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ABSTRACT

The objective of transfer reinforcement learning is to generalize from a set of pre-
vious tasks to unseen new tasks. In this work, we focus on the transfer scenario
where the dynamics among tasks are the same, but their goals differ. Although
general value function (Sutton et al., 2011) has been shown to be useful for knowl-
edge transfer, learning a universal value function can be challenging in practice.
To attack this, we propose (1) to use universal successor representations (USR)
to represent the transferable knowledge and (2) a USR approximator (USRA)
that can be trained by interacting with the environment. Our experiments show
that USR can be effectively applied to new tasks, and the agent initialized by the
trained USRA can achieve the goal considerably faster than random initialization.

1 INTRODUCTION

Deep reinforcement learning (RL) has shown its capability to learn human-level knowledge in many
domains, such as playing Atari games (Mnih et al., 2015) and control in robotics (Levine et al.,
2016). However, these methods often spend a huge amount of time and resource only to train a deep
model for very specific task. How to utilize knowledge learned from one task to other related tasks
remains a challenge problem. Transfer reinforcement learning (Taylor & Stone, 2009), which reuses
previous knowledge to facilitate new tasks, is appealing in solving this problem. Knowledge transfer
would not be possible if the tasks are completely unrelated. Therefore, in this work, we focus on
one particular transfer scenario, where dynamics among tasks remain the same and their goals are
different, as will be elaborated in Sec. 2.

General value functions (Sutton et al., 2011) can be used as knowledge for transfer. However, learn-
ing a good universal value function approximator V (s, g; θ) (Schaul et al., 2015), which generalizes
over the state s and the goal g with parameters θ, is challenging. Unlike Schaul et al. (2015), who
factorized the general state values into state and goal features to facilitate learning, we propose to
learn a universal approximator for successor representations (SR) (Dayan, 1993), which is more
suitable for transfer as we will see in Sec. 2.

Kulkarni et al. (2016) proposed a deep learning framework to approximate SR and incorporate it
with Q-learning to learn SR by interacting with the environment on a single task. In comparison,
our approach learns the universal SR (USR) that generalizes not only over the states but also over
the goals, so as to accomplish multi-task learning and transfer among tasks. Additionally, we incor-
porate the framework with actor-critic (Mnih et al., 2016) to learn the SR in an on-policy fashion.

2 UNIVERSAL SUCCESSOR REPRESENTATIONS

Consider a Markov decision process (MDP) with state space S, action space A and transition prob-
ability p(s′|s, a) of reaching s′ ∈ S when action a ∈ A is taken in state s ∈ S . For any goal
g ∈ G (very often G ⊆ S), define pseudo-reward function rg(s, a, s′) and pseudo-discount function
γg(s) ∈ [0, 1]. γg(s) can be that γg(s) = 0 when s is a terminal state w.r.t. g. For any policy
π : S 7→ A, the general value function (Sutton et al., 2011) is defined as

V πg (s) = Eπ
[ ∞∑
t=0

rg(St, At, St+1)

t∏
k=0

γg(Sk)

∣∣∣∣∣S0 = s

]
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For any g, there exists V ∗g (s) = V
π∗
g

g (s) evaluated according to the optimal policy π∗g w.r.t. g. By see-
ing many optimal policies π∗g and optimal values V ∗g for different goals, we would hope that the agent
can utilize previous experience and quickly adapt to new goal. Ideally, such transfer would succeed if
we can accurately model π∗g(s), V

∗
g (s) using universal approximators π(s, g; θπ), V (s, g; θV ) where

θπ, θV are respective parameters. However, this would not be easy without utilizing the similarities
within rg for all g, as we discuss next.

2.1 TRANSFER VIA UNIVERSAL SUCCESSOR REPRESENTATIONS

We assume that the reward function can be factorized as (Kulkarni et al., 2016; Barreto et al., 2017)

rg(st, at, st+1) = φ(st, at, st+1)
>wg, (1)

where φ ∈ Rd are state features and wg ∈ Rd are goal-specific features of the reward. Note that if
wg can be effectively computed for any g, then we can quickly identify rg since φ is shared across
goals. With this factorization, for a fixed policy π, the general value function can be computed as

V πg (s) = Eπ
[ ∞∑
t=0

φ(St, At, St+1)

t∏
k=0

γg(Sk)

∣∣∣∣∣S0 = s

]>
wg = ψ

π
g (s)

>wg

where ψπg (s) is defined as the universal successor representations (USR) of state s. The following
Bellman equations enable us to learn USR the same way as learning the value function:

V πg (s) = Eπ[rg(s,A, S′) + γ(s)V πg (S′)], ψπg (s) = Eπ[φ(s,A, S′) + γg(s)ψ
π
g (S

′)].

