
Under review as a conference paper at ICLR 2018

BYTE-LEVEL RECURSIVE CONVOLUTIONAL AUTO-
ENCODER FOR TEXT

Anonymous authors
Paper under double-blind review

ABSTRACT

This article proposes to auto-encode text at byte-level using convolutional net-
works with a recursive architecture. The motivation is to explore whether it is
possible to have scalable and homogeneous text generation at byte-level in a non-
sequential fashion through the simple task of auto-encoding. We show that non-
sequential text generation from a fixed-length representation is not only possible,
but also achieved much better auto-encoding results than recurrent networks. The
proposed model is a multi-stage deep convolutional encoder-decoder framework
using residual connections (He et al., 2016), containing up to 160 parameterized
layers. Each encoder or decoder contains a shared group of modules that consists
of either pooling or upsampling layers, making the network recursive in terms of
abstraction levels in representation. Results for 6 large-scale paragraph datasets
are reported, in 3 languages including Arabic, Chinese and English. Analyses are
conducted to study several properties of the proposed model.

1 INTRODUCTION

n x Convolution

Pooling

n x Convolution

Text

n x Convolution

Pooling

n x Convolution

Pooling

n x Linear

...

(n-1) x Convolution

Expand Convolution

n x Convolution

(n-1) x Convolution

Expand Convolution

(n-1) x Convolution

Expand Convolution

n x Linear

...

Feature

Encoder Decoder

Prefix

Recursion
(shared)

Postfix

Recursion
(shared)

Prefix

Postfix

Figure 1: The autoencoder model

Recently, generating text using
convolutional networks (ConvNets)
starts to become an alternative to
recurrent networks for sequence-to-
sequence learning (Gehring et al.,
2017). The dominant assumption for
both these approaches is that texts
are generated one word at a time.
Such sequential generation process
bears the risk of output or gradient
vanishing or exploding problem
(Bengio et al., 1994), which limits
the length of its generated results.
Such limitation in scalability prompts
us to explore whether non-sequential
text generation is possible.

Meanwhile, text processing from
lower levels than words – such as
characters (Zhang et al., 2015) (Kim et al., 2016) and bytes (Gillick et al., 2016) (Zhang & Le-
Cun, 2017) – is also being explored due to its promise in handling distinct languages in the same
fashion. In particular, the work by Zhang & LeCun (2017) shows that simple one-hot encoding on
bytes could give the best results for text classification in a variety of languages. The reason is that it
achieved the best balance between computational performance and classification accuracy. Inspired
by these results, this article explores auto-encoding for text using byte-level convolutional networks
that has a recursive structure, as a first step towards low-level and non-sequential text generation.

For the task of text auto-encoding, we should avoid the use of common attention mechanisms like
those used in machine translation Bahdanau et al. (2015), because they always provide a direct in-
formation path that enables the auto-encoder to directly copy from the input. This diminishes the

1



Under review as a conference paper at ICLR 2018

u

y1 y2 ... yn

h1 h2 ... hn

(a) Sequential

u

y1 y2 ... yn

(b) Non-sequential

Figure 2: Sequential and non-sequential decoders illustrated in graphical models. u is a vector
containing encoded representation. yi’s are output entities. hi’s are hidden representations. Note
that they both imply conditional independence between outputs conditioned by the representation u.

purpose of studying the representational ability of different models. Therefore, all models consid-
ered in this article would encode to and decode from a fixed-length vector representation.

The paper by Zhang et al. (2017) was an anterior result on using word-level convolutional networks
for text auto-encoding. This article differs from it in several key ways of using convolutional net-
works. First of all, our models work from the level of bytes instead of words, which arguably makes
the problem more challenging. Secondly, our network is dynamic with a recursive structure that
scales with the length of input text, which by design could avoid trivial solutions for auto-encoding
such as the identity function. Thirdly, by using the latest design heuristics such as residual connec-
tions (He et al., 2016), our network can scale up to several hundred of layers deep, compared to a
static network that contains a few layers.

In this article, several properties of the auto-encoding model are studied. The following is a list.

1. Applying the model to 3 languages – Arabic, Chinese and English – shows that the model
can handle all different languages in the same fashion with equally good accuracy.

