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ABSTRACT

Here we study the problem of learning labels for large text corpora where each
document can be assigned a variable number of labels. The problem is trivial
when the label dimensionality is small and can be easily solved by a series of
one-vs-all classifiers. However, as the label dimensionality increases, the param-
eter space of such one-vs-all classifiers becomes extremely large and outstrips the
memory. Here we propose a latent variable model to reduce the size of the param-
eter space, but still efficiently learn the labels. We learn the model using spectral
learning and show how to extract the parameters using only three passes through
the training dataset. Further, we analyse the sample complexity of our model us-
ing PAC learning theory and then demonstrate the performance of our algorithm
on several benchmark datasets in comparison with existing algorithms.

1 INTRODUCTION

Multi-label learning for large text corpora is an upcoming problem in Large-Scale Machine Learn-
ing. Unlike the multi-class classification where a document is assigned only one label from a set of
labels, here a document can have a variable number of labels. A basic approach to the problem is
to use 1-vs-all classification by training a single binary classifier for every label. If the vocabulary
size of a text corpus is D and the label dimensionality is L, then the 1-vs-all model require O(DL)
parameters. Most of the text corpora have moderate to high vocabulary size (D), and 1-vs-all clas-
sification is feasible as long as D � L. However, as the number of labels increases to a point when
L ∼ D, the size of the parameter space increases to O(D2), and we can no longer store the 1-vs-all
models in the memory Yu et al. (2014).

A fairly intuitive approach to reducing the size of the parameter space is to use low-rank models.
The existing low-rank approaches in the literature are mainly based on discriminative models that
use a mapping Φ : RD → RL between the word space and the label space. If the rank of the model
is restricted to K � D, then such mappings have the form Z = HW>, where W ∈ RD×K and
H ∈ RL×K contain the low-rank features of the words and the labels respectively. The parameter
space of such models has the size Θ ((D + L)K), which is much smaller than O(DL) for large
values of L and can be conveniently stored the memory.

Amongst the recent literature on discriminative low-rank models, WSABIE Weston et al. (2011)
defines weighted approximate pair-wise rank (WARP) loss on the mapping and optimises the loss
on the training dataset. LEML Yu et al. (2014) generalises the loss function to squared-loss, sigmoid
loss or hinge loss, which are typical of Linear Regression, Logistic Regression, and Linear SVM
respectively. Both of LEML and WSABIE use gradient descent to optimise the loss on training
datasets and therefore are susceptible to overfitting. Also, both of them run several iterations through
the dataset and can slow down for large datasets containing millions of text instances.

Here we propose a latent variable model for multi-label learning. Our model can be viewed as a
generative counterpart of the discriminative low-rank models like WSABIE or LEML. Unlike the
usual cases where such latent variable models are trained using EM algorithm, we use Spectral
Learning or Method of Moments Anandkumar et al. (2014) to extract the parameters. Method of
Moments is an upcoming non-iterative approach for latent variable based models, and has success-
fully been applied in Spherical Gaussian Model Hsu & Kakade (2013), Hidden Markov Models
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Figure 1: Latent Variable Model

(Hsu et al. (2012) and Song et al. (2010)), Bayesian Non-parametrics Tung & Smola (2014), Topic
Models Anandkumar et al. (2012), and in various NLP applications (Dhillon et al. (2012) and Cohen
et al. (2014)). We first derive a closed form expression to estimate the model parameters using the
Method of Moments. Further, we derive the convergence bounds on the estimated parameters, and
then compare the performance of our algorithm with the discriminative low-rank models both from
the perspective of accuracy and computation time.

There are other approaches beyond low-rank mappings, such as FastXML Prabhu & Varma (2014)
that uses tree-based hierarchies for the labels, or SLEEC Bhatia et al. (2015) that uses kNN based
embedding of the texts in the training dataset. However, these approaches use a combination of
different algorithms and are geared towards end-to-end solutions. Whereas, we look into the problem
from a modelling perspective and limit our discussion to the low-rank models since they have a
similar model complexity to the latent variable model.

2 METHODOLOGY

We build our model based on the “bag of words” assumption on the documents taking into account
only the occurrence of the words, not their counts. Let us assume that there areN labeled documents
in a corpus with vocabulary size D and label dimensionality L. Then using a latent variable h that
assumes K states, the probability of a label l being assigned to a document d can be expressed as:

P [l|d] =

K∑
k=1

P [l|h = k]P [h = k|d] (1)

where the conditional probability of a document d given h can be modelled from the set of distinct
wordsWd present in it as:

P [d|h = k] =
∏
v∈Wd

P [v|h = k]
∏
v/∈Wd

(
1− P [v|h = k]

)
(2)

From here, P [h = k|d] can be expressed using Bayes Theorem as:

P [h = k|d] =
P [h = k]P [d|h = k]∑K
k=1 P [h = k]P [d|h = k]

(3)

The latent variable model is described by the plate notation in Figure 1, where the words are denoted
by v, the labels by l and the latent variable by h. Our model parameters are P [h], P [v|h] and P [l|h],
and the number of parameters is Θ ((D + L)K), same as the discriminative low-rank models.

Let us define πk ∈ [0, 1] as the probability of the latent variable h assuming the state k ∈ [K].

πk = P [h = k] (4)

Let us define µk ∈ [0, 1]D as the probability vector of a word v conditional to the latent state
k ∈ [K].

µk = P [v|h = k] (5)
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Similarly, let us define γk ∈ [0, 1]L as the probability vector of a label l conditional to the latent
state k ∈ [K].

γk = P [l|h = k] (6)

One key difference of our parameterization from Anandkumar et al. (2012) and Wang & Zhu (2014)
is that they define {µk}Kk=1 as the expected count of the words (E[v|h = k]) for each topic k, while
we define {µk}Kk=1 as the probability of the words. A probabilistic formulation enables us to model
the documents using Equation 2, which is not possible using expectations. We later use the document
probabilities to predict the labels for a test document (Section 4). Therefore, unlike Anandkumar
et al. (2012) or Wang & Zhu (2014) that uses moments on the word counts defined on the domain⊗pRD (for pth order moment), we use moments based on the joint probability of the words defined
on the domain

⊗p
[0, 1]D. We outline the derivation for the probability moments in this section, and

then show that our formulation achieves a tighter convergence bound on the parameters in Section
3.1. The label parameters {γk}Kk=1 are unique to our model.

2.1 MOMENT FORMULATION

We first try to formulate the joint probability of a pair of words in terms of π and µ. Let us assume
that we choose two words w1 and w2 from a document at random. The term P [w1 = vi, w2 = vj ]
represents the probability by which any pair of words picked at random from a document turns out
to be vi and vj , and it is nothing but P [vi, vj ], where i, j ∈ [D]. Similarly, P [w1 = vi] is same as
P [vi], and the same holds for P [w2 = vj ].

Following the generative model in Figure 1, any two words w1 and w2 in a document are condition-
ally independent given h. Therefore,

P [w1 = vi, w2 = vj ]

=

K∑
k=1

P [w1 = vi, w2 = vj |h = k]P [h = k]

=

K∑
k=1

P [w1 = vi|h = k]P [w2 = vj |h = k]P [h = k]

=

K∑
k=1

P [vi|h = k]P [vj |h = k]P [h = k]

=

K∑
k=1

πkµkiµkj

where µki is the ith element of the vector µk and so on.

