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ABSTRACT

Spectral clustering has shown a superior performance in analyzing the cluster
structure. However, its computational complexity limits its application in ana-
lyzing large-scale data. To address this problem, many low-rank matrix approx-
imating algorithms are proposed, including the Nyström method – an approach
with proven approximate error bounds. There are several algorithms that provide
recipes to construct Nyström approximations with variable accuracies and com-
puting times. This paper proposes a scalable Nyström-based clustering algorithm
with a new sampling procedure, Centroid Minimum Sum of Squared Similarities
(CMS3), and a heuristic on when to use it. Our heuristic depends on the eigen-
spectrum shape of the dataset, and yields competitive low-rank approximations in
test datasets compared to the other state-of-the-art methods.

1 INTRODUCTION

Spectral clustering techniques are widely used, due to their empirical performance advantages com-
pared to other clustering methods Kong et al. (2011). However, a significant obstacle to scaling up
spectral clustering to large datasets is that it requires building an affinity matrix between pairs of
data points which becomes computationally prohibitive for large data-sets (Chen and Cai, 2011). To
address this computational challenge, a common approach is to use the Nyström method as low-rank
matrix approximation (Zhang and You, 2011), (Fowlkes et al., 2004). (Williams and Seeger, 2001).
The method works by sampling a small set of landmark points from a large instances, to formulate an
approximation for the eigen-decomposition of the full dataset using the sampled data. However, the
performance of the approach is highly dependent on proper sub-sampling of the input data to include
some landmark points, points that capture the inherent complexity and variability of the full dataset.
Uniform sampling without replacement is the most used approach for this purpose (Fowlkes et al.,
2004), (Cohen et al., 2014). Using properties of the data distribution a leading sampling algorithm
has recently been suggested. The authors in (Bouneffouf and Birol, 2016), propose the ensemble
minimum sum of the squared similarity sampling algorithm or ensemble-MS3. This algorithm is
based on two works, the first one is the minimum sum of the squared similarity sampling or MS3
proposed in (Bouneffouf and Birol, 2015), that considers both the variance and the similarity of the
dataset to select the landmark points. The second one is the ensemble Nyström methods proposed
in (Kumar et al., 2009), which is a meta algorithm that combines the standard Nyström methods
with the mixture weights. The ensemble-MS3 gives better results than the standard algorithms by
increasing the accuracy compared with the standard Nyström method. However, the lack of speed is
still a problem for the ensemble methods.

In this paper, we propose two algorithms that perform better than the ensemble MS3 and any existing
ensemble Nyström algorithm. The first one, the ”Centroid Minimum Sum of Squared Similarities
algorithm” or CMS3 is an incremental sampling algorithm for Nyström based-spectral clustering.
CMS3 improves the MS3 by adding centroid sampling upon the MS3, increasing the accuracy.
In the first step, the algorithm starts sampling with a fixed number of initial landmark points and
selects new landmark points one by one, such that the sum of the squared similarities between the
previously selected points and the new point is minimized, and as a second step the algorithm selects
only the centroid points from this sub-sample. The second one, the CMS3-tuned is deducted from
the theoretical analyse of MS3 and leads to adapt the sampling according to the spectrum shape of
the dataset.

1



Workshop track - ICLR 2018

2 CENTROID MINIMUM SUM OF SQUARED SIMILARITIES (CMS3)

The idea of the proposed algorithm CMS3 (described in Algorithm 1) is to sample r points using
MS3 where m ≤ r ≤ X with the assumption that this sampling will give an r convex points, and
after that the CMS3 uses k-means (MacQueen et al., 1967) to cluster these r points and select the
centroids of these clusters as a global optimal landmark points. We could say that, the proposed
algorithm is implemented under the following Hypothesis:

Hypothesis 1. Comparing two similarity matrix S̃m and S̃′m corresponding to CMS3 and MS3
approximations, we have the following inequality between their error upper bounds:

sup(||S − S̃m||) ≤ sup(||S − S̃′m||)

Algorithm 1 CMS3 Algorithm
1: Input: X = {x1, x2, ..., xn}: dataset
m: number of landmark data points
r: number of landmark data points selected with MS3
γ: size of the random subsampled set from the remaining data, in percentage