2. Comparisons with long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997)
show a significant advantage of using convolutional networks for text auto-encoding.

3. We determined that a recursive convolutional decoder like ours can accurately produce the
end-of-string byte, despite that the decoding process is non-sequential.

4. By studying the auto-encoding error when the samples contain randomized noisy bytes, we
show that the model does not degenerate to the identity function. However, it can neither
denoise the input very well.

5. The recursive structure requires a pooling layer. We compared between average pooling,
L2 pooling and max-pooling, and determined that max-pooling is the best choice.

6. The advantage of recursion is established by comparison against a static model that does
not have shared module groups. This shows that linguistic heuristics such as recursion is
useful for designing models for language processing.

7. We also explored models of different sizes by varying the maximum network depth from
40 to 320. The results show that deeper models give better results.

2 BYTE-LEVEL RECURSIVE CONVOLUTIONAL AUTO-ENCODER

In this section, we introduce the design of the convolutional auto-encoder model with a recursive
structure. The model consists of 6 groups of modules, with 3 for the encoder and 3 for the decoder.
The model first encodes a variable-length input into a fixed-length vector of size 1024, then decodes
back to the same input length. The decoder architecture is a reverse mirror of the encoder. All
convolutional layers in this article have zero-padding added to ensure that each convolutional layer
outputs the same length as the input. They also all have feature size 256 and kernel size 3. All
parameterized layers in our model use ReLU (Nair & Hinton, 2010) as the non-linearity.

In the encoder, the first group of modules consist of n temporal (1-D) convolutional layers. It ac-
cepts an one-hot encoded sequence of bytes as input, where each byte is encoded as a 256-dimension
vector. This first group of modules transforms the input into an internal representation. We call this
group of modules the prefix group. The second group of modules consists of n temporal convolu-
tional layers plus one max-pooling layer of size 2. This group reduces the length of input by a factor

2



Under review as a conference paper at ICLR 2018

of 2, and it can be applied again and again to recursively reduce the representation length. There-
fore, we name this second group the recursion group. The recursion group is applied until the size
of representation becomes 1024, which is actually a feature of dimension 256 and length 4. Then,
following the final recursion group is a postfix group of n linear layers for feature transformation.

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 3: The reshaping process. This demon-
strates the reshaping process for transforming a
representation of feature size 4 and length 8 to
feature size 2 and length 16. Differen colors rep-
resent different source features, and the numbers
are indices in length dimension.

The decoder is a symmetric reverse mirror of
the encoder. The decoder prefix group consists
of n linear layers, followed by a decoder recur-
sion group that expand the length of representa-
tion by a factor of 2. This expansion is done at
the first convolutional layer of this group, where
it outputs 512 features that will be reshaped into
256 features. The reshaping process we use en-
sures that feature values correspond to nearby
field of view in the input, which is similar to
the idea of sub-pixel convolution (or pixel shuf-
fling) (Shi et al., 2016). Figure 3 depics this re-
shaping process for transforming representation
of feature size 4 and length 8 to feature size 2
and length 16. After this recursion group is ap-
plied several times (same as that of the encoder
recursion group), a decoder postfix group of n
convolutional layers is applied to decode the re-
cursive features into a byte sequence.

The final output of the decoder is interpreted as
probabilities of bytes after passing through a softmax function. Therefore, the loss we use is simply
negative-log likelihood on the individual softmax outputs. It is worth noting that this does not
imply that the output bytes are unconditionally independent of each other. For our non-sequential
text decoder, the independence between output bytes is conditioned on the representation from the
encoder, meaning that their mutual dependence is modeled by the decoder itself. Figure 2 illustrates
the difference between sequential and non-sequential text generation using graphical models.

Depending on the length of input and size of the encoded representation, our model can be extremely
deep. For example, with n = 8 and encoding dimension 1024 (reduced to a length 4 with 256
features), for a sample length of 1024 bytes, the entire model has 160 parameterized layers. Training
such a deep dynamic model can be very challenging using stochastic gradient descent (SGD) due
to the gradient vanishing problem (Bengio et al., 1994). Therefore, we use the recently proposed
idea of residual connections (He et al., 2016) to make optimization easier. For every pair of adjacent
parameterized layers, the input feature representation is passed through to the output by addition.
We were unable to train a model designed in this fashion without such residual connections.