∴ P [vi, vj ] =

K∑
k=1

πkµkiµkj ∀i, j ∈ [D] (7)

If M2 ∈ [0, 1]D×D is the matrix containing the joint probability of the pairs of words with M2i,j =
P [vi, vj ] ∀i, j ∈ [D], then it can be expressed as:

M2 =

K∑
k=1

πkµkµ
>
k (8)

Similarly, if the tensor M3 ∈ [0, 1]D×D×D is defined as the moment containing the joint probability
of a triplet of words with M3i,j,κ = P [vi, vj , vκ], ∀i, j, κ ∈ [D], then

M3 =

K∑
k=1

πkµk ⊗ µk ⊗ µk (9)

where ⊗ stands for the tensor product.
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Finally, we define ML ∈ [0, 1]L×D×D as the probability moment of a label occurring with a pair of
words such that MLκ,i,j = P [lκ, vi, vj ],∀κ ∈ [L] and ∀i, j ∈ [D]. Then,

ML =

K∑
k=1

πkγk ⊗ µk ⊗ µk (10)

2.2 CLOSED FORM EXPRESSION OF THE PARAMETERS

We derive the equations for extracting π, µ and γ in this section. The first step is to whiten the
matrix M2, where we try to find a matrix low rank W such that W>M2W = I . This is similar to
the whitening in ICA Hyvärinen et al. (2004), with the covariance matrix being replaced by the co-
occurrence probability matrix. The whitening is usually done through singular value decomposition
of M2. If the K maximum singular values of M2 are {νk}Kk=1, and {ωk}Kk=1 are the corresponding
left singular vectors, then the whitening matrix of rank K is computed as W = ΩΣ−1/2, where
Ω =

[
ω1|ω2| . . . |ωK

]
and Σ = diag (ν1, ν2, . . . , νK).

Upon whitening M2 takes the form

W>M2W = W>
( K∑
k=1

πkµkµ
>
k

)
W =

K∑
k=1

(√
πkW

>µk
)(√

πkW
>µk

)>
=

K∑
k=1

µ̃kµ̃
>
k = I (11)

Hence µ̃k =
√
πkW

>µk are orthonormal vectors. Multiplying M3 along all three dimensions by
W , we get

M̃3 = M3(W,W,W ) =

K∑
k=1

πk(W>µk)⊗ (W>µk)⊗ (W>µk) =

K∑
k=1

1√
πk
µ̃k ⊗ µ̃k ⊗ µ̃k (12)

M̃3 is a tensor in the domain RK×K×K . Upon the factorisation of M̃3, if the eigenvalues and
eigenvectors are {λk}Kk=1 and {uk}Kk=1 respectively, then λk = 1√

πk
=⇒ πk = λ−2

k , and

uk = µ̃k =
√
πkW

>µk =
1

λk
W>µk (13)

Hence, {µk}Kk=1 can be recovered as µk = λkW
†uk, where W † = W

(
W>W

)−1
is the pseudo-

inverse of W>. Since we compute P [v|h] by normalising µk as
P [v|h = k] = µkv∑

v µkv
, it suffices to compute µk = W †uk as λk will be cancelled during normali-

sation.

It is possible to compute γ through the factorisation of second and third order moments of the
labels in a similar way to µ. However, there is no guarantee that the label probabilities of γk will
correspond to the same topic as the word probabilities in µk for every k when we compute them
separately. Without the topic alignment between µ and γ, label prediction is not possible.

To overcome this limitation, we use the cross-moment ML to compute γ. If we multiply ML twice
by W , then

ML(W,W ) =

K∑
k=1

πkγk ⊗
(
W>µk

)
⊗
(
W>µk

)
=

K∑
k=1

γk ⊗
(√
πkW

>µk
)
⊗
(√
πkW

>µk
)

=

K∑
k=1

γk ⊗ µ̃k ⊗ µ̃k (14)

If uk is the kth eigenvector of M̃3, then

u>kML(W,W )uk = µ̃>kML(W,W )µ̃k = µ̃>k

(
K∑
k=1

γk ⊗ µ̃k ⊗ µ̃k
)
µ̃k = γk (15)

since µ̃ks are orthonormal. Computing γk by this method ensures that γk and µ̃k correspond to the
same topic for every k, which in turn ensures that γk and µk correspond to the same topic.
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3 PARAMETER ESTIMATION

So far we have shown how to extract the parameters from the global moments M2, M3 and ML

defined on population. In practice, we cannot compute the population parameters; all we can do is
to estimate them from the sample in hand and compute an error bound for the estimation. We denote
the estimated values of M2, M3, ML, π, µ, γ, W and U from the sample as M̂2, M̂3, M̂L, π̂, µ̂, γ̂,
Ŵ and Û , conforming with the notations used in the previous literature.

If we take into account only the occurrence of each distinct word in a document, then using “one
hot encoding,” we can represent the words as a binary vector x ∈ {0, 1}D, and the labels as another
y ∈ {0, 1}L. If there are N samples, then we can represent the words in the entire corpus as
X ∈ {0, 1}N×D, and the associated labels as Y ∈ {0, 1}N×L. The pairwise counts of the words
can be estimated by X>X , whose sum of all elements is,

D∑
v1=1

D∑
v2=1

(X>X)v1,v2 =

D∑
v1=1

D∑
v2=1

N∑
i=1

xi,v1xi,v2 =

N∑
i=1

D∑
v1=1

D∑
v2=1

xi,v1xi,v2 =

N∑
i=1

nnz(xi)
2

where xi is the row of X corresponding to the ith document, xi,v is the vth element in it (v ∈ [D]),
and nnz(xi) is the number of non-zero elements in xi, i.e., the number of distinct words in the ith
document.

Therefore, the joint probability matrix of the words (M2) can be estimated as,

M̂2 =
1∑N

i=1 nnz(xi)
2
X>X (16)

Similarly, the triple-wise occurrences of the words can be estimated by the tensor X ⊗X ⊗X , and
the sum of all of the elements of this tensor is

D∑
v1=1

D∑
v2=1

D∑
v3=1

(X ⊗X ⊗X)v1,v2,v3 =

N∑
i=1

nnz(xi)
3

Therefore, M3 can be estimated as

M̂3 =
1∑N

i=1 nnz(xi)
3
X ⊗X ⊗X (17)

The dimensions of M̂2 and M̂3 are D2 and D3 respectively. But in practice, these quantities are
extremely sparse. We do not need to compute M̂3 in practice. If the whitening matrix computed
through the Singular Value Decomposition of M̂2 is Ŵ , then M̃3 can be estimated straight away
using Equation 12 as,

ˆ̃M3 =
1∑N

i=1 nnz(xi)
3
XŴ ⊗XŴ ⊗XŴ (18)

Since ˆ̃M3 has a dimension of K3 and K � D, it can be conveniently stored in the memory. The
computation of M̂2 takes one pass through the dataset, and the computation of ˆ̃M3 takes another.

