, and we highlight a phenomena we call discriminator collapse
which often causes first order methods to fail in our setting.

2 GENERATIVE ADVERSARIAL DYNAMICS

Generative adversarial networks are commonly described as a two player game (Goodfellow et al.,
2014). Given a true distribution P , a set of generators G = {Gu, u ∈ U}, a set of discriminators
D = {Dv, v ∈ V}, and a monotone measuring function m : R→ R, the objective of GAN training
is to find a generator u in

arg min
u∈U

max
v∈V

Ex∼P [m(Dv(x))] + Ex∼Gu [m(1−Dv(x))] . (1)

In other words, the game is between two players called the generator and discriminator, respectively.
The goal of the discriminator is to distinguish between samples from the generator and the true
distribution. The goal of the generator is to fool the discriminator by generating samples that are
similar to the data distribution.

By varying the choice of the measuring function and the set of discriminators, one can capture a wide
variety of loss functions. Typical choices that have been previously studied include the KL divergence
and the Wasserstein distance (Goodfellow et al., 2014; Arjovsky et al., 2017). This formulation can
also encode other common objectives: most notably, as we will show, the total variation distance.

To optimize the objective (1), the most common approaches are variants of simultaneous gradient
descent on the generator u and the discriminator v. But despite its attractive theoretical grounding,
GAN training is plagued by a variety of issues in practice. Two major problems are mode collapse
and vanishing gradients. Mode collapse corresponds to situations in which the generator only
learns a subset (a few modes) of the true distribution P (Goodfellow, 2017; Arora & Zhang, 2017).
For instance, a GAN trained on an image modeling task would only produce variations of a small
number of images. Vanishing gradients (Arjovsky et al., 2017; Arjovsky & Bottou, 2017; Arora
et al., 2017) are, on the other hand, a failure case where the generator updates become vanishingly
small, thus making the GAN dynamics not converge to a satisfying solution. Despite many proposed
explanations and approaches to solve the vanishing gradient problem, it is still often observed in
practice (Goodfellow, 2017).

2.1 TOWARDS A PRINCIPLED UNDERSTANDING OF GAN DYNAMICS

GANs provide a powerful framework for generative modeling. However, there is a large gap between
the theory and practice of GANs. Specifically, to the best of the authors’ knowledge, all theoretical
studies of GAN dynamics for parametric models simply consider global optima and stationary points
of the dynamics, and there has been no rigorous study of the actual GAN dynamics. In practice,
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GANs are always optimized using first order methods, and the current theory of GANs cannot tell us
whether or not these methods converge to a meaningful solution. This raises a natural question, also
posed as an open problem in (Goodfellow, 2017):

Our theoretical understanding of GANs is still fairly poor. In particular, to the best of the authors’
knowledge, all existing analyzes of GAN dynamics for parametric models simply consider global
optima and stationary points of the dynamics. There has been no rigorous study of the actual GAN
dynamics, except studying it in the immediate neighborhood of such stationary points (Nagarajan &
Kolter, 2017). This raises a natural question:

Can we understand the convergence behavior of GANs?

This question is difficult to tackle for many reasons. One of them is the non-convexity of the GAN
objective/loss function, and of the generator and discriminator sets. Another one is that, in practice,
GANs are always optimized using first order methods. That is, instead of following the “ideal”
dynamics that has both the generator and discriminator always perform the optimal update, we
just approximate such updates by a sequence of gradient steps. This is motivated by the fact that
computing such optimal updates is, in general, algorithmically intractable, and adds an additional
layer of complexity to the problem.

In this paper, we want to change this state of affairs and initiate the study of GAN dynamics from an
algorithmic perspective. Specifically, we pursue the following question:

What is the impact of using first order approximation on the convergence of GAN dynamics?

Concretely, we focus on analyzing the difference between two GAN dynamics: a “first order”
dynamics, in which both the generator and discriminator use first order updates; and an “optimal
discriminator” dynamics, in which only the generator uses first order updates but the discriminator
always makes an optimal update. Even the latter, simpler dynamics has proven to be challenging
to understand. Even the question of whether using the optimal discriminator updates is the right
approach has already received considerable attention. In particular, (Arjovsky & Bottou, 2017)
present theoretical evidence that using the optimal discriminator at each step may not be desirable in
certain settings (although these settings are very different to the one we consider in this paper).

We approach our goal by defining a simple GAN model whose dynamics, on one hand, captures
many of the difficulties of real-world GANs but, on the other hand, is still simple enough to make
analysis possible. We then rigorously study our questions in the context of this model. Our intention
is to make the resulting understanding be the first step towards crystallizing a more general picture.

3 A SIMPLE MODEL FOR STUDYING GAN DYNAMICS

Perhaps a tempting starting place for coming up with a simple but meaningful set of GAN dynamics
is to consider the generators being univariate Gaussians with fixed variance. Indeed, in the supple-
mentary material we give a short proof that simple GAN dynamics always converge for this class of
generators. However, it seems that this class of distributions is insufficiently expressive to exhibit
many of the phenomena such as mode collapse mentioned above. In particular, the distributions in
this class are all unimodal, and it is unclear what mode collapse would even mean in this context.

Generators. The above considerations motivate us to make our model slightly more complicated.
We assume that the true distribution and the generator distributions are all mixtures of two univariate
Gaussians with unit variance, and uniform mixing weights. Formally, our generator set is G, where

G =

{
1

2
N (µ1, 1) +

1

2
N (µ2, 1) | µ1, µ2 ∈ R

}
. (2)

For any µ ∈ R2, we let Gµ(x) denote the distribution in G with means at µ1 and µ2. While this is a
simple change compared to a single Gaussian case, it makes a large difference in the behavior of the
dynamics. In particular, many of the pathologies present in real-world GAN training begin to appear.

Loss function. While GANs are usually viewed as a generative framework, they can also be viewed
as a general method for density estimation. We want to set up learning an unknown generator
Gµ∗ ∈ G as a generative adversarial dynamics. To this end, we must first define the loss function
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for the density estimation problem. A well-studied goal in this setting is to recover Gµ∗(x) in total
variation (also known as L1 or statistical) distance, where the total variation distance between two
distributions P,Q is defined as

dTV(P,Q) =
1

2

∫
Ω

|P (x)−Q(x)|dx = max
A

P (A)−Q(A) , (3)

where the maximum is taken over all measurable events A.

Such finding the best-fit distribution in total variation distance can indeed be naturally phrased as
generative adversarial dynamics. Unfortunately, for arbitrary distributions, this is algorithmically
problematic, simply because the set of discriminators one would need is intractable to optimize over.

However, for distributions that are structurally simple, like mixtures of Gaussians, it turns out we
can consider a much simpler set of discriminators. In Appendix B.1 in the supplementary material,
motivated by connections to VC theory, we show that for two generators Gµ1

, Gµ2
∈ G, we have

dTV(Gµ1 , Gµ2) = max
E=I1∪I2

Gµ1(E)−Gµ2(E) , (4)

where the maxima is taken over two disjoint intervals I1, I2 ⊆ R. In other words, instead of
considering the difference of measure between the two generators Gµ1

, Gµ2
on arbitrary events,

we may restrict our attention to unions of two disjoint intervals in R. This is a special case of a
well-studied distance measure known as the Ak-distance, for k = 2 (Devroye & Lugosi, 2012; Chan
et al., 2014). Moreover, this class of subsets has a simple parametric description.

Discriminators. Now, the above discussion motivates our definition of discriminators to be
D = {I[`1,r1] + I[`2,r2] |`, r ∈ R2 s.t. `1 ≤ r1 ≤ `2 ≤ r2} . (5)

In other words, the set of discriminators is taken to be the set of indicator functions of sets which can
be expressed as a union of at most two disjoint intervals. With this definition, finding the best fit in
total variation distance to some unknown Gµ∗ ∈ G is equivalent to finding µ̂ minimizing

µ̂ = arg min
µ

max
`,r

L(µ, `, r) , where L(µ, `, r) = Ex∼Gµ∗ [D(x)] + Ex∼Gµ [1−D(x)] (6)

is a smooth function of all three parameters (see the supplementary material for details).

Dynamics. The objective in (6) is easily amenable to optimization at parameter level. A natural
approach for optimizing this function would be to define G(µ̂) = max`,r L(µ̂, `, r), and to perform
(stochastic) gradient descent on this function. This corresponds to, at each step, finding the the
optimal discriminator, and updating the current µ̂ in that direction. We call these dynamics the
optimal discriminator dynamics. Formally, given µ̂(0) and a stepsize ηg, and a true distribution
Gµ∗ ∈ G, the optimal discriminator dynamics for Gµ∗ ,G,D starting at µ̂(0) are given iteratively as

`(t), r(t) = arg max
`,r

L(µ̂(t), `, r) , µ̂(t+1) = µ̂(t) − ηg∇µL(µ̂(t), `(t), r(t)) , (7)

where the maximum is taken over `, r which induce two disjoint intervals.