For all of our models, we use an encoded representation of dimension 1024 (recursed to length of
4 with 256 features). For an input sample of arbitrary length l, we first append the end-of-sequence
null byte to it, and then pad it to length 2dlog2(l+1)e with all zero vectors. This makes the input length
a base-2 exponential of some integer, since the recursion groups in both encoder and decoder either
reduce or expand the length of representation by a factor of 2. If l < 4, it is padded to size of 4 and
does not pass through the recursion groups. It is easy to see that the depth of this dynamic network
for a sample of length l is on the order of log2 l, potentially making the hidden representations more
efficient and easier to learn than recurrent networks which has a linear order in depth.

3 RESULT FOR MULTI-LINGUAL AUTO-ENCODING

In this section, we show the results of our byte-level recursive convolutional auto-encoder.

3.1 DATASET

All of our datasets are at the level of paragraphs. Minimal pre-processing is applied to them since
our model can be applied to all languages in the same fashion. We also constructed a dataset with
samples mixed in all three languages to test the model’s ability to handle multi-lingual data.

3



Under review as a conference paper at ICLR 2018

Table 1: Datasets

NAME ARTICLE PARAGRAPH LANGUAGETRAIN TEST TRAIN TEST

enwiki 7,634,438 850,457 41,256,261 4,583,893 English
hudong 1,618,817 180,278 53,675,117 5,999,920 Chinese
argiga 3,011,403 334,764 27,989,646 3,116,719 Arabic
engiga 8,887,583 988,513 116,456,520 12,969,170 English
zhgiga 5,097,198 567,179 38,094,390 4,237,643 Chinese
allgiga 16,996,184 1,89,0456 182,540,556 20,323,532 Multi-lingual

enwiki. This dataset contains paragraphs from the English Wikipedia 1, constructed from the dump
on June 1st, 2016. We were able to obtain 8,484,895 articles, and then split our 7,634,438 for
training and 850,457 for testing. The number of paragraphs for training and testing are therefore
41,256,261 and 4,583,893 respectively.

Table 2: Training and testing byte-level errors

DATASET LANGUAGE TRAIN TEST

enwiki English 3.34% 3.34%
hudong Chinese 3.21% 3.16%
argiga Arabic 3.08% 3.09%
engiga English 2.09% 2.08%
zhgiga Chinese 5.11% 5.24%
allgiga Multi-lingual 2.48% 2.50%

hudong. This dataset contains pragraphs
from the Chinese encyclopedia website
baike.com 2. We crawled 1,799,095 ar-
ticle entries from it and used 1,618,817 for
training and 180,278 for testing. The num-
ber of paragraphs for training and testing
are 53,675,117 and 5,999,920.

argiga. This dataset contains paragraphs
from the Arabic Gigaword Fifth Edition
release (Parker et al., 2011a), which is a
collection of Arabic newswire articles. In
total there are 3,346,167 articles, and we
use 3,011,403 for training and 334,764 for
testing. As a result, we have 27,989,646
paragraphs for training and 3,116,719 for testing.

engiga. This dataset contains paragraphs from the English Gigaword Fifth Edition release (Parker
et al., 2011c), which is a collection of English newswire articles. In total there are 9,876,096 arti-
cles, and we use 8,887,583 for training and 988,513 for testing. As a result, we have 116,456,520
paragraphs for training and 12,969,170 for testing.

zhgiga. This dataset contains paragraphs from the Chinese Gigaword Fifth Edition release (Parker
et al., 2011b), which is a collection of Chinese newswire articles. In total there are 5,664,377
articles, and we use 5,097,198 for training and 567,179 for testing. As a result, we have 38,094,390
paragraphs for training and 4,237,643 for testing.

allgiga. Since the three Gigaword datasets are very similar to each other, we combined them to form
a multi-lingual dataset of newswire article paragraphs. In this dataset, there are 18,886,640 articles
with 16,996,184 for training and 1,890,456 for testing. The number of paragraphs for training and
testing are 182,540,556 and 20,323,532 respectively.

Table 1 is a summary of these datasets. For such large datasets, testing time could be unacceptably
long. Therefore, we report all the results based on 1,000,000 samples randomly sampled from either
training or testing subsets depending on the scenario. Very little overfitting was observed even for
our largest model.