Also, the counts of the labels occurring with the pairs of words can be estimated by the tensor
Y ⊗X ⊗X , whose sum of all element is

L∑
l=1

D∑
v1=1

D∑
v2=1

(Y ⊗X ⊗X)l,v1,v2 =

N∑
i=1

nnz(yi)nnz(xi)
2

where yi represents the ith row of Y and nnz(yi) is the number of labels associated with the ith
document. Therefore, ML can be estimated as,

M̂L =
1∑N

i=1 nnz(yi)nnz(xi)
2
Y ⊗X ⊗X (19)
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Algorithm 1 Three-pass Algorithm for Parameter Extraction
Input: Sparse Binary Data X ∈ {0, 1}N×D, Labels Y ∈ {0, 1}N×L and K ∈ Z+

Output: π̂, P̂ [v|h] and P̂ [l|h]

1. Estimate M̂2 = (X>X)/
∑N
i=1 nnz(xi)

2 (pass # 1)
2. Compute K maximum singular values of M̂2 as {νk}Kk=1, and corresponding left singu-

lar vectors as {ωk}Kk=1. Define Ω =
[
ω1|ω2| . . . |ωK

]
, and Σ = diag (ν1, ν2, . . . , νK)

3. Estimate the whitening matrix Ŵ = ΩΣ−1/2 ∈ RD×K

4. Estimate ˆ̃M3 = (XŴ ⊗XŴ ⊗XŴ )/
∑N
i=1 nnz(xi)

3 (pass # 2)

5. Compute eigenvalues {λ̂k}Kk=1 and eigenvectors {ûk}Kk=1 of ˆ̃M3. Assign Û =
[û1|û2| . . . |ûK ]

6. Estimate µ̂k = Ŵ †ûk, where Ŵ † = Ŵ (Ŵ>Ŵ )
−1

, and π̂k = λ̂−2
k , ∀k ∈ 1, 2 . . .K.

7. Estimate
P̂ [v|h = k] =

µ̂kv∑
v µ̂kv

,∀k ∈ 1 . . .K, v ∈ v1 . . . vD

8. Estimate Γ̂ = Y >
(
(XŴÛ) • (XŴÛ)

)
, where • stands for the element-wise product

(pass # 3)
9. Estimate

P̂ [l|h = k] =
Γ̂lk∑
l Γ̂lk

,∀k ∈ 1 . . .K, l ∈ l1 . . . lL

If kth eigenvector of ˆ̃M3 is ûk, then from Equation 15

γ̂k = û>k M̂L(Ŵ , Ŵ )ûk

=
1∑N

i=1 nnz(yi)nnz(xi)
2
û>k
(
Y ⊗XŴ ⊗XŴ

)
ûk

=
1

Z(X,Y )
Y ⊗XŴûk ⊗XŴûk

=
1

Z(X,Y )
Y >
(
(XŴûk) • (XŴûk)

)
where • stands for the element-wise product, and Z(X,Y ) =

∑N
i=1 nnz(yi)nnz(xi)

2 is a constant.
If we assign Γ̂ = [γ̂1|γ̂2| . . . |γ̂K ], then it can be computed as,

Γ̂ = [γ̂1|γ̂2| . . . |γ̂K ]

=
1

Z(X,Y )
Y >
[(
XŴû1 •XŴû1

)∣∣(XŴû2 •XŴû2

)∣∣
. . .
∣∣(XŴûK •XŴûK

)]
=

1

Z(X,Y )
Y >
(
(XŴÛ) • (XŴÛ)

)
(20)

where Û = [û1|û2| . . . |ûK ]. Since we estimate P [l|h] by normalising the columns of Γ̂ as P̂ [l|h =

k] = Γ̂lk∑
l Γ̂lk

, it is sufficient to compute Γ̂ = Y >
(
(XŴÛ) • (XŴÛ)

)
as the constant Z(X,Y ) will

be cancelled out during normalisation. Instead of computing all the γ̂ks separately, we can compute
Γ̂ in one step by just one pass through the entire dataset. The overall method takes three passes
through the dataset as outlined in Algorithm 1. There is no need to compute M̂L explicitly since Γ̂
can be computed straight away from X , Y and the intermediate parameters.
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3.1 CONVERGENCE BOUNDS

Theorem 1. Let us assume that we run Algorithm 1 on N i.i.d. samples with word vectors

x1, x2 . . . xN and label vectors y1, y2 . . . yN . Let us define ε1 =

(
1 +

√
log(1/δ)

2

)
and ε2 =(

1 +
√

log(2/δ)
2

)
for some δ ∈ (0, 1). If N ≥ max(n1, n2, n3), where

1. n1 = c2

(
logK + log log

(
K
c1
·
√

πmax
πmin

))
2. n2 = Ω

((
ε1

d̃2sσK(M2)

)2
)

3. n3 = Ω

(
K2
(

10
d̃2sσK(M2)5/2

+ 2
√

2
d̃3sσK(M2)3/2

)2

ε2
1

)
for some constants c1 and c2, then following bounds on the estimated parameters hold with proba-
bility at least 1− δ,

||µk − µ̂k|| ≤
(

160
√
σ1(M2)

d̃2sσK(M2)5/2
+

32
√

2σ1(M2)

d̃3sσK(M2)3/2
+

4
√
σ1(M2)

d̃2sσK (M2)

)
ε1√
N

||γk − γ̂k|| ≤
(

160

d̃2sσK(M2)7/2
+

32
√

2

d̃3sσK(M2)5/2
+

2 +
√

2

d̃2sσK (M2)
2

)
2ε1√
N

+
8ε2

d̃lsσK(M2)
√
N

|πk − π̂k| ≤
(

200

σK(M2)5/2
+

40
√

2

σK(M2)3/2

)
ε1

d̃3s

√
N

The terms σ1(M2) . . . σK(M2) are the K largest eigenvalues of the matrix M2, whereas d̃2s =

E
[
nnz(x)2

]
, d̃3s = E

[
nnz(x)3

]
and d̃ls = E

[
nnz(y)nnz(x)2

]
, with nnz(x) representing the

number of distinct words and nnz(y) representing the number of labels present in an instance. The
proof is included in the appendix.

The convergence bounds on π and µ are very similar to those in Anandkumar et al. (2012) and Wang
& Zhu (2014), except for the terms d̃2s, d̃3s and d̃ls in the denominator. These terms arise in our
convergence bounds since we use the probability moments, whereas Anandkumar et al. (2012) and
Wang & Zhu (2014) use the moments of word counts. The parameter γ is unique to our model,
although its bound contains those terms too.

We need at least one document with 3 distinct words or more to construct the third order mo-
ment M3, i.e., nnz(x) ≥ 3 for at least one document. Therefore, d̃2s = E

[
nnz(x)2

]
> 1 and

d̃3s = E
[
nnz(x)3

]
> 1. Also, since every document has least one label, nnz(y) ≥ 1 for all

the documents, and therefore, and d̃ls > 1. In practice, these terms can be much larger than 1 for
any real-life text corpus (The estimates of them for different experimental datasets are in Table 1).
Therefore, our algorithm achieves a tighter convergence bound than Anandkumar et al. (2012) or
Wang & Zhu (2014). Further, since the terms d̃2s and d̃3s appear in the denominators of n2 and n3

too, using probability moments also lowers the minimum number of samples required.