For more complicated generators and discriminators such as neural networks, these dynamics are
computationally difficult to perform. Therefore, instead of the updates as in (7), one resorts to
simultaneous gradient iterations on the generator and discriminator. These dynamics are called the
first order dynamics. Formally, given µ̂(0), `(0), r(0) and a stepsize ηg, ηd, and a true distribution
Gµ∗ ∈ G, the first order dynamics for Gµ∗ ,G,D starting at µ̂(0) are specified as

µ̂(t+1) = µ̂(t) − ηg∇µL(µ̂(t), `(t), r(t)) (8)

r(t+1) = r(t) + ηd∇rL(µ̂(t), `(t), r(t)) , `(t+1) = `(t) + ηd∇`L(µ̂(t), `(t), r(t)) . (9)
Even for our relatively simple setting, the first order dynamics can exhibit a variety of behaviors,
depending on the starting conditions of the generators and discriminators. In particular, in Figure 1,
we see that depending on the initialization, the dynamics can either converge to optimality, exhibit
a primitive form of mode collapse, where the two generators collapse into a single generator, or
converge to the wrong value, because the gradients vanish. This provides empirical justification for
our model, and shows that these dynamics are complicated enough to model the complex behaviors
which real-world GANs exhibit. Moreover, as we show in Section 5 below, these behaviors are not
just due to very specific pathological initial conditions: indeed, when given random initial conditions,
the first order dynamics still more often than not fail to converge.
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Parametrization We note here that there could be several potential GAN dynamics to consider
here. Each one resulting from slightly different parametrization of the total variation distance. For
instance, a completely equivalent way to define the total variation distance is

dTV(P,Q) = max
A
|P (A)−Q(A)| , (10)

which does not change the value of the variational distance, but does change the induced dynamics.
We do not focus on these induced dynamics in this paper since they do not exactly fit within the
traditional GAN framework, i.e. it is not of the form (1) (see Appendix C). Nevertheless, it is an
interesting set of dynamics and it is a natural question whether similar phenomena occur in these
dynamics. In Appendix C, we show the the optimal discriminator dynamics are unchanged, and the
induced first order dynamics have qualitatively similar behavior to the ones we consider in this paper.
This also suggests that the phenomena we exhibit might be more fundamental.
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Figure 1: A selection of different GAN behaviors. In all plots the true distribution was Gµ∗ with
µ∗ = (−0.5, 0.5), and step size was taken to be 0.1. The solid lines represent the two coordinates of
µ̂, and the dotted lines represent the discriminator intervals. In order: (a) first order dynamics with
initial conditions that converge to the true distribution. (b) First order dynamics with initial conditions
that exhibit wild oscillation before mode collapse. (c) Optimal discriminator dynamics. (d) First
order dynamics that exhibit vanishing gradients and converge to the wrong distribution. Observe that
the optimal discriminator dynamics converge, and then the discriminator varies wildly, because the
objective function is not differentiable at optimality. Despite this it remains roughly at optimality
from step to step.

4 OPTIMAL DISCRIMINATOR VS. FIRST ORDER DYNAMICS

We now describe our results in more detail. We first consider the dynamics induced by the optimal
discriminator. Our main theoretical result is1:

1We actually analyze a minor variation on the optimal discriminator dynamics. In particular, we do not rule
out the existence of a measure zero set on which the dynamics are ill-behaved. Thus, we will analyze the optimal
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Theorem 4.1. Fix δ > 0 sufficiently small and C > 0. Let µ∗ ∈ R2 so that |µ∗i | ≤ C, and
|µ∗1−µ∗2| ≥ δ. Then, for all initial points µ̂(0) so that |µ̂(0)

i | ≤ C for all i and so that |µ̂(0)
1 −µ̂

(0)
2 | ≥ δ,

if we let η = poly(1/δ, e−C
2

) and T = poly(1/δ, e−C
2

), then if µ̂(T ) is specified by the optimal
discriminator dynamics, we have dTV(Gµ∗ , Gµ̂(T )) ≤ δ.

In other words, if the µ∗ are bounded by a constant, and not too close together, then in time which is
polynomial in the inverse of the desired accuracy δ and e−C

2

, where C is a bound on how far apart
the µ∗ and µ̂ are, the optimal discriminator dynamics converge to the ground truth in total variation
distance. Note that the dependence on e−C

2

is necessary, as if the µ̂ and µ∗ are initially very far apart,
then the initial gradients for the µ̂ will necessarily be of this scale as well.

On the other hand, we provide simulation results that demonstrate that first order updates, or more
complicated heuristics such as unrolling, all fail to consistently converge to the true distribution, even
under the same sorts of conditions as in Theorem 4.1. In Figure 1, we gave some specific examples
where the first order dynamics fail to converge. In Section 5 we show that this sort of divergence
is common, even with random initializations for the discriminators. In particular, the probability
of convergence is generally much lower than 1, for both the regular GAN dynamics, and unrolling.
In general, we believe that this phenomena should occur for any natural first order dynamics for
the generator. In particular, one barrier we observed for any such dynamics is something we call
discriminator collapse, that we describe in Appendix A.

4.1 ANALYZING THE OPTIMAL DISCRIMINATOR DYNAMICS

We provide now a high level overview of the proof of Theorem 4.1. The key element we will need in
our proof is the ability to quantify the progress our updates make on converging towards the optimal
solution. This is particularly challenging as our objective function is neither convex nor smooth. The
following lemma is our main tool for achieving that. Roughly stated, it says that for any Lipschitz
function, even if it is non-convex and non-smooth, as long as the change in its derivative is smaller in
magnitude than the value of the derivative, gradient descent makes progress on the function value.
Note that this condition is much weaker than typical assumptions used to analyze gradient descent.

Lemma 4.2. Let g : Rk → R be a Lipschitz function that is differentiable at some fixed x ∈ Rk.
For some η > 0, let x′ = x − η∇f(x). Suppose there exists c < 1 so that almost all v ∈
L(x, x′), where L(x, y) denotes the line between x and y, g is differentiable, and moreover, we have
‖∇g(x)−∇g(v)‖2 ≤ c‖∇g(x)‖2. Then g(x′)− g(x) ≤ −η(1− c)‖∇g(x)‖22 .

Here, we will use the convention that µ∗1 ≤ µ∗2, and during the analysis, we will always assume for
simplicity of notation that µ̂1 ≤ µ̂2. Also, in what follows, let f(µ̂) = fµ∗(µ̂) = dTV(Gµ̂, Gµ∗) and
F (µ̂, x) = Gµ∗(x)−Gµ̂(x) be the objective function and the difference of the PDFs between the
true distribution and the generator, respectively.

For any δ > 0, define the sets

Rect(δ) = {µ̂ : |µ̂i − µ∗j | < δ for some i, j} , Opt(δ) = {µ̂ : |µ̂i − µ∗i | < δ for all i} .

to be the set of parameter values which have at least one parameter which is not too far from optimality,
and the set of parameter values so that all parameter values are close. We also let B(C) denote the
box of sidelength C around the origin, and we let Sep(γ) = {v ∈ R2 : |v1 − v2| > γ} be the set of
parameter vectors which are not too close together.

Our main work lies within a set of lemmas which allow us to instantiate the bounds in Lemma
4.2. We first show a pair of lemmas which show that, explicitly excluding bad cases such as mode
collapse, our dynamics satisfy the conditions of Lemma 4.2. We do so by establishing a strong (in
fact, nearly constant) lower bound on the gradient when we are fairly away from optimality (Lemma
4.3). Then, we show a relatively weak bound on the smoothness of the function (Lemma 4.4), but
which is sufficiently strong in combination with Lemma 4.3 to satisfy Lemma 4.2. Finally, we rule

discriminator dynamics after adding an arbitrarily small amount of Gaussian noise. It is clear that by taking this
noise to be sufficiently small (say exponentially small) then we avoid this pathological set with probability 1,
and moreover the noise does not otherwise affect the convergence analysis at all. For simplicity, we will ignore
this issue for the rest of the paper.
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out the pathological cases we explicitly excluded earlier, such as mode collapse or divergent behavior
(Lemmas 4.5 and 4.6). Putting all these together appropriately yields the desired statement. Our first
lemma is a lower bound on the gradient value:
Lemma 4.3. Fix C ≥ 1 ≥ γ ≥ δ > 0. Suppose µ̂ 6∈ Rect(0), and suppose µ∗, µ̂ ∈ B(C) and
µ∗ ∈ Sep(γ), µ̂ ∈ Sep(δ). There is some K = Ω(1) · (δe−C2

/C)O(1) so that ‖∇fµ∗(µ̂)‖2 ≥ K.

The above lemma statement is slightly surprising at first glance. It says that the gradient is never
0, which would suggest there are no local optima at all. To reconcile this, one should note that the
gradient is not continuous (defined) everywhere.