2: Output: S̃ ∈ Rm×m: similarity matrix between landmark points
3: Initialize S̃ = I0
4: Xr := MS3(X, r, γ)
5: r̃ := kmeans(Xr,m)
6: For (i=0 to i≤ m) do
7: x̃i := 1

|r̃i|
∑
xj∈r̃i xj //get centroid of the cluster r̃i ∈ r̃

8: S̃ := S̃∪x̃i

9: End For

2.0.1 CMS3-TUNED:

Lemma 1 prescribes a method to select between MS3 and CMS3 methods.
Lemma 1. Comparing the upper bound of MS3 and CMS3, as defined in Hypothesis 1. Assuming that
mλm+1 + rλn << λ2, a necessary condition for sup(||S − S̃m||) ≤ sup(||S − S̃′m||) is λ2 ≤ nλn

Following the Lemma 1 (the proof is in the appendix), the idea in the proposed algorithm (Algorithm
2), is to use λ2 ≤ |sm| × λ|sm| as a switch condition for using CMS3 or MS3, where |sm| is the
sub-sampling size. These parameters could be seen as a proxy of the eigenspectrum shape of the
data.

Algorithm 2 CMS3-tuned Algorithm
1: Input: X = {x1, x2, ..., xn}: dataset

m: number of landmark data points
r: number of landmark data points selected with MS3
γ: size of the random subsampled set from the remaining data, in percentage

2: Output: S̃ ∈ Rm×m: similarity matrix between landmark points
3: sm = Random(X, γ)

4: Compute |sm| eigenvalues λ1, ..., λ|sm| of the generalized eigenproblem Pu = λDu; and let Z ∈ Rn×|sm| be the matrix
containing the vectors u1, ..., u|sm|.

5: if |sm| × λ|sm| ≥ λ2

6: then S̃ := CMS3(X,m, r, γ)

7: else S̃ := MS3(X,m, γ)

3 EVALUATION

We tested CMS3 and CMS3-tuned, and compared their performance to the results of four leading
sampling methods described which are: Random sampling (RS), K-means sampling (KS) (Zhang
et al., 2008), Minimum similarity sampling (SS) (Zeng et al., 2014), and Minimum sum of squared
similarity sampling (MS3) (Bouneffouf and Birol, 2015). Notice that, we compare our algorithm
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to ensemble Nyström rather than the standard Nyström, since it was shown earlier both in (Ku-
mar et al., 2009) and in (Bouneffouf and Birol, 2016) that ensemble performs better than standard
Nyström. We denote these algorithms as ensemble-RS, ensemble-KS, ensemble-SS, and ensemble-
MS3, respectively.

We required each algorithm to sample 2%, 4%, 6%, 8% and 10% of the data as landmark points,
which are used by Nyström-based spectral clustering methods to cluster the datasets. We have also
tested the ensemble Nyström methods with different values of p, going from 2 to 10. Because
sampling algorithms are sensitive to the datasets used, and clustering algorithms contain a degree
of randomness, we used various benchmark datasets, and repeated our evaluations 1000 times. We
measured the clustering quality of each algorithm using their average accuracy across these tests,
also recording their standard deviations.

We compared the performance of the seven sampling methods using data from University of Califor-
nia, Irvine (UCI) Machine Learning Repository1. We chose nine datasets with different Instances,
attributes and classes size: Abalone, Breast, Wine, Wdbc, Yeast, Shuttle, Letter, PenDigits and a7a.

Table 1 reports the average accuracy of each algorithm, along with their standard deviations across
1000 tests on the UCI datasets. As expected, the accuracies depend on the dataset. For example,
the accuracy of all algorithms in Haberman problem and Wdbc datasets stay in the range of 50%,
while going as high as over 89% for the Abalone dataset. From this observation, we can say that
the Haberman problem and Wdbc datasets present difficulties to Nyström method-based spectral
clustering.