3.2 COMPUTATIONAL COMPLEXITY

The bottleneck of the algorithm is the whitening step of M̂2, especially for the large datasets. M̂2

computed using Equation 16 is a symmetric p.s.d. matrix with very high sparsity. The number of
elements of M̂2 isO

(∑N
i=1 nnz(xi)

2
)
, with the worst case occurring when no two documents have

any word in common, and every element in X>X is 1. The top K eigenvalues for large symmetric
matrices are usually computed through Lanczos method. For a sparse matrix of size D × D with
O
(∑N

i=1 nnz(xi)
2
)

number of elements, this step has a complexity of O
((∑N

i=1 nnz(xi)
2
)
K +

DK2
)

Mahadevan (2008).
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We do not compute the third order tensors M̂3 or M̂L explicitly. The step to compute ˆ̃M3 using
Equation 18 has a complexity of O(NK3), while the computation of Γ̂L using Equation 20 has a

complexity of O
((∑N

i=1 nnz(yi)
)
K2
)
. We carry out the tensor factorisation of ˆ̃M3 ∈ RK×K×K

using the Tensor Toolbox Bader et al. (2015), and this step has a complexity of O(K4 log ε) to
compute each of the K eigenvalues up to an accuracy of ε Kolda & Mayo (2011). These steps
contribute the most to the computational cost. The overall time complexity of Algorithm 1 is
O
((∑N

i=1 nnz(xi)
2
)
K +

(
D +

∑N
i=1 nnz(yi)

)
K2 +NK3 +K4 log ε

)
.

As per as space requirement is concerned, the storage of M̂2 takes up O
(∑N

i=1 nnz(xi)
2
)

space,
whereas the word parameters like Ŵ and µ̂1:K take up a space of Θ(DK), the label parameter Γ̂

takes up a space of Θ(LK), and ˆ̃M3 takes up a space of Θ(K3). The overall space complexity is
O
(∑N

i=1 nnz(xi)
2 + (D + L)K +K3

)
.

4 LABEL PREDICTION

Once we have extracted the model parameters P̂ [h], P̂ [v|h] and P̂ [l|h] using Algorithm 1, a new
test document d with a distinct set of wordsWd can be modelled as,

P̂ [d|h = k] =
∏
v∈Wd

P̂ [v|h = k]
∏
v/∈Wd

(
1− P̂ [v|h = k]

)
This step will take D multiplications involving floating point operations. However, since∑
v P̂ [v|h = k] = 1 for v ∈ {v1 . . . vD} and D can be very large, the values of P̂ [v|h = k]

are much less than one for the most, and
(
1− P̂ [v|h = k]

)
≈ 1. If we threshold P̂ [v|h = k] when

v /∈ Wd using some threshold η (say η = 0.01 or 0.001), then P̂ [d|h = k] takes the form:

P̂ [d|h = k] =
∏
v∈Wd

P̂ [v|h = k]
∏
v/∈Wd

P̂ [v|h=k]>η

(
1− P̂ [v|h = k]

)

Usually only a few of P̂ [v|h = k] will be greater than the threshold, and this will significantly reduce
the number of multiplications when v /∈ Wd without sacrificing accuracy. Also, since a document
has only a few distinct words, i.e. |Wd| � D, the left multiplicand (when v ∈ Wd) accounts for
only a few multiplications. From there, we can estimate the following using Bayes rule.

P̂ [h = k|d] =
P̂ [h = k]P̂ [d|h = k]∑K
k=1 P̂ [h = k]P̂ [d|h = k]

=

π̂k
∏
v∈Wd

P̂ [v|h = k]
∏
v/∈Wd

P̂ [v|h=k]>η

(
1− P̂ [v|h = k]

)
K∑
k=1

π̂k
∏
v∈Wd

P̂ [v|h = k]
∏
v/∈Wd

P̂ [v|h=k]>η

(
1− P̂ [v|h = k]

)

And finally, the label probabilities for the document (P̂ [l|d]) can be estimated from P̂ [l|h] and
P̂ [h|d] using Equation 1.

5 EXPERIMENTAL RESULTS

We carry out our experiments on six datasets ranging from small datasets like Bibtex with 4, 880
training instances to large datasets like WikiLSHTC with more than 1.7M training instances. The
description of the datasets are listed in Table 1. We categorise the datasets into three groups:

1. Small: Bibtex and Delicious
2. Medium: Wiki-31K and NYTimes
3. Large: AmazonCat and WikiLSHTC
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Name # of
Train
Points

# of
Test

Points

Feature
Dimen-

sion

Label
Dimen-

sion

Average
# of

Features

Median
# of

Features

Average
# of

Labels

Median
# of

Labels

ˆ̃
d2s

ˆ̃
d3s

ˆ̃
dls

Bibtex 4,880 2,515 1,836 159 68.67 69 2.4 2 5,957 597K 15K
Delicious 12,920 3,185 500 983 18.29 6 19.02 20 1,892 363K 24K
Wiki-31K 14,146 6,616 101,938 30,938 669.05 513 18.64 19 559K 545M 11M
NYTimes 14,669 15,989 24,670 4,185 373.91 354 5.40 5 175K 95M 755K
AmazonCat 1,186,239 306,782 203,882 13,330 71.09 45 5.04 4 6,301 651K 27K
WikiLSHTC 1,778,351 587,084 1,617,899 325,056 42.15 30 3.19 2 2,210 135K 7,594

Table 1: Description of the Datasets

True Labels LEML MoM
“airlines and
airplanes”,

“hijacking”,
“terrorism”

“airlines and airplanes” (0.34),
“terrorism” (0.30), “united states

international relations” (0.27), “elections”
(0.22), “armament, defense and military
forces” (0.18), “internationalrelations”
(0.18), “bombs and explosives” (0.15),

“murders and attempted murders ” (0.13),
“biographical information” (0.13), “islam”

(0.12)

“terrorism” (0.12), “united states
international relations” (0.08), “airlines

and airplanes” (0.07), “world trade center
(nyc)” (0.07), “hijacking” (0.07), “united

states armament and defense” (0.07),
“pentagon building” (0.03), “bombs and

explosives” (0.03), “islam” (0.02),
“missing persons ” (0.02)

“armament,
defense and

military
forces”, “civil

war and
guerrilla
warfare”,

“politics and
government”

“civil war and guerrilla warfare” (0.62),
“united states international relations”
(0.39), “united states armament and

defense” (0.23), “armament, defense and
military forces” (0.23),

“internationalrelations” (0.17), “oil
(petroleum) and gasoline” (0.11), “surveys
and series” (0.10),“military action” (0.09),

“foreign aid” (0.08), “independence
movements” (0.08)

“civil war and guerrilla warfare” (0.09),
“united states international relations”
(0.09), “united states armament and

defense” (0.06), “politics and
government” (0.04), “armament, defense

and military forces” (0.03),
“internationalrelations” (0.02),

“immigration and refugees” (0.02),
“foreign aid” (0.02), “terrorism” (0.02),
“economic conditions and trends” (0.02)

Table 2: Examples of label prediction from the NYTimes dataset. The numbers in parenthesis are
the scores for the top 10 labels. The scores of LEML and MoM have different ranges.

Since LEML is shown to outperform WSABIE and other benchmark algorithms on various small
and large-scale datasets in Yu et al. (2014), we benchmark the performance of our method against
LEML. Also, there are other methods proposed on topic based embedding of the labels, most recent
of which is Rai et al. (2015) that extends Latent Dirichlet Allocation Blei et al. (2003) to Multi-label
learning, and uses Bayesian Learning through Gibbs Sampling. However, use of Gibbs sampler
limits the use of the algorithms only to the datasets of limited size. The largest dataset used in Rai
et al. (2015) is EurLex that is similar to NYTimes dataset in size. Using any MCMC based sampling
scheme is not viable for the large datasets such as AmazonCat or WikiLSHTC containing millions
of training instances.