The second lemma states a bound on the smoothness of the function:
Lemma 4.4. Fix C ≥ 1 and γ ≥ δ > 0 so that δ is sufficiently small. Let µ∗, µ̂, µ̂′ be such
that L(µ̂, µ̂′) ∩ Opt(δ) = ∅, µ∗ ∈ Sep(γ), µ̂′, µ̂ ∈ Sep(δ), and µ∗, µ̂, µ̂′ ∈ B(C). Let K =

Ω(1) · (δe−C2

/C)O(1) be the K for which Lemma 4.3 holds with those parameters. If we have
‖µ̂′ − µ̂‖2 ≤ Ω(1) · (δe−C2

/C)O(1) for appropriate choices of constants on the RHS, we get

‖∇fµ∗(µ̂′)−∇fµ∗(µ̂)‖2 ≤ K/2 ≤ ‖∇fµ∗(µ̂)‖2/2.

These two lemmas almost suffice to prove progress as in Lemma 4.2, however, there is a major caveat.
Specifically, Lemma 4.4 needs to assume that µ̂ and µ̂′ are sufficiently well-separated, and that they
are bounded. While the µ̂i start out separated and bounded, it is not clear that it does not mode
collapse or diverge off to infinity. However, we are able to rule these sorts of behaviors out. Formally:
Lemma 4.5 (No mode collapse). Fix γ > 0, and let δ be sufficiently small. Let η ≤ δ/C for some C
large. Suppose µ∗ ∈ Sep(γ). Then, if µ̂ ∈ Sep(δ), and µ̂′ = µ̂− η∇fµ∗(µ̂), we have µ̂′ ∈ Sep(δ).
Lemma 4.6 (No diverging to infinity). Let C > 0 be sufficiently large, and let η > 0 be sufficiently
small. Suppose µ∗ ∈ B(C), and µ̂ ∈ B(2C). Then, if we let µ̂′ = µ̂− η∇fµ∗(µ̂), then µ̂′ ∈ B(2C).

Together, these four lemmas together suffice to prove Theorem 4.1 by setting parameters appropriately.
We refer the reader to Appendix D for more details including the proofs.

5 EXPERIMENTS

To illustrate more conclusively that the phenomena demonstrated in Figure 1 are not particularly rare,
and that first order dynamics do often fail to converge, we also conducted the following heatmap
experiments. We set µ∗ = (−0.5, 0.5) as in Figure 1. We then set a grid for the µ̂, so that each
coordinate is allowed to vary from −1 to 1. For each of these grid points, we randomly chose
a set of initial discriminator intervals, and ran the first order dynamics for 3000 iterations, with
constant stepsize 0.3. We then repeated this 120 times for each grid point, and plotted the probability
that the generator converged to the truth, where we say the generator converged to the truth if the
TV distance between the generator and optimality is < 0.1. The choice of these parameters was
somewhat arbitrary, however, we did not observe any qualitative difference in the results by varying
these numbers, and so we only report results for these parameters. We also did the same thing for the
optimal discriminator dynamics, and for unrolled discriminator dynamics with 5 unrolling steps, as
described in (Metz et al., 2017), which attempt to match the optimal discriminator dynamics.

The results of the experiment are given in Figure 2. We see that all three methods fail when we
initialize the two generator means to be the same. This makes sense, since in that regime, the
generator starts out mode collapsed and it is impossible for it to un-“mode collapse”, so it cannot fit
the true distribution well. Ignoring this pathology, we see that the optimal discriminator otherwise
always converges to the ground truth, as our theory predicts. On the other hand, both regular first
order dynamics and unrolled dynamics often times fail, although unrolled dynamics do succeed more
often than regular first order dynamics. This suggests that the pathologies in Figure 1 are not so rare,
and that these first order methods are quite often unable to emulate optimal discriminator dynamics.

6 RELATED WORK

GANs have received a tremendous amount of attention over the past two years (Goodfellow, 2017).
Hence we only compare our results to the most closely related papers here.
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Figure 2: Heatmap of success probability for random discriminator initialization for regular GAN
training, unrolled GAN training, and optimal discriminator dynamics.

The recent paper (Arora et al., 2017) studies generalization aspects of GANs and the existence of
equilibria in the two-player game. In contrast, our paper focuses on the dynamics of GAN training.
We provide the first rigorous proof of global convergence and show that a GAN with an optimal
discriminator always converges to an approximate equilibrium.

One recently proposed method for improving the convergence of GAN dynamics is the unrolled
GAN (Metz et al., 2017). The paper proposes to “unroll” multiple discriminator gradient steps in
the generator loss function. The authors argue that this improves the GAN dynamics by bringing
the discriminator closer to an optimal discriminator response. Our experiments show that this is not
a perfect approximation: the unrolled GAN still fails to converge in multiple initial configurations
(however, it does converge more often than a “vanilla” one-step discriminator).

The authors of (Arjovsky & Bottou, 2017) also take a theoretical view on GANs. They identify two
important properties of GAN dynamics: (i) Absolute continuity of the population distribution, and
(ii) overlapping support between the population and generator distribution. If these conditions do
not hold, they show that the GAN dynamics fail to converge in some settings. However, they do not
prove that the GAN dynamics do converge under such assumptions. We take a complementary view:
we give a convergence proof for a concrete GAN dynamics. Moreover, our model shows that absolute
continuity and support overlap are not the only important aspects in GAN dynamics: although our
distributions clearly satisfy both of their conditions, the first-order dynamics still fail to converge.

The paper (Nagarajan & Kolter, 2017) studies the stability of equilibria in GAN training. In contrast to
our work, the results focus on local stability while we establish global convergence results. Moreover,
their theorems rely on fairly strong assumptions. While the authors give a concrete model for which
these assumptions are satisfied (the linear quadratic Gaussian GAN), the corresponding target and
generator distributions are unimodal. Hence this model cannot exhibit mode collapse. We propose
the GMM-GAN specifically because it is rich enough to exhibit mode collapse.

The recent work (Grnarova et al., 2017) views GAN training through the lens of online learning. The
paper gives results for the game-theoretic minimax formulation based on results from online learning.
The authors give results that go beyond the convex-concave setting, but do not address generalization
questions. Moreover, their algorithm is not based on gradient descent (in contrast to essentially all
practical GAN training) and relies on an oracle for minimizing the highly non-convex generator loss.
This viewpoint is complementary to our approach. We establish results for learning the unknown
distribution and analyze the commonly used gradient descent approach for learning GANs.

7 CONCLUSIONS

We haven taken a step towards a principled understanding of GAN dynamics. We define a simple yet
rich model of GAN training and prove convergence of the corresponding dynamics. To the best of our
knowledge, our work is the first to establish global convergence guarantees for a parametric GAN. We
find an interesting dichotomy: If we take optimal discriminator steps, the training dynamics provably
converge. In contrast, we show experimentally that the dynamics often fail if we take first order
discriminator steps. We believe that our results provide new insights into GAN training and point
towards a rich algorithmic landscape to be explored in order to further understand GAN dynamics.
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(a) Initial Configuration (b) Optimal Discriminator for Initial Configuration

(c) After 1000 Discriminator Steps
(d) After 1000 Simultaneous

Generator and Discriminator Steps

(e) After 1000 Simultaneous
Generator and Discriminator
Steps with 100x Unrolling

Figure 3: Example of Discriminator Collapse. The initial configuration has µ∗ = {−2, 2}, µ̂ =
{−1, 2.5}, left discriminator [−1, 0.2], and right discriminator [−1, 2.5]. The (multiplicative) step
size used to generate (c), (d), and (e) was 0.3.

A DISCRIMINATOR COLLAPSE: A BARRIER FOR FIRST ORDER METHODS

As discussed above, our simple GAN dynamics are able to capture the same undesired behaviors that
more sophisticated GANs exhibit. In addition to these behaviors, our dynamics enables us to discern
another degenerate behavior which does not seem to have previously been observed in the literature.
We call this behavior discriminator collapse.

We first explain this phenomenon using language specific to our GMM-GAN dynamics. In our
dynamics, discriminator collapse occurs when a discriminator interval which originally had finite
width is forced by the dynamics to have its width converge to 0. This happens whenever this interval
lies entirely in a region where the generator PDF is much larger than the discriminator PDF. We will
shortly argue why this is undesirable.

In Figure 3, we show an example of discriminator collapse in our dynamics. Each plot in the
figure shows the true PDF minus the PDF of the generators, where the regions covered by the
discriminator are shaded. Plot (a) shows the initial configuration of our example. Notice that the
leftmost discriminator interval lies entirely in a region for which the true PDF minus the generators’
PDF is negative. Since the discriminator is incentivized to only have mass on regions where the
difference is positive, the first order dynamics will cause the discriminator interval to collapse to have
length zero if it is in a negative region. We see in Plot (c) that this discriminator collapses if we run
many discriminator steps for this fixed generator. In particular, these steps do not converge to the
globally optimal discriminator shown in Plot (b).

This collapse also occurs when we run the dynamics. In Plots (d) and (e), we see that after running the
first order dynamics – or even unrolled dynamics – for many iterations, eventually both discriminators
collapse. When a discriminator interval has length zero, it can never uncollapse, and moreover, its
contribution to the gradient of the generator is zero. Thus these dynamics will never converge to the
ground truth.