We note that, on these datasets, all tested algorithms have better performance than the baseline
of random sampling. The results show that CMS3-tuned provided better clustering than the other
algorithms on seven out of nine datasets, coming only narrowly second to CMS3 on the remaining
two, though still within a standard deviation. Ranking the algorithms with respect to their mean
accuracies, we note that the top two performing algorithms were CMS3-tuned and CMS3, in that
order. The results on the UCI dataset confirm our heuristics that choosing between CMS3 and MS3
need to be done according to the spectrum shape of the dataset.

Table 1: Accuracy on UCI Datasets
Ensemble-SS Ensemble-KS Ensemble-RS Ensemble-MS3 CMS3 CMS3-tuned

UCI Datasets
Abalone 84.82± 0.27 85.74± 0.31 85.69± 0.25 86.44± 0.40 88.21± 0.42 89.19± 0.21
Breast 67.85± 0.33 67.85± 0.32 67.83± 0.34 67.89± 0.32 68.94± 1.17 70.55± 0.34
Wine 53.16± 1.73 55.17± 3.80 54.78± 3.50 67.99± 3.67 70.9± 1.87 71.39± 2.01
Wdbc 51.32± 0.13 51.31± 0.13 51.30± 0.12 51.32± 0.14 52.98± 0.07 52.31± 0.13
Yeast 67.58± 0.13 66.70± 0.13 66.92± 0.12 67.87± 0.12 69.06± 0.07 69.55± 0.07
Shuttle 39.82± 2.51 37.90± 2.89 37.87± 2.23 41.45± 3.85 44.02± 1.84 44.31± 1.94
Letter 41.77± 1.83 40.34± 9.69 38.66± 9.77 53.32± 1.02 56.44± 3.70 57.64± 3.81
PenDigits 56.55± 0.16 56.46± 0.21 56.46± 0.22 56.94± 0.19 58.08± 0.18 57.88± 0.39
a7a 16.45± 1.17 21.18± 4.92 22.06± 4.08 27.04± 1.45 25.89± 3.14 26.18± 3.10

The results of the Ensemble-SS algorithm show overall better performance compared to Ensemble-
KS and Ensemble-RS sampling. We also notice that the ensemble-MS3 gave higher performance
than the sampling algorithms that are not based on MS3.
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A KEY NOTION

This section focuses on introducing the key notions used in this paper.

A.0.1 SPECTRAL CLUSTERING:

Spectral clustering algorithms employ the first k eigenvectors of a Laplacian matrix to guide clus-
tering. Loosely following the notation in Von Luxburg (2007), this can be outlined as follows. The
algorithm takes as an input a number k of clusters, an affinity matrix S ∈ Rn×n constructed us-
ing the cosine similarity between each pairs of data points, and as an output clusters c1, ..., ck. It
starts by computing the Laplacian matrix P = D − S ; where D is an n × n diagonal matrix de-
fined by Dii =

∑n
j=1 Sij , and after that it computes k eigenvectors u1, ..., uk corresponding to the

first k eigenvalues of the generalized eigenproblem Pu = λDu; and let Z ∈ Rn×k be the matrix
containing the vectors u1, ..., uk. Finally, it clusters y1, ..., yn by k-means algorithm into clusters
c1, ..., ck; with yi corresponding to the i-th row of Z. By analyzing the spectrum of the Laplacian
matrix constructed over all data entries, the original data can be compressed into a smaller number
of representative points using the Nyström approximation.
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A.0.2 NYSTRÖM SAMPLING:

If we consider m landmark data points L = l1, l2, ..., lm from a given dataset X = x1, x2, ..., xn
with xi ∈ Rn and m� n, then for any given point x in X , Nyström method formulates

1

m

m∑
i=1

sim(x, li)φ̂(li) = λ̂φ̂(x) (1)

where φ̂(x) is an approximation to the exact eigenfunction, λ̂ is the corresponding approx-
imate eigenvalue and sim(x, y) denotes the similarity between x and y. We can write the
Eq.1 in matrix form, S̃Φ̂ = mΦ̂Λ̂ where Φ̂ = [φ̂1φ̂2...φ̂m] are the eigenvectors of S̃ and
Λ̂ = diag{λ̂1, λ̂2, . . . , λ̂m} is a diagonal matrix of the corresponding approximate eigenvalues.
Then for an unsampled point x, the j-th eigenfunction at x can be approximated by φ̂j(x) '
1

mλ̂j

m∑
i=1

sim(x, li)φ̂j(li). With this equation, the eigenvector for any given point x can be approx-

imated through the eigenvectors of the landmark points L Belabbas and Wolfe (2009). The same
idea can be applied to approximate k eigenvectors of S by decomposing and then extending a k× k
principal sub-matrix of S. First, let S be partitioned as S =