In our experiments, we chose to measure AUC (of Receiver Operator Characteristics) against the
latent dimensionality (K). AUC is a versatile measure and has been used in a range of problems
from binary classification to ranking. Also, it is shown that there exists a one-to-one relation between
AUC and Precision-Recall curves in Davis & Goadrich (2006), i.e., the same algorithm achieving
a higher AUC will also produce a better Precision-Recall curve. We carried out our experiments
on Unix Platform on a single machine with Intel i5 Processor (2.4GHz) and 16GB memory, and no
multi-threading or any other performance enhancement method is used in the code.1 For the label
prediction step of MoM, we chose η = 0.001. For LEML, we ran ten iterations for the small datasets
and five iterations for the medium and large datasets, since the authors of LEML chose a similar
number of iterations for their experiments in Yu et al. (2014). For AmazonCat and WikiLSHTC
datasets, we ran LEML on an i2.4xlarge instance of Amazon EC2 with 122 GB of memory since
LEML needs significantly larger memory for these two datasets (Figure 2).

1To be shared later
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Figure 2: AUC and Memory vs Latent State Dimensionality(K) for LEML and MoM for Different Datasets

Dataset LEML MoM Speed-up (in ⇥)

Bibtex 160s. 300s. 0.53

Delicious 60s. 150s. 0.4

NYTimes 1 hour 6 min. 10

Wiki-31K 3 hour 40 min 15 min 15

AmazonCat 13 hour † 1 hour 15 min 10

WikiLSHTC > 2 days† ⇠ 3 hours 16

† Runtime on i2.4xlarge instance of Amazon EC2

TABLE 3: Training Time and Speed-up

only three passes through the training dataset to extract all
the parameters. Since MoM consists of only linear algebraic
operations, it is embarrassingly parallel, and can easily be
scaled up in any parallel eco-system using linear algebra
libraries. In our implementation, we used Matlab’s linear
algebra library based on LAPACK/ARPACK, although we
did not incorporate any parallelization.

Both LEML and MoM have error bound of O(1/
p

N)
on training performance w.r.t. the number of training
samples N . However, when we compute the AUC on
test dataset, the AUC of LEML decreases with latent
dimensionality(K) for some datasets, including the larger
dataset of AmazonCat containing more than 1M training
instance. This shows the possibility of over-fitting in LEML.
MoM, on the other hand, is not an optimization algorithm,
and the parameters are extracted from Moment Factorization

rather than optimizing any target function. It is not suscep-
tible to over-fitting, which is evident from its performance.
On the other hand, MoM has the requirement N � ⌦(K2)
on the number of documents in the training set, and it will
not work if N < ⇥(K2). However, for smaller text corpora
where N < ⇥(K2) hold, 1-vs-all classifiers are usually
sufficient to predict the labels. We need dimensionality
reduction techniques for large text corpora where 1-vs-all
classifiers fail, and MoM provides a very competitive choice
for such cases.
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Dataset LEML MoM Speed-up (×)

Bibtex 160s. 300s. 0.53

Delicious 60s. 150s. 0.4

NYtimes 1 hour 6 min. 10

Wiki-31K 3 hr. 40 min. 15 min. 15

AmazonCat 13 hr. † 1 hr. 15 min. 10

WikiLSHTC >2 days † 3 hr. 16
† Runtime on i2.4xlarge instance of Amazon EC2

Table 3: Training Time

We computed AUC for every test documents and performed a macro-averaging across the docu-
ments, and repeated the experiments for K = {50, 75, 100, 125, 150} (Figure 2). Both LEML and
Method of Moments perform very similarly, but the memory footprint of MoM is significantly less
than LEML. MoM takes longer to finish for the small datasets since tensor factorisation takes much
more time compared to the LEML iterations. However, as the size of the datasets grows, the LEML
iterations become more and more costly. For the medium and large datasets, MoM takes a fraction
of the time taken by LEML. For WikiLSHTC, LEML takes more than two days to finish, while
MoM finishes within a few hours. The training times of LEML and MoM for different datasets are
listed in Table 3.

6 CONCLUSION

Here we propose a latent variable model for multi-label learning in large-scale text corpus and
show how to extract the model parameters based on the spectral decomposition of the probability
moments of the words and the labels. Our method gives similar performance in comparison with
state-of-art algorithms like LEML while taking a fraction of time and memory for the medium and
the large datasets. Our method takes only three passes through the training dataset to extract all
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the parameters, which contributes to its superior time performance. Also, the memory requirement
of our method is nominal when compared to the existing algorithms, and it scales to large datasets
like WikiLSHTC containing millions of Wikipedia articles just on a single node with 16GB of
memory. Lastly, since our method consists of only linear algebraic operations, it is embarrassingly
parallel and can easily be scaled up in any parallel ecosystem using linear algebra libraries. In our
implementation, we used Matlab’s linear algebra library based on LAPACK/ARPACK, although we
did not incorporate any parallelisation.

LEML has a bound of O
(
1/
√
N
)

on the training loss Yu et al. (2014), whereas our method (MoM)
has a convergence bound of O

(
1/
√
N
)

on the model parameters w.r.t. the number of training in-
stances N . However, when we compute AUC on the test dataset, the AUC of LEML decreases with
the latent dimensionality(K) for three datasets including AmazonCat with more than a million of
training instances. It shows the possibility of overfitting in LEML. MoM, on the other hand, is not an
optimisation algorithm, and the parameters are extracted through spectral decomposition of matrices
and tensors, rather than optimising any target function. It is not susceptible to over-fitting, which
is evident from its performance. But MoM has the requirement of N ≥ Ω(K2), and will not work
when N < Θ(K2). However, for smaller text corpora where N < Θ(K2) holds, 1-vs-all classifiers
are usually sufficient to predict the labels. We need low-rank models for large text corpora where
1-vs-all classifiers fail, and MoM provides a very competitive choice for such cases.
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A MATRIX NORM INEQUALITIES

Here we paraphrase the inequalities regarding the matrix norms from Anandkumar et al. (2014),
which we will use further in our final proof. Let the true pairwise probability matrix and the third
order probability moment be M2 = p(v, v) and M3 = p(v, v, v), where v stands for the words.
Let us assume that we select N i.i.d. samples x1, . . . xN from the population, and the estimates
of pairwise matrix and third order moment are M̂2 = p̂(y, y) and M̂3 = p̂(y, y, y). Let εM2 =

||M2 − M̂2||2. We use the second order operator norm of the matrices here. Let us assume εM2
≤

σK(M2)/2, where σK is the Kth largest eigenvalue of M2. We will derive the conditions which
satisfies this later.

If Σ = diag(σ1, σ2 . . . σK) are the top-K eigenvalues of M2, and U are the corresponding eigen-
vectors, then the whitening matrix W = UΣ−1/2. Also, W>M2W = IK×K . Then,

||W ||2 =
√

max eig(W>W ) =
√

max eig(Σ−1) =
1√

σK(M2)

Similarly, if W † = W (W>W )−1, then W † = WΣ = UΣ1/2. Therefore,

||W †||2 =
√

max eig(Σ) =
√
σ1(M2) (21)

Let Ŵ be the whitening matrix for M̂2, i.e., Ŵ>M̂2Ŵ = IK×K . Then by Weyl’s inequality,
σk(M2)− σk(M̂2) ≤ ||M2 − M̂2||,∀k = 1, 2 . . .K.