For general GANs, we view discriminator collapse as a situation when the local optimization
landscape around the current discriminator encourages it to make updates which decrease its rep-
resentational power. For instance, this could happen because the first order updates are unable to
wholly follow the evolution of the optimal discriminator due to attraction of local maxima, and thus
only capture part of the optimal discriminator’s structure. We view understanding the exact nature of
discriminator collapse in more general settings and interesting research problem to explore further.

10
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B OMITTED DETAILS FROM SECTION 2

B.1 TWO INTERVALS SUFFICE FOR G

Here we formally prove (4). In fact, we will prove a slight generalization of this fact which will be
useful later on.

We require the following theorem from Hummel and Gidas:

Theorem B.1 ((Hummel & Gidas, 1984)). Let f be any analytic function with at most n zeros. Then
f ◦ N (0, σ2) has at most n zeros.

This allows us to prove:

Theorem B.2. Any linear combination F (x) of the probability density functions of k Gaussians with
the same variance has at most k − 1 zeros, provided at least two of the Gaussians have different
means. In particular, for any µ 6= ν, the function F (x) = Dµ(x)−Dν(x) has at most 3 zeroes.

Proof. If we have more than 1 Gaussian with the same mean, we can replace all Gaussians having
that mean with an appropriate factor times a single Gaussian with that mean. Thus, we assume
without loss of generality that all Gaussians have distinct means. We may also assume without loss
of generality that all Gaussians have a nonzero coefficient in the definition of F .

Suppose the minimum distance between the means of any of the Gaussians is δ. We first prove the
statement when δ is sufficiently large compared to everything else. Consider any pair of Gaussians
with consecutive means ν, µ. WLOG assume that µ > ν = 0. Suppose our pair of Gaussians has
the same sign in the definition of F . In particular they are both strictly positive. For sufficiently
large δ, we can make the contribution of the other Gaussians to F an arbitrarily small fraction of the
whichever Gaussian in our pair is largest for all points on [ν, µ]. Thus, for δ sufficiently large, that
there are no zeros on this interval.

Now suppose our pair of Gaussians have different signs in the definition of F . Without loss of
generality, assume the sign of the Gaussian with mean ν is positive and the sign of the Gaussian with
mean µ is negative. Then the PDF of the first Gaussian is strictly decreasing on (ν, µ] and the PDF of
the negation of the second Gaussian is decreasing on [ν, µ). Thus, their sum is strictly decreasing on
this interval. Similarly to before, by making δ sufficiently large, the magnitude of the contributions of
the other Gaussians to the derivative in this region can be made an arbitrarily small fraction of the
magnitude of whichever Gaussian in our pair contributes the most at each point in the interval. Thus,
in this case, there is exactly one zero in the intervale [µ, ν].

Also, note that there can be no zeros of F outside of the convex hull of their means. This follows by
essentially the same argument as the two positive Gaussians case above.

The general case (without assuming δ sufficiently large) follows by considering sufficiently skinny
(nonzero variance) Gaussians with the same means as the Gaussians in the definition of F , rescaling
the domain so that they are sufficiently far apart, applying this argument to this new function,
unscaling the domain (which doesn’t change the number of zeros), then convolving the function with
an appropriate (very fat) Gaussian to obtain the real F , and invoking Theorem B.1 to say that the
number of zeros does not increase from this convolution.

B.2 THE FUNCTION L

In this section, we derive the form of L. By definition, we have

√
2πL(µ̂, `, r) =

√
2π
(
Ex∼Gµ∗ [D(x)] + Ex∼Gµ [1−D(x)]

)
=
√

2π

(∫
I

Gµ∗(x)−Gµ̂(x)dx

)
+
√

2π ,

11
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where I = [`1, r1] ∪ [`2, r2]. We then have

√
2πL(µ̂, `, r) =

√
2π

∑
i=1,2

∫ ri

`i

Gµ∗(x)−Gµ̂(x)dx

+
√

2π

=
∑
i=1,2

∑
j=1,2

∫ ri

`i

e−(x−µ∗j )2/2 − e−(x−µ̂j)2/2dx+
√

2π . (11)

It is not to hard to see from the Fundamental theorem of calculus that L is indeed a smooth function
of all parameters.

C ALTERNATIVE INDUCED DYNAMICS

Our focus in this paper is on the dynamics induced by, since it arises naturally from the form of the
total variation distance (3) and follows the canonical form of GAN dynamics (1). However, one
could consider other equivalent definitions of total variation distance too. And these definitions could,
in principle, induce qualitatively different behavior of the first order dynamics.

As mentioned in Section 3, an alternative dynamics could be induced by the definition of total
variation distance given in (10). The corresponding loss function would be

L′(µ, `, r) = |L(µ, `, r)| =
∣∣Ex∼Gµ∗ [D(x)] + Ex∼Gµ [1−D(x)]

∣∣ , (12)

i.e. the same as in (6) but with absolute values on the outside of the expression. Observe that this loss
function does not actually fit the form of the general GAN dynamics presented in (1). However, it
still constitutes a valid and fairly natural dynamics. Thus one could wonder whether similar behavior
to the one we observe for the dynamics we actually study occurs also in this case.

To answer this question, we first observe that by the chain rule, the (sub)-gradient of L′ with respect
to µ, `, r are given by

∇µL′(µ, `, r) = sgn (L(µ, `, r))∇µL(µ, `, r)

∇`L′(µ, `, r) = sgn (L(µ, `, r))∇`L(µ, `, r)

∇rL′(µ, `, r) = sgn (L(µ, `, r))∇rL(µ, `, r) ,

that is, they are the same as for L except modulated by the sign of L.

We now show that the optimal discriminator dynamics is identical to the one that we analyze in the
paper (7), and hence still provably converge. This requires some thought; indeed a priori it is not
even clear that the optimal discriminator dynamics are well-defined, since the optimal discriminator
is no longer unique. This is because for any µ∗, µ, the sets A1 = {x : Gµ∗(x) ≥ Gµ(x)} and
A2 = {x : Gµ(x) ≥ Gµ∗(x)} both achieve the maxima in (10), since∫

A1

Gµ(x)−Gµ∗(x)dx = −
∫
A2

Gµ(x)−Gµ∗(x)dx . (13)

However, we show that the optimal discriminator dynamics are still well-formed. WLOG assume
that

∫
A1
Gµ(x)−Gµ∗(x)dx ≥ 0, so that A1 is also the optimal discriminator for the dynamics we

consider in the paper. If we let `(i), r(i) be the left and right endpoints of the intervals in Ai for
i = 1, 2, we have that the update to µ induced by (`(1), r(1)) is given by

∇µL′(µ, `(1), r(1)) = ∇µL(µ, `(1), r(1)) ,

so the update induced by (`(1), r(1)) is the same as the one induced by the optimal discriminator
dynamics in the paper. Moreover, the update to µ induced by (`(2), r(2)) is given by

∇µL′(µ, `(2), r(2)) = sgn
(
L(µ, `(2), r(2))

)
∇µL(µ, `(2), r(2))

(a)
= −∇µ(−L(µ, `(1), r(1)))

= ∇µL(µ, `(1), r(1)) ,
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where (a) follows from the assumption that
∫
A1
Gµ(x)−Gµ∗(x)dx ≥ 0 and from (13), so it is also

equal to the the one induced by the optimal discriminator dynamics in the paper. Hence the optimal
discriminator dynamics are well-formed and unchanged from the optimal discriminator dynamics
described in the paper.

Thus the question is whether the first order approximation of this dynamics and/or the unrolled first
order dynamics exhibit the same qualitative behavior too. To evaluate the effectiveness, we performed
for these dynamics experiments analogous to the ones summarized in Figure 2 in the case of the
dynamics we actually analyzed. The results of these experiments are presented in Figure 4. Although
the probability of success for these dynamics is higher, they still often do not converge. We can thus
see that a similar dichotomy occurs here as in the context of the dynamics we actually study. In
particular, we still observe the discriminator collapse phenomena in these first order dynamics.
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Figure 4: Heatmap of success probability for random discriminator initialization for regular GAN
training, unrolled GAN training with dynamics induced by 12

C.1 WHY DOES DISCRIMINATOR COLLAPE STILL HAPPEN?

It might be somewhat surprising that even with absolute values discriminator collapse occurs. Orig-
inally the discriminator collapse occurred because if an interval was stuck in a negative region, it
always subtracts from the value of the loss function, and so the discriminator is incentivized to make
it disappear. Now, since the value of the loss is always nonnegative, it is not so clear that this still
happens.

Despite this, we still observe discriminator collapse with these dynamics. Here we describe one
simple scenario in which discriminator collapse still occurs. Suppose the discriminator intervals have
left and right endpoints `, r and L(µ, `, r) > 0. Then, if it is the case that

∫ ri
`i
Gµ∗(x)−Gµ(x)dx < 0

for some i = 1, 2. that is, on one of the discriminator intervals the value of the loss is negative, then
the discriminator is still incentivized locally to reduce this interval to zero, as doing so increases both
L(µ, `, r) and hence L′(µ, `, r). Symmetrically if L(µ, `, r) < 0 and there is a discriminator interval
on which the loss is positive, the discriminator is incentivized locally to reduce this interval to zero,
since that increases L′(µ, `, r). This causes the discriminator collapse and subsequently causes the
training to fail to converge.