3.2 RESULT

1https://en.wikipedia.org
2http://www.baike.com/

4

https://en.wikipedia.org
http://www.baike.com/


Under review as a conference paper at ICLR 2018

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Train error Test error Reference

(a) Groundtruth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Train error Test error Reference

(b) Mutated

Figure 5: Byte-level errors with respect to randomly mutated samples

Table 3: Byte-level errors for long short-term memory
(LSTM) recurrent network

DATASET LANGUAGE TRAIN TEST

enwiki English 67.71% 67.80%
fg hudong Chinese 64.47% 64.56%
argiga Arabic 61.23% 61.29%
engiga English 70.47% 70.45%
zhgiga Chinese 75.91% 75.90%
allgiga Multi-lingual 72.39% 72.44%

Regardless of dataset, all of our text auto-
encoders are trained with the same hyper-
parameters using stochastic gradient de-
scent (SGD) with momentum (Polyak,
1964) (Sutskever et al., 2013). The model
we used has n = 8 – that is, there are 8 pa-
rameterized layers in each of prefix, recur-
sion and postfix module groups, for both
the encoder and decoder. Each training
epoch contains 1,000,000 steps, and each
step is trained on a randomly selected sam-
ple with length up to 1024 bytes. There-
fore, the maximum model depth is 160.
We only back-propagate through valid bytes in the output. Note that each sample contains a end-of-
sequence byte (“null” byte) by design.

We set the initial learning rate to 0.001, and half it every 10 epoches. A momentum of 0.9 is applied
to speed up training. A small weight decay of 0.00001 is used to stabilize training. Depending on
the length of each sample, the encoder or decoder recursion groups are applied for a certain number
of times. We find that dividing the gradients of these recursion groups by the number of shared
clones can speed up training. The trainng process stops at the 100th epoch.

-2
0

-1
8

-1
6

-1
3

-1
1 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15 17 19

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

train test

Figure 4: The histogram of length difference

Note that because engiga and allgiga
datasets have more than 100,000,000
training samples, when training stops the
model has not seen the entirety of train-
ing data. However, further training does
not achieve any observable improvement.
Table 2 details the byte-level errors for
our model on all of the aforementioned
datasets. These results indicate that our
models can achieve very good error rates
for auto-encoding in different languages.
The result for allgiga dataset also indicates
that the model has no trouble in learning
from multi-lingual datasets that contains
samples of very different languages.

4 DISCUSSION

This section offers comparisons with recurrent networks, and studies on a set of different properties
of our proposed auto-encoding model. Most of these results are performed using the enwiki dataset.

5



Under review as a conference paper at ICLR 2018

4.1 COMPARISON WITH RECURRENT NETWORKS

We constructed a simple baseline recurrent network using the “vanilla” long short-term memory
units (Hochreiter & Schmidhuber, 1997). In this model, both input and output bytes are embedded
into vectors of dimension 1024 so that we can use a hidden representation of dimension 1024. The
encoder reads the text in reverse order, which was observed by Sutskever et al. (2014) reversing the
input sequence can improve quality of outputs. The 1024-dimension hidden output of the last cell is
used as the input for the decoder.

The decoder also and input and output bytes embedded into vectors of dimension 1024 and use a
hidden representation of dimension 1024. During decoding, the most recently generated byte is
fed to the next time step. This is called “teacher forcing” which is observed to improve the auto-
encoding result in our case. The decoding process uses a beam search algorithm of size 2. During
learning, we only back-propagate through the most likely sequence after beam search.

Table 3 details the result for LSTM. The byte-level errors are so large that the results of our models in
table 2 are at least one magnitude of doing better. The fundamental limitation of recurrent networks
is that regardless of the level of entity (word, character or byte), they can remember around up to
50 of them accurately, and then failed to accurate predict them afterwards. By construction our
recursive non-sequential text generation process could hopefully be an alternative solution for this,
as already evident in the results here.

4.2 END OF SEQUENCE

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

train error test error

Figure 6: Byte-level error by length

One thing that makes a difference be-
tween sequential and non-sequential text
generation is how to decide when to end
the generated string of bytes. For se-
quential generative process such as re-
current decoders, we could stop when
some end-of-sequence symbol is gener-
ated. For non-sequential generative pro-
cess, we could regard the first encountered
end-of-sequence symbol as the mark for
end, despite that it will inevitably generate
some extra symbols after it. Then, a natu-
ral question to ask it, is this simple way of
determining end-of-sequence effective?