Therefore,

||Ŵ ||22 =
1

σK(M̂2)
≤ 1

σK (M2)− ||M2 − M̂2||
≤ 2

σK (M2)
(22)
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Also, by Weyl’s Theorem,

||Ŵ †||22 = σ1(M̂2) ≤ σ1(M2) + εM2 ≤ 1.5σ1(M2) =⇒ ||Ŵ †||2 ≤
√

1.5σ1(M2) ≤ 1.5
√
σ1(M2)

(23)

Let U∗ be the eigenvectors of ŴM2Ŵ , and Λ be the corresponding eigenvalues. Then we can write,
ŴM2Ŵ=U∗ΛU∗>. Then W = ŴU∗Λ−1/2U∗> whitens M2, i.e., W>M2W = I . Therefore,

||I − Λ||2 = ||I − U∗ΛU∗>||2
= ||I − ŴM2Ŵ ||2
= ||ŴM̂2Ŵ − ŴM2Ŵ ||2
≤ ||Ŵ ||22||M2 − M̂2||

≤ 2

σK (M2)
εM2

(24)

εW = ||W − Ŵ ||
= ||W −WU∗Λ1/2U∗>||2
= ||W ||2||I − U∗Λ1/2U∗>||2
= ||W ||2||I − Λ1/2||2
≤ ||W ||2||I − Λ||2
≤ 2

σK(M2)3/2
εM2 (25)

εW † = ||W † − Ŵ †||2
= ||Ŵ †U∗Λ1/2U∗> − Ŵ †||2
= ||Ŵ †||2||I − U∗Λ1/2U∗>||2

≤ ||Ŵ †||2||I − Λ||2 ≤
2
√
σ1(M2)

σK (M2)
εM2

(26)

B TENSOR NORM INEQUALITIES

Let us define the second order operator norm of a tensor T ∈ RD′×D×D with D,D′ ∈ Z+ as,

||T ||2 = sup
u
{||T (·, u, u)|| : u ∈ RD&||u|| = 1} (27)

Lemma 1. For a tensor T ∈ RD′×D×D, ||T ||2 ≤ ||T ||F , where ||T ||F is the Frobenius norm
defined as,

||T ||F =

√∑
i,j,k

(Ti,j,k)2

Proof. The tensor T can be unfolded as an array of D′ matrices each of size D × D, as T =
[T1, T2 . . . TD′ ]. Then,

T (·, u, u) =
[
u>T1u, u

>T2u, . . . u
>TD′u

]
∈ RD

′

13
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Therefore,

||T ||22 = sup
||u||=1

∣∣∣∣[u>T1u, u
>T2u, . . . u

>TD′u]
∣∣∣∣2

= sup
||u||=1

(
|u>T1u|2 + |u>T2u|2 + · · ·+ |u>TD′u|2

)
≤ sup
||u||=1

|u>T1u|2 + sup
||u||=1

|u>T2u|2 + · · ·+ sup
||u||=1

|u>TD′u|2 (28)

Let us assume that the singular value decomposition of Td has the form (d ∈ [D′]),

Td = σ1ψ1φ
>
1 + σ2ψ2φ

>
2 + · · ·+ σDψDφ

>
D

where {ψi}Di=1 are the left singular vectors, {φi}Di=1 are the right singular vectors and {σi}Di=1 are
the singular values.

Each of [ψ1, ψ2 . . . ψD] and [φ1, φ2 . . . φD] forms a spanning set in RD, and any vector u ∈ RD can
be spanned using both ψ1:D and φ1:D as the basis.

Let u = α1ψ1 + α2ψ2 + · · · + αDψD = β1φ1 + β2φ2 + · · · + βDφD, where α1:D and β1:D are
scalars.

Since ||u|| = √< u, u > = 1,

||α|| =
√
α2

1 + α2
2 + . . . α2

D = 1 and ||β|| =
√
β2

1 + β2
2 + . . . β2

D = 1

Therefore,

|u>Tdu| = |α1σ1β1 + α2σ2β2 . . . αDσDβD|

≤
√
σ2

1 + σ2
2 + · · ·+ σ2

D

√
α2

1β
2
1 + α2

2β
2
2 . . . α

2
Dβ

2
D (Cauchy-Schwartz Inequality)

≤
√
σ2

1 + σ2
2 + · · ·+ σ2

D

√
α2

1 + α2
2 · · ·+ α2

D

√
β2

1 + β2
2 · · ·+ β2

D

=
√
σ2

1 + σ2
2 + · · ·+ σ2

D

= ||Td||F

Equality holds when Td is of rank 1. Since this holds for any vector u ∈ RD such that ||u|| = 1,
sup
||u||=1

|u>Tdu| ≤ ||Td||F for d ∈ [D′]. Therefore, from Equation 28,

||T ||22 ≤
(
||T1||2F + ‖|T2||2F + · · ·+ ||TD′ ||2F

)
= ||T ||2F =⇒ ||T ||2 ≤ ||T ||F

Lemma 2. (Robust Power Method from (Anandkumar et al., 2014)) If T̂ = T + E ∈ RK×K×K ,
where T is an symmetric tensor with orthogonal decomposition T =

∑K
k=1 λkuk ⊗ uk ⊗ uk with

each λk > 0, and E has operator norm ||E||2 ≤ ε. Let λmin = minKk=1{λk} and λmax =
maxKk=1{λk}. Let there exist constants c1, c2 such that ε ≤ c1 · (λmin/K), and N ≥ c2(logK +
log log (λmax/ε)). Then if Algorithm 1 in (Anandkumar et al., 2014) is called for K times, with
L = poly(K) log(1/η) restarts each time for some η ∈ (0, 1), then with probability at least 1 − η,
there exists a permutation Π on [K], such that,

||uΠ(k) − ûk|| ≤ 8
ε

λΠ(k)
, |λk − λΠ(k)| ≤ 5ε ∀k ∈ [K] (29)

Since ε ≤ c1 · (λmin/K) and λk = 1√
πk
,∀k ∈ [K], we need

N ≥ c2
(

logK + log log

(
Kλmax

c1λmin

))
= c2

(
logK + log log

(
K

c1

√
πmax
πmin

))
(30)

This contributes in the first lower bound (n1) of N in Theorem 1.
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C TAIL INEQUALITY

Lemma 3. If we draw N i.i.d. sample documents x1, x2 . . . xN , and probability mass function,
pairwise probability and triplet probability of the words v estimated from these N samples are p̂(v),
p̂(v, v) and p̂(v, v, v) respectively, whereas the true probabilities are p(v), p(v, v) and p(v, v, v)
respectively with v ∈ {v1, v2 . . . vD} , then with probability at least 1− δ with δ ∈ (0, 1),

||p̂(v)− p(v)||F ≤
2

d̃1s

√
N

(
1 +

√
log(1/δ)

2

)
(31)

||p̂(v, v)− p(v, v)||F ≤
2

d̃2s

√
N

(
1 +

√
log(1/δ)

2

)
(32)

||p̂(v, v, v)− p(v, v, v)||F ≤
2

d̃3s

√
N

(
1 +

√
log(1/δ)

2

)
(33)

where, d̃1s = E [nnz(x)], d̃2s = E
[
nnz(x)2

]
, d̃3s = E

[
nnz(x)3

]
, and nnz(x) is the non-zero

entries in the binary vector representing the words in the documents as described in Section 3 (main
paper).