[
AB>BC

]
with A ∈ Rk×k. Now, de-

fine spectral decompositions S = UΛUT and A = UAΛAU
T
A ; the Nyström extension then provides

an approximation for k eigenvectors in Ũ =
[
UABUAΛ−1A

]
where the approximations of Ũ ≈ U

and Λ̃ ≈ Λ may then be composed, yielding an Nyström approximation S̃ ≈ S, with S̃ = ŨΛAŨ
>.

To measure the distance of these approximations, conventionally Frobenius norm is used.

A.0.3 MINIMUM SUM OF SQUARED SIMILARITIES

The MS3 algorithm Bouneffouf and Birol (2015) initially randomly chooses two points from the
dataset X . It then computes the sum of similarities between the sampled points and a subset, T ,
selected randomly from the remaining data points. The point with the smallest sum of squared
similarities is then picked as the next landmark data point. The procedure is repeated until a total of
m landmark points are picked.

Algorithm 3 The Minimum Sum of Squared Similarities Algorithm
1: Input: X = {x1, x2, ..., xn}: dataset

m: number of landmark data points
γ: size of the random sub-sampled set from the remaining data, in percentage

2: Output: S̃ ∈ Rm×m: similarity matrix between landmark points
3: Initialize S̃ = I0
4: For (i=0 to i<2) do
5: x̃i = Random(X)

6: S̃ := S̃∪xi
, X̃ := X̃ ∪ {x̃i}

7: End For
8: While i < m do
9: T = Random(X\{X̃}, γ)

10: Find x̃i = argminx∈T
∑

j<i−1 sim
2(x, x̃j)

11: S̃ := S̃∪x̃i
, X̃ := X̃ ∪ {x̃i}

12: End While

A.0.4 THEORETICAL STUDY:

We propose here to study under which condition the proposed Hypothesis 1 is valid. In order to
do that, we propose at first to compute the the upper bound of the proposed sampling algorithm
”CMS3” in Theorem 1 and then compare it to the ”MS3” upper bound in Corollary 1.

Theorem 1. For a dataset X = {x1, x2, ..., xn}, define the following positive definite similarity matrices, S:
the n×n similarity matrix for the overall dataset with a maximum diagonal entry Smax, S̃l: a similarity matrix
for Xl with l landmark point selected randomly from X , S̃r: a similarity matrix for Xr with r landmark point
selected from Xl using MS3, with r ≤ l ≤ n, S̃m: a similarity matrix for Xm with m landmark point selected
from Xr using K-means sampling, with m ≤ r ≤ l ≤ n; and Sk: the best possible rank-k approximation of
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S. Then with some probability 1− p or more, we can write

||S − S̃m|| ≤ 4T
√
mCkernX Te+mCkernX Te||W−1||+ (r + 1)

n∑
i=r+1

λi + ||S − Sk|| (2)

+ nSmax
4

√
64k

l

(
1 +

√
wd∗S
Smax

) 1
2

where ||.|| is the Frobenius norm, d∗S = maxij (Sii + Sjj2Sij) and w = − n−1
2n−1

2
β(l,n)

log p with β(l, n) =
1− 1

2max{l,n−l}

Proof. Using the above notation, let us introduce some facts.

Fact 1. Bouneffouf and Birol (2015) Let λ1 ≥ ... ≥ λn be the eigenvalues of the similarity matrix S, then with
some probability 1− p or more, we can write

||S − S̃r|| ≤ (r + 1)

n∑
i=r+1

λi + ||S − Sr||+ nSmax
4

√
64k

l

(
1 +

√
wd∗S
Smax

) 1
2

Property 1. Zhang et al. (2008) (kern(a, b)− kern(c, d))2 ≤ CkernX (||a− c||2 + ||d− b||2), ∀a, b, c, d ∈ R
where CkernX is a constant depending on, the kernel kern(., .) and the sample set X .