To answer this question, we computed the
difference of end-of-sequence symbols be-
tween generated text and its groundtruth for 1,000,000 samples, for both the training and testing
subsets of the enwiki dataset. What we discovered is that the distribution of length difference is
highly concentrated at 0, at 99.63% for both training and testing. Figure 4 shows the full histogram,
in which length differences other than 0 is barely visible. This suggests that our non-sequential text
generation process can model the end-of-sequence position pretty accurately. One reason for this is
that for every samples we have an end-of-sequence symbol – the “null” byte – such that the network
has learned to model it pretty early on during the training process.

4.3 RANDOM PERMUTATION OF SAMPLES

One potential problem specific to the task if auto-encoding is the risk of learning the degenerate
solution – the identity function. One way to test this is to mutate the input bytes randomly and
see whether the error rates match with the mutation probability. We experimented with mutation
probability from 0 to 1 with an interval of 0.1, and for each case we tested the byte-level errors for
100,000 samples in both training and testing subsets of the enwiki dataset.

Note that we can compute the byte-level errors in 2 ways. The first is to compute the errors with
respect to the groundtruth samples. If the solution is degenerated to the identity function, then the
byte-level errors should correlate with the probability of mutation. The second is to compute the
errors with respect to the mutated samples. If the solution is degenerated to the identity function,

6



Under review as a conference paper at ICLR 2018

1-64 65-128 129-192 193-256 257-320 321-384 385-448 449-512 513-576 577-640 641-704 705-768 767-832 833-896 897-960 961-1024 1025-
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

enwiki hudong argiga engiga zhgiga allgiga

Figure 7: Histogram of sample frequencies in different lengths

then the byte-level errors should be near 0 regardless of the mutation probability. Figure 5 shows
the results in these 2 ways of computing errors, and the result strongly indicates that the model has
not degenerated to learning the identity function.

Table 4: Byte-level errors for dif-
ferent pooling layers

POOL TRAIN TEST

max 3.34% 3.34%
average 7.91% 7.98%
L2 6.85% 6.77%

It is worth noting that the errors with respect to the groundtruth
samples in figure 5 also demonstrate that our model lacks the
ability to denoise mutated samples. This can be seen from
the phenomenon that the errors for each mutation probability
is higher than the reference diagonal value, instead of lower.
This is due to the lack of a denoising criterion in our training
process.

4.4 SAMPLE LENGTH

We also conducted experiments to show how does the byte-
level errors vary with respect to the sample length. Figure 7
shows the histogram of sample lengths for all datasets. It indi-
cates that a majority of paragraph samples can be well modeled
under 1024 bytes. Figure 6 shows the byte-level error of our models with respect to the length of
samples. This figure is produced by testing 1,000,000 samples from each of training and testing
subsets of enwiki dataset. Each bin in the histogram represent a range of 64 with the indicated upper
limit. For example, the error at 512 indicate errors aggregated for samples of length 449 to 512.

Table 5: Byte-level errors for re-
cursive and static models

MODEL TRAIN TEST

recursive 3.34% 3.34%
static 8.01% 8.05%

One interesting phenomenon is that the errors are highly cor-
related with the number of recursion groups applied for both
the encoder and the decoder. In the plot, bins 64, 128, 192-
256, 320-512, 576-1024 represent recursion levels of 4, 5, 6,
7, 8 respectively. The errors for the same recursion level are
almost the same to each other, despite huge length differences
when the recursion levels get deep. The reason for this is also
related to the fact that there there tend to be more shorter texts
than longer ones in the dataset, as evidenced in figure 7.

4.5 POOLING LAYERS

This section details an experiment in studying how do the
training and testing errors vary with the choice of pooling layers in the encoder network. The exper-
iments are conducted on the aforementioned model with n = 8, and replacing the max-pooling layer
in the encoder with average-pooling or L2-pooling layers. Table 4 details the result. The numbers
strongly indicate that max-pooling is the best choice. Max-pooling selects the largest values in its
field of view, helping the network to achieve better optima (Boureau et al., 2010).