Proof. Since the number of distinct words in a document is always bounded, we can assume ||x|| ≤
1 ∀x without loss of generality. Then from Lemma 7 of supplementary material of Wang & Zhu
(2014), with probability at least 1− δ with δ ∈ (0, 1),

∣∣∣∣∣∣Ê[x]− E[x]
∣∣∣∣∣∣
F
≤ 2√

N

(
1 +

√
log(1/δ)

2

)
(34)

∣∣∣∣∣∣Ê[xx>]− E[xx>]
∣∣∣∣∣∣
F
≤ 2√

N

(
1 +

√
log(1/δ)

2

)
(35)

∣∣∣∣∣∣Ê[x⊗ x⊗ x]− E[x⊗ x⊗ x]
∣∣∣∣∣∣
F
≤ 2√

N

(
1 +

√
log(1/δ)

2

)
(36)

where E stands for true expectation, and Ê stands for the expectation estimated from theN samples,
i.e.,

Ê[x] =
1

N

N∑
i=1

xi =
1

N
X>1

Ê[xx>] =
1

N

N∑
i=1

xi ⊗ xi =
1

N
X>X

Ê[x⊗ x⊗ x] =
1

N

N∑
i=1

xi ⊗ xi ⊗ xi =
1

N
X ⊗X ⊗X

Now, since the samples contains binary data, probability of the items can be computed from as

p(v) =
E[x]∑
v E[xv]

(37)

Similarly,

p̂(v) =
Ê[x]∑
v Ê[xv]

(38)

15
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Now, since x is a binary vector of dimension D, the sum across its dimensions is
D∑
v=1

xv = nnz(x),

and therefore,
D∑
v=1

E[xv] = E[
D∑
v=1

xv] = E[nnz(x)] ≈ Ê[nnz(x)] =
D∑
v=1

Ê[xv]. Assigning d̃1s =

E[nnz(x)], from Equation 37 and 38, we get

p̂(v)− p(v) =
Ê[x]− E[x]

d̃1s

(39)

Similarly, summing across the respective dimensions, we get
D∑

v1=1

D∑
v2=1

(xx>)v1,v2 =

D∑
v1=1

D∑
v2=1

xv1xv2 = nnz(x)2 and
D∑

v1=1

D∑
v2=1

D∑
v3=1

(x⊗ x⊗ x)v1,v2,v3 = nnz(x)3.

Therefore,
D∑

v1=1

D∑
v2=1

E[(xx>)v1,v2 ] = E[nnz(x)2] = d̃2s ≈
D∑

v1=1

D∑
v2=1

Ê[(xx>)v1,v2 ], and

D∑
v1=1

D∑
v2=1

D∑
v3=1

E[(x⊗x⊗x)v1,v2,v3 ] = E[nnz(x)3] = d̃3s ≈
D∑

v1=1

D∑
v2=1

D∑
v3=1

Ê[(x⊗x⊗x)v1,v2,v3 ].

From here, we can show that,

p̂(v, v)− p(v, v) =
Ê[xx>]− E[xx>]

d̃2s

p̂(v, v, v)− p(v, v, v) =
Ê[x⊗ x⊗ x]− E[x⊗ x⊗ x]

d̃3s

(40)

Plugging these equations in Equation 34, 35 and 36, we can complete the proof.

Also, if y represents the label vector of the documents, since the number of labels per documents is
limited, we can assume ||y|| ≤ 1 without a loss of generality. Then,

Ê[y ⊗ x⊗ x]− E[y ⊗ x⊗ x]

=
1

N

N∑
i=1

yi ⊗ xi ⊗ xi − E[y ⊗ x⊗ x]

=
1

N

N∑
i=1

yi ⊗ xi ⊗ xi −
1

N

N∑
i=1

yi ⊗ E[x⊗ x] +
1

N

N∑
i=1

yi ⊗ E[x⊗ x]− E[y ⊗ x⊗ x]

=
1

N

N∑
i=1

yi ⊗
(
xi ⊗ xi − E[x⊗ x]

)
+

1

N

N∑
i=1

yi ⊗ E[x⊗ x]− E[y ⊗ x⊗ x]

Therefore,∣∣∣∣Ê[y ⊗ x⊗ x]− E[y ⊗ x⊗ x]
∣∣∣∣
F
≤
∣∣∣∣Ê[y]

∣∣∣∣∣∣∣∣Ê[x⊗ x]− E[x⊗ x]
∣∣∣∣
F

+
∣∣∣∣Ê[y]− E[y]

∣∣∣∣∣∣∣∣E[x⊗ x]
∣∣∣∣
F

=
∣∣∣∣Ê[y]

∣∣∣∣∣∣∣∣Ê[xx>]− E[xx>]
∣∣∣∣
F

+
∣∣∣∣Ê[y]− E[y]

∣∣∣∣∣∣∣∣E[xx>]
∣∣∣∣
F

Since ||y|| ≤ 1, ||Ê[y]|| ≤ 1. Also, from ||x|| ≤ 1, we get ||E[xx>]|| ≤ ||x||2 ≤ 1. Therefore,∣∣∣∣Ê[y ⊗ x⊗ x]− E[y ⊗ x⊗ x]
∣∣∣∣
F
≤
∣∣∣∣Ê[xx>]− E[xx>]

∣∣∣∣
F

+
∣∣∣∣Ê[y]− E[y]

∣∣∣∣ (41)
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From Equation 34 and 35,

P

[∣∣∣∣∣∣Ê[y]− E[y]
∣∣∣∣∣∣
F
≤ 2√

N

(
1 +

√
log(1/δ)

2

)]
≥ 1− δ

P

[∣∣∣∣∣∣Ê[xx>]− E[xx>]
∣∣∣∣∣∣
F
≤ 2√

N

(
1 +

√
log(1/δ)

2

)]
≥ 1− δ

Reversing the tail inequalities,

P

[∣∣∣∣∣∣Ê[y]− E[y]
∣∣∣∣∣∣
F
≥ 2√

N

(
1 +

√
log(1/δ)

2

)]
≤ δ

P

[∣∣∣∣∣∣Ê[xx>]− E[xx>]
∣∣∣∣∣∣
F
≥ 2√

N

(
1 +

√
log(1/δ)

2

)]
≤ δ

If E1 and E2 are two events,

P (E1 ∩ E2) = P (E1) + P (E2)− P (E1 ∪ E2)

≤ P (E1) + P (E2)

Therefore,

P

[∣∣∣∣∣∣Ê[y]− E[y]
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣Ê[xx>]− E[xx>]

∣∣∣∣∣∣
F
≥ 4√

N

(
1 +

√
log(1/δ)

2

)]
≤ 2δ

Or,

P

[∣∣∣∣∣∣Ê[y]− E[y]
∣∣∣∣∣∣
F

+
∣∣∣∣∣∣Ê[xx>]− E[xx>]

∣∣∣∣∣∣
F
≤ 4√

N

(
1 +

√
log(1/δ)

2

)]
≥ 1− 2δ

From Equation 41,

P

[∣∣∣∣Ê[y ⊗ x⊗ x]− E[y ⊗ x⊗ x]
∣∣∣∣
F
≤ 4√

N

(
1 +

√
log(1/δ)

2

)]
≥ 1− 2δ

Replacing δ by δ/2,

P

[∣∣∣∣Ê[y ⊗ x⊗ x]− E[y ⊗ x⊗ x]
∣∣∣∣
F
≤ 4√

N

(
1 +

√
log(2/δ)