D OMITTED PROOFS FROM SECTION 4.1

This appendix is dedicated to a proof of Theorem 4.1. We start with some remarks on the proof
techniques for these main lemmas. At a high level, Lemmas 4.3, 4.5, 4.6 all follow from involved
case analyses. Specifically, we are able to deduce structure about the possible discriminator intervals
by reasoning about the structure of the current mean estimate µ̂ and the true means. From there we
are able to derive bounds on how these discriminator intervals affect the derivatives and hence the
update functions.

To prove Lemma 4.4, we carefully study the evolution of the optimal discriminator as we make small
changes to the generator. The key idea is to show that when the generator means are far from the
true means, then the zero crossings of F (µ̂, x) cannot evolve too unpredictably as we change µ̂. We
do so by showing that locally, in this setting F can be approximated by a low degree polynomial
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with large coefficients, via bounding the condition number of a certain Hermite Vandermonde matrix.
This gives us sufficient control over the local behavior of zeros to deduce the desired claim. By being
sufficiently careful with the bounds, we are then able to go from this to the full generality of the
lemma. We defer further details to Appendix D.

D.1 SETUP

By inspection on the form of (11), we see that the gradient of the function fµ∗(µ̂) if it is defined must
be given by

∂fµ∗

∂µ̂i
=

1√
2π

∑
i=1,2

(
e−(µ̂i−ri)2/2 − e−(µ̂i−`i)2/2

)
.

Here Ii = [`i, ri] are the intervals which achieve the supremum in (4). While these intervals may not
be unique, it is not hard to show that this value is well-defined, as long as µ̂ 6= µ∗, that is, when the
optimal discriminator intervals are unique as sets.

Recall Fµ∗(µ̂, x) = Gµ∗(x)−Gµ̂(x).

D.2 BASIC MATH FACTS

Before we begin, we require the following facts.

We first need that the Gaussian, and any fixed number of derivatives of the Gaussian, are Lipschitz
functions.
Fact D.1. For any constant i, there exists a constant B such that for all x, µ ∈ R, di

dxi N (x, µ, σ2 =
1) ≤ B.

Proof. Note that every derivative of the Gaussian PDF (including the 0th) is a bounded function.
Furthermore, all these derivatives eventually tend to 0 whenever the input goes towards∞ or −∞.
Thus, any particular derivative is bounded by a constant for all R. Furthermore, shifting the mean
of the Gaussian does not change the set of values the derivatives of its derivative takes (only their
locations).

We also need the following bound on the TV distance between two Gaussians, which is folklore, and
is easily proven via Pinsker’s inequality.
Fact D.2 (folklore). If two univariate Gaussians with unit variance have means within distance at
most ∆ then their TV distance is at most O(1) ·∆.

This immediately implies the following, which states that fµ∗ is Lipschitz.
Corollary D.3. There is some absolute constant C so that for any µ, ν, we have |fµ∗(µ)−fµ∗(ν)| ≤
C‖µ− ν‖2.

We also need the following basic analysis fact:

Fact D.4 (folklore). Suppose g : Rd → R is B-Lipschitz for some B. Then g is differentiable almost
everywhere.

This implies that fµ∗ is indeed differentiable except on a set of measure zero. As mentioned previously,
we will always assume that we never land within this set during our analysis.

D.3 PROOF OF THEOREM 4.1 GIVEN LEMMATA

Before we prove the various lemmata described in the body, we show how Theorem 4.1 follows from
them.

Proof of Theorem 4.1. Set δ′ be a sufficiently small constant multiple of δ. Provided we make the
nonzero constant factor on the step size sufficiently small (compared to δ′/δ), and the exponent on δ
in the magnitude step size at least one, the magnitude of our step size will be at most δ′. Thus, in any
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step where µ̂ ∈ Opt(δ′), we end the step outside of this set but still in Opt(2δ′). By Lemma D.2, for
a sufficiently small choice of constant in the definition of δ′, the TV-distance at the end of such a step
will be at most δ.

Contrapositively, in any step where the TV-distance at the start is more than δ, we will have at the
start that µ̂ 6∈ Opt(δ′). Then, it suffices to prove that the step decreases the total variation distance
additively by at least 1/poly(C, eC

2

, 1/δ) in this case. For appropriate choices of constants in
expression for the step size (sufficiently small multiplicative and sufficiently large in the exponent),
this is immediately implied by Lemma 4.4 and Lemma 4.2 provided that µ∗, µ̂, µ̂′ ∈ B(2C) and
|µ̂1 − µ̂2| ≥ δ at the beginning of each step. The condition that we always are within B(2C) at the
start of each step is proven in Lemma 4.6 and the condition that the means are separated (ie., that we
don’t have mode collapse) is proven in Lemma 4.5.

It is interesting that a critical component of the above proof involves proving explicitly that mode
collapse does not occur. This suggests the possibility that understanding mode collapse may be
helpful in understanding convergence of Generative Adversarial Models and Networks.

D.4 PROOF OF LEMMA 4.3

In this section we prove Lemma 4.3. We first require the following fact:

Fact D.5 ((Markov, 1892)). Let p(x) =
∑d
i=0 cjx

j be a degree d polynomial so that |p(x)| ≤ 1 for
all x ∈ [−1, 1]. Then max0≤j≤d |cj | ≤ (

√
2 + 1)d. More generally, if |p(x)| ≤ α for all x ∈ [−ρ, ρ],

then max0≤j≤d |cjρj | ≤ O(α).

We also have the following, elementary lemma:

Lemma D.6. Suppose µ̂2 > µ∗i for all i. Then there is some x > µ̂2 so that Fµ∗(µ̂, x) < 0.

We are now ready to prove Lemma 4.3

Proof of Lemma 4.3. We proceed by case analysis on the arrangement of the µ̂ and µ∗.

Case 1: µ∗1 < µ̂1 and µ∗2 < µ̂2 In this case we have Fµ∗(µ̂, x) ≤ 0 for all x ≥ µ̂2. Hence the
optimal discriminators are both to the left of µ̂2. Moreover, by a symmetric logic we have
Fµ∗(µ̂, x) ≥ 0 for all x ≤ µ∗1, so the optimal discriminator has an interval of the form
I1 = [−∞, r1] and possibly I2 = [l2, r2] where r1 < l2 < r2 < µ̂2. Then it is easy to see
that ∂f

∂µ̂2
(µ̂2) ≥ 1√

2π
e−(µ̂2−r2)2/2 ≥ 1√

2π
e−2C2

.

Case 2: µ̂1 < µ∗1 and µ̂2 < µ∗2 This case is symmetric to Case (1).

Case 3: µ̂1 < µ∗1 < µ∗2 < µ̂2 By Lemma D.6, we know that Fµ∗(µ̂, x) < 0 for some x ≥ µ̂2, and
similarly Fµ∗(µ̂, x) < 0 for some x ≤ µ̂1. Since clearly F (µ∗)(µ̂, x) > 0 for x ∈ [µ∗1, µ

∗
2],

by Theorem B.2 and continuity, the optimal discriminator has one interval. Denote it by
I = [`, r], so that we have ` ≤ µ∗1 and r ≥ µ∗2. Suppose ` ≥ µ̂1. Then

∂f

∂µ̂1
(µ̂1) =

1√
2π

(
e−(µ̂1−`)2/2 − e−(µ̂1−r)2/2

)
=

1√
2π
e−(µ̂1−`)2/2

(
1− e−(µ̂1−`)(r−`)e−(r−`)2/2

)
≥ 1√

2π
e−2C2

(
1− e−δ

2/2
)
.

We get the symmetric bound on ∂fµ∗

∂µ̂2
(µ̂2) if r ≤ µ̂2. The final case is if ` < µ̂1 < µ̂2 < r.

Consider the auxiliary function

H(µ) = e−(`−µ)2/2 − e−(r−µ)2/2 .
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On the domain [`, r], this function is monotone decreasing. Moreover, for any µ ∈ [`, r], we
have

H ′(µ) = (`− µ)e−(`−µ)2/2 − (r − µ)e−(r−µ)2/2

≤ −r − `
2

e−(r−`)2/8

≤ −γ
2
e−γ

2/8 .

In particular, this implies that H(µ̂1) < H(µ̂2)− γ2e−γ
2/8/2, so at least one of H(µ̂2) or

H(µ̂1) must be γ2e−γ
2/8/4 in absolute value. Since ∂fµ∗

∂µ̂i
(µ̂i) = H(µ̂i), this completes the

proof in this case.