4.6 RECURSION

7



Under review as a conference paper at ICLR 2018

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

recursive train error recursive test error static train error static test error

Figure 8: Errors during training for recursive and static models.

Table 6: Byte-level errors depend-
ing on model depth

n DEPTH TRAIN TEST

2 40 9.05% 9.07%
4 80 5.07% 5.11%
8 160 3.34% 3.34%
16 320 2.91% 2.92%

The use of recursion in the proposed model is from a linguistic
intuition that the structure may help the model to learn bet-
ter representations. However, there is to guarantee that such
intuition could be helpful for the model unless comparison is
done with a static model that takes fixed-length inputs and pass
through a network with the same architecture of the recursion
groups without weight sharing.

Figure 8 shows the training and testing errors when training a
static model with the same hyper-parameters. The static model
takes 1024 bytes, and zero vectors are padded if the sample
length is smaller. The recursion group is therefore applied for
8 times in both the encoder and decoder, albeit their weights
are not shared. The result indicates that a recursive model not only learns faster, but can also achieve
better results. Table 5 lists the byte-level errors.

4.7 MODEL DEPTH

This section explores whether varying the model size can make a different on the result. Table 6 lists
the training and testing errors of different model depths with n ∈ {2, 4, 8, 16}. The result indicates
that best error rates are achieved with the largest model, with very little overfitting. This is partly
due to the fact that our datasets are quite large for the models in question.

5 CONCLUSION

In this article, we propose to auto-encode text using a recursive convolutional network. The model
contains 6 parts – 3 for the encoder and 3 for the decoder. The encoder and decoder both contain
a prefix module group and a postfix module group for feature transformation. A recusion module
group is included in between the prefix and postfix for each of the encoder and decoder, which
recursively shrink or expand the length of representation. As a result, our model essentially generate
text in a non-sequential fashion.

Experiments using this model are done on 6 large scale datasets in Arabic, Chinese and English.
Comparison with recurrent networks is offered to show that our model achieved great results in text
auto-encoding. Properties of the proposed model are studied, including its ability to produce the
end-of-sequence symbol, whether the model degenerates to the identity function, and variations of
pooling layers, recursion and depth of models. In the future, we hope to extend our models to non-
sequential generative models without inputs, and use it for more sequence-to-sequence tasks such as
machine translation.

8



Under review as a conference paper at ICLR 2018

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In International Conference on Learning Representations, 2015.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. Trans. Neur. Netw., 5(2):157–166, March 1994. ISSN 1045-9227. doi: 10.1109/72.
279181. URL http://dx.doi.org/10.1109/72.279181.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling in visual
recognition. In Proceedings of the 27th International Conference on Machine Learning (ICML-
10), pp. 111–118, 2010.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
Sequence to Sequence Learning. In Proc. of ICML, 2017.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. Multilingual language process-
ing from bytes. In Proceedings of NAA-HLT, pp. 1296–1306, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Robert Parker, David Graff, Ke Chen, Junbo Kong, and Kazuaki Maeda. Arabic gigaword fifth
edition ldc2011t11, 2011a. Web Download.

Robert Parker, David Graff, Ke Chen, Junbo Kong, and Kazuaki Maeda. Chinese gigaword fifth
edition ldc2011t13, 2011b. Web Download.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword fifth
edition ldc2011t07, 2011c. Web Download.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4(5):1 – 17, 1964. ISSN 0041-5553.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1874–1883, 2016.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Xiang Zhang and Yann LeCun. Which encoding is the best for text classification in chinese, english,
japanese and korean? CoRR, abs/1708.02657, 2017.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Processing Systems 28, pp. 649–657. 2015.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, and Lawrence Carin. Decon-
volutional paragraph representation learning. CoRR, abs/1708.04729, 2017.

9

http://dx.doi.org/10.1109/72.279181

	Introduction
	Byte-level Recursive Convolutional Auto-Encoder
	Result for Multi-lingual Auto-Encoding
	Dataset
	Result

	Discussion
	Comparison with Recurrent Networks
	End of Sequence
	Random Permutation of Samples
	Sample Length
	Pooling Layers
	Recursion
	Model Depth

	Conclusion