Figure 1: Model Architecture

Framework Architecture. In addition to modeling USR with
a USR approximator (USRA) ψπ(s, g; θψ) parametrized by
θψ , we also model the policy with π(s, g; θπ). Practically, we
combine θπ and θψ in a deep neural network such that they
share the first few layers and forked in higher layers. In order
to quickly transfer to new goal, we need an efficient way to ob-
tain wg given goal g. This can be achieved by directly model
wg = w(g; θw) using a neural network. Finally, we further
encode the state features φ(s, a, s′) as φ(s, a, s′; θφ). More
often, it is sufficient to model it as φ(s′; θφ) as we will do in
the experiment. To summarize, the trainable parameters of our
model are (θπ, θψ, θw, θφ), as shown in Fig. 1. Transfer via
USRA. The trained USRA can be used (1) as an initialization
for exploring new goal, and (2) to directly compute policy for
any new goal.

2.2 TRAINING USR

We begin with the state features φ(s). The state features are learned with an autoencoder, mapping
from raw input s to φ(s) and then back to s. In the early stage of the training, state s are sampled
from exploration of the agent with randomly initialized policy. The autoencoder are trained based
on the reconstruction loss and θφ are the encoder parameters. This step can be skipped in the case
that φ(s) already has meaningful natural representations.

Once φ(s) is trained to converged, we then learn the rest of the parameters incorporated with actor-
critic method by interacting with the environment. Algorithm 1 highlights the learning procedure.
The update to θπ is the typical policy gradient method (Williams, 1992).

3 EXPERIMENT

We perform experiments in a four-room grid-world environment. The agent’s objective is to reach
certain positions (goals). We use grid-world for simplicity, but our model uses raw pixels as input
to show how USRA can handle continuous space. There are 64 goals in total, 48 of which act as
source goals and the rest 16 as unseen target goals to be transfer to. An image indicating the agent’s
location is the input of the state. The goal is alike.
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Algorithm 1 USR with actor critic
1: for each time step t do
2: Obtain transition {g, st, at, st+1, rt, γt} from the environment following π(st)
3: Perform gradient descent on Lw = [rt − φ(st+1)

>w(g; θw)]
2 w.r.t. θw

4: Perform gradient descent on Lψ = ‖φ(st) + γtψ(st+1, g; θψ)−ψ(st, g; θψ)‖22 w.r.t. θψ
5: Compute advantage At = [φ(st) + γtψ(st+1, g)−ψ(st, g)]>w(g)
6: Perform gradient descent on Jπ = log π(st, g; θπ)At w.r.t. θπ ,
7: end for

Figure 2: USR Generalization Figure 3: π Generalization Figure 4: Effect of Initialization

3.1 GENERALIZATION PERFORMANCE ON UNSEEN GOALS

In this section, we show that how our model can generalize/transfer from source goals to target
goals. Following our approach, we firstly trained USRA on k source goals, randomly selected,
until it converges. Then to measure the generalization performance on the target goals, we compute
the distance between the USR/policy generated from our model to the “optimal” ones, which are
obtained by learning directly on the target goals with the same model to convergence. Here we use
Mean Squared Error (MSE) distance for USR, and cross entropy for policy with 6 repeats.

Fig. 2 and Fig. 3 visualize USR and policy’s generalization performance w.r.t different numbers of
source goals for training, with solid line as mean and shade as standard error. First note that as the
number of source goals increases, the generalized policy and USR approach to the “optimal” ones.
Second, the generalization performance trained on k = 20 goals is comparable to that on k = 40
goals. This indicates that only a relatively small portion of goals is required to achieve a decent
generalization performance. These results demonstrate that our approach enables USR and policy
to generalizes across goals.

3.2 TRAINED USRA AS INITIALIZATION

In this section, we show how the trained model can be used as an initialization for fast learning for
target goals. We firstly train USRA on k source goals, randomly selected, until convergence, then
initialize the agent with this learned USRA for further exploration on target goals. Fig. 4 shows the
average rewards the agent collected on target tasks over the steps. The baseline method is trained
with random initialization. When the number of source goals k is relatively small (k = 1), the agent
learns more slowly than the baseline, which could be due to insufficient knowledge interfering with
new goals’ learning. However, when trained on a sufficient number of goals, 20/64 in this case, the
agent can learn considerably faster for new goals. These results show that the agent initialized with
trained USRA on only a small portion of the goals can learn much faster than random initialization.

4 CONCLUSION

In this work, we focus on solving transfer reinforcement learning problem in which the tasks share
the same underlying dynamics but their goals differ. Our experiments show that the proposed USRA
can generalize across tasks and can be used as a better initialization for learning new tasks.
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