Case 4: µ∗1 < µ̂1 < µ̂2 < µ∗2 By a symmetric argument to Case 3, we know that the optimal dis-
criminator intervals are of the form (−∞, r] and [`,∞) for some r < µ̂1 < µ̂2 < `. The
form of the derivative is then exactly the same as in the last sub-case in Case 3 with signs
reversed, so the same bound holds here.

D.5 PROOF OF LEMMA 4.4

We now seek to prove Lemma 4.4. Before we do so, we need to get lower bounds on derivatives of
finite sums of Gaussians with the same variance. In particular, we first show:

Lemma D.7. Fix γ ≥ δ > 0 and C ≥ 1. Suppose we have µ∗, µ̂ ∈ B(C), µ∗, µ̂ ∈ Sep(γ), with
µ̂ 6∈ Rect(δ), where all these vectors have constant length k. Then, for any x ∈ [−C,C], we have
that | d

i

dxiFµ∗(µ̂, x)| ≥ Ω(1) · (δ/C)O(1)e−C
2/2 for some i = 0, . . . , 2k − 1.

Proof. Observe that the value of the ith derivative of Fµ∗(µ̂, x) for any x is given by

di

dxi
Fµ∗(µ̂, x) =

1√
2π

2k∑
j=1

wj(−1)iHi(zj)e
−z2j /2 ,

where wj ∈ {−1/k, 1/k}, the zj is either x − µ∗j or x − µ̂j , and Hi(z) is the ith (probabilist’s)
Hermite polynomial. Note that the (−1)iHi are orthogonal with respect to the Gaussian measure
over R, and are orthonormal after some finite scaling that depends only on i and is therefore
constant. Hence, if we form the matrix Mij = (−1)iHi(x− zj), if we define ui = di

dxiFµ∗(µ̂, x) for
i = 0, . . . , 2k − 1, we have that Mv = u, where vj = 1√

2π
wje

−(x−zj)2/2. By assumption, we have

‖v‖2 ≥ Ω(
√
k · e−C2/2) = Ω(e−C

2/2). Thus, to show that some ui cannot be too small, it suffices
to show a lower bound on the smallest singular value of M . To do so, we leverage the following fact,
implicit in the arguments of (Gautschi, 1990):

Theorem D.8 ((Gautschi, 1990)). Let pr(z) be family of orthonormal polynomials with respect to a
positive measure dσ on the real line for r = 1, 2, . . . , t and let z1, . . . , zt be arbitrary real numbers
with zi 6= zj for i 6= j. Define the matrix V given by Vij = pi(zj). Then, the smallest singular value
of V , denoted σt(V ), is at least

σmin(V ) ≥

(∫
R

t∑
r=1

`r(y)2dσ(y)

)−1/2

,

where `r(y) =
∏
s6=r

y−zs
zr−zs is the Langrange interpolating polynomial for the zr.

Set pr = Hr−1 t = 2k, and σ as the Gaussian measure; then apply the theorem. Observe that for any
i, j, we have |zi − zj | ≥ min(δ, γ) ≥ δ and |zi| ≤ C. Hence the largest coefficient of any Lagrange
interpolating polynomial through the zi is at most (Cδ )2k−1 with degree 2k − 1. So, the square of
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any such polynomial has degree at most 2(2k − 1) and max coefficient at most 2k(Cδ )2(2k−1) This
implies that ∫

R

2k∑
r=1

`r(y)2 dσ(y) =

2k∑
r=1

∫
R
`r(y)2 dσ(y)

≤
2k∑
r=1

2(2k − 1) · 2k
(
C

δ

)2(2k−1)

max
s∈[2(2k−1)]

∫
R
ysdσ(y)

≤ O(1) ·
(
C

δ

)4k

max
s∈[4k]

∫ ∞
−∞

yse−y
2/2 dy

≤ O(1) ·
(
C

δ

)O(1)

.

Hence by Theorem D.8 we have that σmin(V ) ≥ Ω(1) ·
(
δ
C

)O(1)
. Therefore, we have that ‖u‖2 ≥

Ω(1) · (δ/C)O(1)e−C
2/2, which immediately implies the desired statement.

We next show that the above Lemma can be slightly generalized, so that we can replace the condition
µ̂ 6∈ Rect(δ) with µ̂ 6∈ Opt(δ).
Lemma D.9. Fix C ≥ 1 ≥ γ ≥ δ ≥ Ξ > 0. Suppose we have µ∗, µ̂ ∈ B(C), µ∗, µ̂ ∈ Sep(γ), with
µ̂ 6∈ Opt(δ). Then for any x ∈ [−C,C], we have that | d

i

dxiFµ∗(µ̂, x)| ≥ Ω(1) · (δe−C2

/C)O(1) for
some i = 0, . . . , 3.

Proof. Let Ξ be of the form Ω(1) · (δe−C2

/C)O(1), where we will pick its precise value later.
Lemma D.7 with δ in that Lemma set to Ξ and k = 2 proves the special case when µ̂ 6∈ Rect(Ξ).
Thus, the only remaining case is when µ̂i is close to µ∗i for some i and far away for the other i.
Without loss of generality, we assume the first entries are the close pair. Then we have |µ̂1 − µ∗1| ≤ Ξ
and |µ̂2 − µ∗2| ≥ δ.

There are four terms in the expression for di

dxiFµ∗(µ̂, x) corresponding to each of µ̂1, µ̂2, µ
∗
1, µ
∗
2.

Lemma D.7 with δ = Ξ and k = 1 implies that the contribution of the µ̂2 and µ∗2 terms to at
least one of the 0th through 3rd derivatives has magnitude at least Ω(1) · (δe−C2

/C)O(1). Fact D.2
and Lemma D.10 (below) imply that the contribution of the µ̂1 and µ∗1 terms to these derivatives
has magnitude at most O(1) · Ξ4. Thus, there exists a Ξ = Ω(1) · (δ/C)O(1)e−C

2/2 such that the
magnitude of the contribution of these second two terms is less than half that of the first two, which
gives a lower bound on the magnitude of the sum of all the terms of Ω(1) · (δ/C)O(1)e−C

2/2.

We now show that any function which always has at least one large enough derivative—including its
0th derivaive—on some large enough interval must have a nontrivial amount of mass on the interval.
Lemma D.10. Let 0 < ξ < 1 and t ∈ N. Let F (x) : R → R be a (t + 1)-times differentiable
function such that at every point x on some interval I of length |I| ≥ ξ, F (x) ≥ 0 and there exists
an i = i(x) ∈ 0, . . . , t such that | di

dxiF (x)| ≥ B′ for some B′. Also suppose | dt+1

dxt+1F (x)| ≤ B for
some B. Then, ∫ y

z

F (x)dx ≥
(
B′ · (Ω(1) · ξ)t+1 ·min[(B′/B)t+2, 1]

(t+ 1)! · (t+ 1)

)
.

Proof. Let 0 < a < 1 be a non-constant whose value we will choose later. If I has length more
than aξ, truncate it to have this length. Let z denote the midpoint of I . By assumption, we know
that there is some i ∈ 0, . . . , t such that | d

i

dxiF (x)| > ξ. Thus, by Taylor’s theorem, we have that
F (µ̂, x) ≥ p(x − z) − (B/(t + 1)!) · |x − z|t+1 for some degree t polynomial p that has some
coefficient of magnitude at least B′/t!.

Thus, if we let G(y) =
∫ y
z
p(x)dx, then G(y) is a degree t + 1 polynomial with some coefficient

which is at least B′/(t! · t). By the nonnegativity of F on I , we have that G is nonnegative on
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[−aξ/2, aξ/2]. By this and the contrapositive of Fact D.5 (invoked with α set to a sufficiently
small nonzero constant multiple of B), we have for some such y and some constant B′′ > 0 that
G(y) = |G(y)| ≥ B′′(|I|/2)t+1B′/(t! · t). Therefore, at this point, we have∫ y

z

F (x)dx ≥ G(y)−
∫ y

z

(B/(t+ 1)!) · |x− z|t+1dx

≥ B′′at+1(ξ/2)t+1B′

t! · t
− B(aξ/2)t+2

(t+ 1)! · (t+ 1)

≥
(
at+1(ξ/2)t+1(B′′B′ −Bξa/2)

(t+ 1)! · (t+ 1)

)
≥
(
at+1(ξ/2)t+1(B′′B′ −Ba/2)

(t+ 1)! · (t+ 1)

)
.

If B′B′′ ≤ B, we set a = B′B′′/B ≤ 1 which gives∫ y

z

F (x)dx ≥
(

(B′)t+2(Ω(1) · ξ/B)t+1

(t+ 1)! · (t+ 1)

)
.

Otherwise, B′B′′ ≥ B and we perform this substitution along with a = 1 which gives the similar
bound ∫ y

z

F (x)dx ≥
(
B′(Ω(1) · ξ)t+1

(t+ 1)! · (t+ 1)

)
.

Together, these bounds imply that we always have∫ y

z

F (x)dx ≥
(
B′ · (Ω(1) · ξ)t+1 ·min[(B′/B)t+2, 1]

(t+ 1)! · (t+ 1)

)
.