Fact 2. Zhang et al. (2008) Let the whole sample setX be partitioned into g disjoint clusters Skern, c(i) being
the function that maps each sample xi ∈ X to the closest landmark point zc(i) ∈ Z. Then for some kernel
kern satisfying property (1), the partial approximation error ||S − S̃m|| is bounded by

||S − S̃m|| ≤ 4T
√
mCkernX Te+mCkernX Te||W−1|| (3)

where T = maxkern|Skern|, and e is the quantization error induced by coding each sample in xi ∈ X by the
closest landmark point in Z, i.e., e =

∑
xi∈X ||xi − zc(i)||

2, and ||W−1|| ∈ Rm×m where wij = k(zi, zj).

By adding both sides of Eq.3 and Eq.3, noting that
∑n
i=m+1(.) ≥

∑n
i=r+1(.) for positive argument

and using the triangle inequality

||S − S̃m|| ≤ ||S − S̃r||+ ||S̃r − S̃m|| (4)

we prove Theorem 1.

Corollary 1. The proposed Hypothesis 1 is valid, if and only if

m ≤
λr − r

∑n
i=r+1 λi − 4T

√
(r − 1)CkernX Te

CkernX Te||W−1|| −
∑n
i=r λi

(5)

Proof. Assuming the comparison of the upper bounds appears with the inequality,

4T
√
mCkernX Te+mCkernX Te||W−1||+ (r + 1)

n∑
i=r+1

λi + ||S − Sk||+ nSmax
4

√
64k

l

(
1 +

√
wd∗S
Smax

) 1
2

≤ (m+ 1)
n∑

i=m+1

λi + ||S − Sk||+ nSmax
4

√
64k

l

(
1 +

√
wd∗S
Smax

) 1
2

(6)

after simplification we get

4T
√
mCkernX Te+mCkernX Te||W−1|| ≤ (m+ 1)

∑n
i=m+1 λi − (r + 1)

∑n
i=r+1 λi (7)

Knowing that m ≤ r we can write
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4T
√
mCkernX Te+mCkernX Te||W−1|| ≤ (m− r)

∑n
i=r+1 λi + (m+ 1)

∑r
i=m+1 λi

then replacing m by r − 1 gives,

m ≤
λr − r

∑n
i=r+1 λi − 4T

√
(r − 1)CkernX Te

CkernX Te||W−1|| −
∑n
i=r λi

(8)

We note that going from inequality (8) back to (6) is straightforward, and can be achieved by tracing
the above steps in reverse.

A.0.5 CMS3-TUNED:

We propose here to use the above theoretical results to propose an improved version of the CMS3.
Corollary 1 prescribes a method to select between MS3 and CMS3 methods. However, due to its
complexity, the idea here is to relax the ”if and only if” of the Corollary 1 as follows:
Corollary 2. Comparing the upper bound of MS3 and CMS3, as defined in Hypothesis 1. Assuming that
mλm+1 + rλn << λ2, a necessary condition for sup(||S − S̃m||) ≤ sup(||S − S̃′m||) is λ2 ≤ nλn

Proof. From Eq. (8) a necessary condition for having the Corollary 1 could be the following:

0 ≤ (m− r)
∑n
i=r+1 λi + (m+ 1)

∑r
i=m+1 λi

then the following still hold,

0 ≤ (m− r)(n− r)λn + (m+ 1)(r −m)λm+1

which implies

0 ≤ (m+ 1)λm+1 − (n− r)λn
with λm+1 ≤ λ2 and assuming that mλm+1 + rλn << λ2, gives us λ2 ≤ nλn

Following the Corollary 2, the idea in the proposed algorithm (Algorithm 2), is to use λ2 ≤ |sm| ×
λ|sm| as a switch condition for using CMS3 or MS3, where |sm| is the sub-sampling size. These
parameters could be seen as a proxy of the eigenspectrum shape of the data.
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