This allows us to prove the following lemma, which lower bounds how much mass F can put on any
interval which is moderately large. Formally:

Lemma D.11. Fix C ≥ 1 ≥ γ ≥ δ > 0. Let K = Ω(1) · (δe−C2

/C)O(1) be the K for which
Lemma 4.3 is always true with those parameters. Let µ∗, µ̂ be so that µ̂ 6∈ Opt(δ), µ̂, µ∗ ∈ Sep(γ),
and µ∗, µ̂ ∈ B(C). Then, there is a ξ = Ω(1) · (δ/C)O(1)e−C

2

)O(1) such that for any interval I of
length |I| ≥ ξ which satisfies I ∩ [−C − 2

√
log(100/K), C + 2

√
log(100/K)] 6= ∅ and on which

F (µ̂, x) is nonnegative, we have∫
I

|F (µ̂, x)|dx ≥ Ω(1) · (δe−C
2

/C)O(1)ξO(1) .

Proof. By Lemma D.9 with C in that lemma set to C + 2
√

log(100/K), we get a lower bound of
Ω(1) · (δe−C2

/C)O(1) on the magnitude of at least one of the 0th through 3rd derivatives of F (µ̂, x)
with respect to x. Set ξ equal to a sufficiently small (nonzero) constant times this value.

By Fact D.1 there exists a constant B such that the magnitude of the fifth derivative of F (µ̂, x) with
respect to x—which is a linear combination of four fifth derivatives of Gaussians with constant
coefficients—is at most B.

By Lemma D.10 applied to F (µ̂, x) as a function of x, we have
∫
I
F (µ̂, x)dx ≥ Ω(1) · ξ6.

Now we can prove Lemma 4.4.

Proof of Lemma 4.4. Let A = [C − 2
√

log(100/K), C + 2
√

log(100/K)] where K = Ω(1) ·
(δe−C

2

/C)O(1) is the K for which Lemma 4.3 is always true with those parameters.
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Let Z± denote the set of all x ∈ A for which F (µ̂′, x) and F (µ̂, x) have different nonzero signs.
Let Z+ denote the subset of Z± where F (µ̂′, x) > 0 > F (µ̂, x) and Z− denote the subset where
F (µ̂′, x) < 0 < µ̂, x). Then Z± = Z+ ∪ Z− and Z+, Z− are disjoint and Lebesgue-measurable. If
vol(Z+) ≤ vol(Z−), switch µ̂ and µ̂′ so that vol(Z+) ≥ vol(Z−).

Note that Z+ can be obtained by making cuts in the real line at the zeros of F (µ̂′, x), F (µ̂, x), and
F (µ̂′, x)− F (µ̂, x), then taking the union of some subset of the open intervals induced by these cuts.
By Theorem B.2, the total number of such intervals is O(1). Thus, Z+ is the union of a constant
number of open intervals. By similar arguments, Z− is also the union of a constant number of open
intervals.

We now prove that vol(Z+), Z−1 ≤ O(1) · ‖µ̂′ − µ̂‖Θ(1)
1 · (δe−C2

/C)−O(1). Since vol(Z+) ≥
vol(Z−), it suffices to prove vol(Z+) ≤ O(1) · ‖µ̂′ − µ̂‖Θ(1)

1 · (δe−C2

/C)−O(1). Note also that by
Lemma D.2, each of these intervals has mass under F (µ̂′, x) at most

∫
R |F (µ̂′, x)− F (µ̂, x)|dx ≤

O(1) · ‖µ̂′ − µ̂‖1. By Lemma D.11 and Lemma 4.3, each of these intervals has length at most
O(1) · ‖µ̂′ − µ̂‖Θ(1)

1 · (δe−C2

/C)−O(1). Since there are at most a constant number of such intervals,
this is also a bound on vol(Z+) (and vol(Z−)).

Let Y denote the set of x ∈ A on which both F (µ̂, x) and F (µ̂′, x) are nonnegative. Let X,X ′
denote the x 6∈ A for which F (µ̂, x) and F (µ̂′, x) are respectively positive. Let W,W ′ denote,
respectively, the sets of endpoints of the union of the optimal discriminators for µ̂, µ̂′. Then the union
of the optimal discriminators for µ̂, µ̂′ are respectively Y ∪ Z− ∪X ∪W and Y ∪ Z+ ∪X ′ ∪W ′.
Furthermore, each of these two unions is given by some constant number of closed intervals and
more specifically, that X,X ′ each contain at most two intervals by Lemma B.2. Thus, we have for
any i that

∣∣∣∣∣ ∂

∂µ̂i
TV(µ∗, µ̂)

∣∣∣∣µ̂′
µ̂

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Y ∪Z+∪W ′∪X′

d

dx
e(x−µ̂′i)

2/2dx−
∫

Y ∪Z−∪W∪X

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

Y ∪Z+∪W ′∪X′

d

dx
e(x−µ̂i)2/2dx−

∫
Y ∪Z−∪W∪X

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
+O(1) · |µ̂′i − µ̂i| ,
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by Lipschitzness, and so∣∣∣∣∣ ∂

∂µ̂i
TV(µ∗, µ̂)

∣∣∣∣µ̂′
µ̂

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Z+∪X′

d

dx
e(x−µ̂i)2/2dx−

∫
Z−∪X

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
+O(1) · |µ̂′i − µ̂i|

≤

∣∣∣∣∣∣
∫
Z+

d

dx
e(x−µ̂i)2/2dx± 4

100
·K −

∫
Z−

d

dx
e(x−µ̂i)2/2dx± 4

100
·K

∣∣∣∣∣∣
+O(1) · |µ̂′i − µ̂i|

≤

∣∣∣∣∣∣
∫
Z+

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Z−

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
+

8

100
·K +O(1) · |µ̂′i − µ̂i|

≤ 2vol(Z+)

∣∣∣∣sup
x∈R

d

dx
e(x−µ̂i)2/2

∣∣∣∣+
8

100
·K +O(1) · |µ̂′i − µ̂i|

≤ O(1) · ‖µ̂′ − µ̂‖Θ(1)
2 · (δe−C

2

/C)−O(1) +
8

100
·K .

This bound also upper bounds ‖∇fµ∗(µ̂′)−∇fµ∗(µ̂)‖2 up to a constant factor. Thus, if we choose
our step to have magnitude ‖µ̂′− µ̂‖2 ≤ Ω(1) · (δe−C2

/C)O(1) with appropriate choices of constants,
we get

‖∇fµ∗(µ̂′)−∇fµ∗(µ̂)‖2 ≤ K/2 ≤ ‖∇fµ∗(µ̂)‖2/2 ,

as claimed

D.6 PROOF OF LEMMA 4.5

We now prove Lemma 3.4, which forbids mode collapse.

Proof of Lemma 4.5. Since η ≤ δ, if |µ̂1 − µ̂2| > 2δ then clearly µ̂′ ∈ Sep(δ), since the gradient is
at most a constant since the function is Lipschitz. Thus assume WLOG that |µ̂1 − µ̂2| ≤ 2δ ≤ γ/50.
There are now six cases:

Case 1: µ̂1 ≤ µ∗1 ≤ µ∗2 ≤ µ̂2 This case cannot happen since we assume |µ̂1 − µ̂2| ≤ 2δ ≤ γ/50.

Case 2: µ∗1 ≤ µ̂1 ≤ µ̂2 ≤ µ∗2 In this case, by Lemma D.6, we know F is negative at−∞ and at +∞.
Since clearly F ≥ 0 when x ∈ [µ∗1, µ

∗
2], by Theorem B.2 and continuity, the discriminator

intervals must be of the form (−∞, r], [`,∞) for some r ≤ µ̂1 ≤ µ̂2 ≤ `. Thus, the update
to µ̂i is (up to a constant factor of

√
2π) given by e−(`−µ̂i)2/2 − e−(r−µ̂i)2/2. The function

Q(x) = e−(`−x)2/2−e−(r−x)2/2 is monotone on x ∈ [r, `], and thus µ̂i must actually move
away from each other in this scenario.

Case 3: µ∗1 ≤ µ̂1 ≤ µ∗2 ≤ µ̂2 In this case we must have |µ∗2− µ̂1| ≤ 2δ and similarly |µ∗2− µ̂2| ≤ 2δ.
We claim that in this case, the discriminator must be an infinitely long interval (−∞,m]
for some m ≤ µ̂1. This is equivalent to showing that the function F (µ̂, x) has only one
zero, and this zero occurs at some m ≤ µ̂1. This implies the lemma in this case since then
the update to µ̂1 and µ̂2 are then in the same direction, and moreover, the magnitude of the
update to µ̂1 is larger, by inspection.
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We first claim that there are no zeros in the interval [µ̂1, µ̂2]. Indeed, in this interval, we
have that

√
2πDµ̂(x) ≥ 2e−(γ/50)2/2

= 2e−γ
2/5000

≥ 2

(
1− γ2

5000
+O(γ4)

)
≥ 2

(
1− γ2

10

)
,

but
√

2πDµ∗(x) ≤ 1 + e−(γ−2δ)2/2

= 1 + e−(49γ/50)2/2

≤ 2− γ2

2
.

Hence Gµ̂(x) ≥ Gµ∗(x) for all x ∈ [µ̂1, µ̂2], and so there are no zeros in this interval.
Clearly there are no zeros of F when x ≥ µ̂2, because in that regime e−(x−µ̂i)2/2 ≥
e−(x−µ∗i )2/2 for i = 1, 2. Similarly there are no zeros of F when x ≤ µ∗1. Thus all zeros of
F must occur in the interval [−µ∗1, µ̂1].

We now claim that there are no zeroes of F on the interval [α + 10δ, µ̂1], where α =
(µ∗1 + µ̂1)/2. Indeed, on this interval, we have

√
2πF (µ̂, x) = e−(x−µ∗1)2/2 − e−(x−µ̂2)2/2 + e−(x−µ∗1)2/2 − e−(x−µ̂1)2/2

≤ e−(x−µ∗1)2/2 − e−(x−µ̂2)2/2 < 0 ,

where the first line follows since moving µ∗2 to µ̂1 only increases the value of the function
on this interval, and the final line is negative as long as x > (µ∗1 + µ̂2)/2, which is clearly
satisfied by our choice of parameters. By a similar logic (moving µ̂2 to µ∗2), we get that on
the interval [µ∗1, α− 10δ], the function is strictly positive. Thus all zeros of F must occur in
the interval [α− 10δ, α+ 10δ].

We now claim that in this interval, the function F is strictly decreasing, and thus has exactly
one zero (it has at least one zero because the function changes sign). The derivative of F
with respect to x is given by

√
2π
∂F

∂x
(µ̂, x)

= (µ∗1 − x)e−(x−µ∗1)2/2 − (µ̂2 − x)e−(x−µ̂2)2/2

+ (µ∗2 − x)e−(x−µ∗2)2/2 − (µ̂2 − x)e−(x−µ̂1)2/2 .

By Taylor’s theorem, we have

(µ∗1 − x)e−(x−µ∗1)2/2 − (µ̂2 − x)e−(x−µ̂2)2/2

= −2re−α
2/2 +O

(
H2(δ)e−(r−10δ)2/2δ2

)
,

where H2 is the second (probabilist’s) Hermite polynomial, and r = |µ∗1 − α|. On the other
hand, by another application of Taylor’s theorem, we also have

(µ∗2 − x)e−(x−µ∗2)2/2 − (µ̂2 − x)e−(x−µ̂1)2/2

= O
(
δH2(δ)e−(r−10δ)2/2

)
.
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Thus, altogether we have
√

2π
∂F

∂x
(µ̂, x)

≤ −2re−α
2/2

+O
(
δH2(δ)e−(r−10δ)2/2

)
< 0

by our choice of δ, and since r = γ/2 > δ/25.

Case 4: µ̂1 ≤ µ∗1 ≤ µ̂2 ≤ µ∗2 This case is symmetric to Case 3, and so we omit it.

Case 5: µ∗1 ≤ µ∗2 ≤ µ̂1 ≤ µ̂2 In this case, we proceed as in the proof of Theorem B.2. If the
Gaussians were sufficiently skinny, then by the same logic as in the proof of Theorem B.2,
there is exactly one zero crossing. The lemma then follows in this case by Theorem B.1.

Case 6: µ̂1 ≤ µ̂2 ≤ µ∗1 ≤ µ∗2 This case is symmetric to Case 5.

This completes the proof.

D.7 PROOF OF LEMMA 4.6

We also show that no terribly divergent behavior can occur. Formally, we show that if the true means
are within some bounded box, then the generators will never leave a slightly larger box.

Proof of Lemma 4.6. If µ̂ ∈ B(C), then since f is Lipschitz and η is sufficiently small, clearly
µ̂′ ∈ B(C). Thus, assume that there is an i = 1, 2 so that |µ̂i| > C, and let µ̂1 be the largest such i
in magnitude. WLOG take µ̂2 > 0. In particular, this implies that µ̂2 > µ∗i for all i = 1, 2. There are
now 3 cases, depending on the position of µ̂1.

Case 1: µ̂1 ≥ µ∗2: Here, as in Case 2 in Lemma 4.5, the optimal discriminator is of the form (−∞, r]
for some r ≤ µ̂1, µ̂2. In particular, the update step will be

µ̂′i = µ̂i − ηe−(r−µ̂i)2/2 < µ̂i .

Thus, in this case our update moves us in the negative direction. By our choice of η, this
implies that 0 ≤ µ̂′2 < µ̂′2. Moreover, since µ̂1 ≥ µ∗2, this implies that |µ̂1| ≤ C, and thus
|µ̂′1| ≤ 2C. Therefore in this case we stay within the box.

Case 2: µ∗1 ≤ µ̂1 ≤ µ∗2: As in Case 1, we know that µ̂1 cannot leave the box after a single update, as
|µ̂1| ≤ C. Thus it suffices to show that µ̂2 moves in the negative direction. By Lemma D.6,
we know there is a discriminator interval at −∞, and there is no discriminator interval at∞.
Moreover, in this case, we know that F (µ̂, x) ≥ 0 for all x ≥ µ̂2. Thus, all discriminators
must be to the left of µ̂2. Therefore, the update to µ̂2 is given by

µ̂′2 = µ̂2

− η
(
e−(r2−µ̂2)2/2 − e−(`2−µ̂2)2/2 + e−(r1−µ̂2)2/2

)
,

for some r1 ≤ `2 ≤ r2 ≤ µ̂′2. Clearly this update has the property that 0 ≤ µ̂′2 < µ̂2, and so
the new iterate stays within the box.

Case 3: µ̂1 ≤ µ∗2 In this case we must prove that neither µ̂1 nor µ̂2 leave the box. The two arguments
are symmetric, so we will focus on µ̂2. Since η is small, we may assume that µ̂2 > 3C/2, as
otherwise µ̂′2 cannot leave the box. As in Case 1, it suffices to show that the endpoints of the
discriminator intervals are all less than µ̂2. But in this case, we have that for all x ≥ µ̂′2, the
value of the true distribution at x is at most 2e−(x−C)2/2, and the value of the discriminator
is at e−(x−µ̂′2)2/2 ≥ e−(x−1.5C)2/2. By direct calculation, this is satisfied for any choice of
C satisfying 2e5C2/8 < e3C2/4, which is satisfied for C ≥ 3.
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E SINGLE GAUSSIAN

Although our proof of the two Gaussian case implies the single Gaussian case, it is possible to
prove the single Gaussian case in a somewhat simpler fashion, while still illustrating several of the
high-level components of the overall proof structure. Therefore, we sketch how to do so, in hopes
that it provides additional intuition for the proof for a mixture of two Gaussians.

In order to prove convergence, we can use the following.

1. The fact that the gradient is only discontinuous on a measure 0 set of points.
2. An absolute lower bound on the magnitude of the gradient from below over all points that

are not close to the optimal solution that we might encounter over the course of the algorithm
3. An upper bound on how much the gradient can change if we move a certain distance.

Then, as long as we take steps that are small enough to guarantee that the gradient never changes by
more than half the absolute lower bound, we will get by Lemma 4.2 that we always make progress
towards the optimum solution in function value unless we are already close to the optimal solution.

The proof of these facts is substantially simplified in the single Gaussian case. Suppose we have a true
univariate Gaussian distribution with unit variance and mean µ∗, along with a generator distribution
with unit variance and mean µ̂. Then the optimal discriminator for this pair of distributions starts
at the midpoint between their means and goes in the direction of the true distribution off to∞ or
−∞. Therefore, unless the generator mean is within one step length of the true mean, it cannot
move away from the true mean. One can also argue that the gradient of µ̂ with respect to the optimal
discriminator (ie., the gradient of total variation distance) is only discontinuous when µ̂ = µ∗, and
has magnitude roughly e(µ̂−(µ̂+µ∗)/2)2/2 for µ̂ 6= µ∗. This implies the first two items. For the last
item, note that the midpoint ez

2/2, which implies the gradient is Lipschitz as long as we are not at the
optimal solution, which gives bounds on how much the gradient can change if we move a certain
distance.

The preceding discussion implies convergence for an appropriately chosen step size, and all this can
be made fully quantitative if one works out the quantitative versions of the statements in the preceding
argument.

This analysis is simpler the the two Gaussians analysis in several respects. In particular, the proofs of
the second two items are substantially more involved and require many separate steps. For example,
in the two Gaussian case, the gradient can be 0 if mode collapse happens, so we have to directly prove
both that mode collapse does not happen and that the gradient is large if mode collapse doesn’t happen
and we aren’t too close to the optimal solution, which is a substantially more involved condition to
prove. Additionally, the gradient in the two Guassian case does not seem to be Lipschitz away from
the optimum like it is in the single Gaussian case. Instead, we will have to use a weaker condition
which is considerably more difficult to reason about. This is further complicated by the fact that the
optimal discriminators can move in a discontinuous fashion when we vary the generator means.
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