2

)]
≥ 1− δ

Similar to previous cases
L∑
l=1

D∑
v1=1

D∑
v2=1

(y ⊗ x ⊗ x)l,v1,v2 = nnz(y)nnz(x)2, and therefore,

L∑
l=1

D∑
v1=1

D∑
v2=1

E[(y ⊗ x ⊗ x)l,v1,v2 ] = E[nnz(y)nnz(x)2] ≈ Ê[nnz(y)nnz(x)2]. Assigning

d̃ls = E[nnz(y)nnz(x)2], we can show that,

p̂(l, v, v)− p(l, v, v) =
Ê[y ⊗ x⊗ x]− E[y ⊗ x⊗ x]

d̃ls
(42)

where l stands for the labels (l ∈ {l1, l2 . . . lL}). Therefore, with probability at least 1− δ,

||p̂(l, v, v)− p(l, v, v)||F ≤
4

d̃ls
√
N

(
1 +

√
log(2/δ)

2

)
(43)
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D COMPLETING THE PROOF

Assigning ε1 =

(
1 +

√
log(1/δ)

2

)
in the inequalities of Lemma 3, we get

εM2 = ||M2 − M̂2||2 = ||p̂(v, v)− p(v, v)||2 ≤ ||p̂(v, v)− p(v, v)||F ≤
2ε1

d̃2s

√
N

, and

εM3
= ||M3 − M̂3||2 = ||p̂(v, v, v)− p(v, v, v)||2 ≤ ||p̂(v, v, v)− p(v, v, v)||F ≤

2ε1

d̃3s

√
N

since operator norm is smaller than Frobenius norm for both matrices and tensors (Lemma 1).

Therefore, to satisfy εM2 ≤ σK(M2)/2, we need N ≥ Ω

((
ε1

d̃2sσK(M2)

)2
)

. This contributes in the

second lower bound (n2) of N in Theorem 1.

Similarly, assigning ε2 =

(
1 +

√
log(2/δ)

2

)
in Equation 43, we get

εML
= ||ML − M̂L||2 = ||p̂(l, v, v)− p(l, v, v)||2 ≤ ||p̂(l, v, v)− p(l, v, v)||F ≤

4ε2

d̃ls
√
N

From Appendix B in (?),

εtw = ||M3(W,W,W )− M̂3(Ŵ , Ŵ , Ŵ )||2
≤ ||M3||2

(
||Ŵ ||22 + ||Ŵ ||2||W ||2 + ||W ||22

)
εW + ||Ŵ ||3εM3

≤ ||M3||2
(2 +

√
2 + 1)

σK(M2)
εW +

2
√

2

σK(M2)3/2
εM3

≤ ||M3||2
(3 +

√
2)

σK(M2)
· 2

σK(M2)3/2
εM2 +

2
√

2

σK(M2)3/2
εM3

≤ 10||M3||2
σK(M2)5/2

· εM2 +
2
√

2

σK(M2)3/2
εM3

≤
(

10

d̃2sσK(M2)5/2
+

2
√

2

d̃3sσK(M2)3/2

)
2ε1√
N

(44)

From Lemma 1, ||M3||2 ≤ ||M3||F ≤ 1, because M3 is a tensor with individual elements as
probabilities, with the sum of all elements being 1.

From Lemma 2, ε ≤ c1 · (λmin/K), and we can assign ε as the upper bound of εtw. To satisfy this,
we need (

10

d̃2sσK(M2)5/2
+

2
√

2

d̃3sσK(M2)3/2

)
2ε√
N
≤ c1

λmin

K
, or,(

10

d̃2sσK(M2)5/2
+

2
√

2

d̃3sσK(M2)3/2

)
2ε√
N
≤ c1

1

K
√
πmax

Since πmax ≤ 1, we need N ≥ Ω

(
K2
(

10
d̃2sσK(M2)5/2

+ 2
√

2
d̃3sσK(M2)3/2

)2

ε2

)
. This contributes to

n3 in Theorem 1.
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Here, we will derive the convergence bounds for the parameters. Since µk = W †uk (Algorithm 1
in main paper), with probability at least 1− δ,

||µk − µ̂k||
= ||W †uk − Ŵ †ûk||
= ||W †uk −W †ûk +W †ûk − Ŵ †ûk||
≤ ||W †||2||uk − ûk||+ ||W † − Ŵ †||2||ûk||

≤ ||W †||2
8ε

λk
+ εW †

≤ 8
√
σ1(M2)ε+

2
√
σ1(M2)

σK (M2)
εM2 (45)

where ||uk − ûk|| ≤ 8ε/λk from Lemma 2, and ||ûk|| = 1. Since 1/λk =
√
πk ≤ 1, assigning ε as

the upper bound of εtw in Equation 44, we can say that with probability at least 1− δ,

||µk − µ̂k|| ≤ 8
√
σ1(M2)

(
10

d̃2sσK(M2)5/2
+

2
√

2

d̃3sσK(M2)3/2

)
2ε1√
N

+
2
√
σ1(M2)

σK (M2)

2ε1

d̃2s

√
N

≤
(

160
√
σ1(M2)

d̃2sσK(M2)5/2
+

32
√

2σ1(M2)

d̃3sσK(M2)3/2
+

4
√
σ1(M2)

d̃2sσK (M2)

)
ε1√
N

(46)

Also,

|πk − π̂k| =
∣∣∣∣∣ 1

λ2
k

− 1

λ̂2
k

∣∣∣∣∣ =

∣∣∣∣∣ (λk + λ̂k)(λk − λ̂k)

λ2
kλ̂

2
k

∣∣∣∣∣ =
∣∣∣√πkπ̂k (√πk +

√
π̂k

)
(λk − λ̂k)

∣∣∣
≤ 2|λk − λ̂k| ≤ 10ε (47)

since |λk − λ̂k| ≤ 5ε from Lemma 2. Therefore, with probability at least 1− δ, we get

|πk − π̂k| ≤
(

200

σK(M2)5/2
+

40
√

2

σK(M2)3/2

)
ε1

d̃3s

√
N

(48)

where ε =

(
1 +

√
log(1/δ)

2

)
.

Further, since γ = u>kML(W,W )uk,∣∣∣∣γk − γ̂k∣∣∣∣
=
∣∣∣∣u>kML(W,W )uk − ûk>M̂L(Ŵ , Ŵ )ûk

∣∣∣∣
≤
∣∣∣∣u>kML(W,W )uk − û>kML(W,W )ûk

∣∣∣∣+
∣∣∣∣û>kML(W,W )ûk − û>k M̂L(Ŵ , Ŵ )ûk

∣∣∣∣
≤
∣∣∣∣u>kML(W,W )uk − û>kML(W,W )uk + û>kML(W,W )uk − û>kML(W,W )ûk

∣∣∣∣+
∣∣∣∣ûk∣∣∣∣2∣∣∣∣ML(W,W )− M̂L(Ŵ , Ŵ )

∣∣∣∣
2

≤
∣∣∣∣uk − ûk∣∣∣∣∣∣∣∣ML(W,W )

∣∣∣∣
2

∣∣∣∣uk∣∣∣∣+
∣∣∣∣uk − ûk∣∣∣∣∣∣∣∣ML(W,W )

∣∣∣∣
2

∣∣∣∣ûk∣∣∣∣+
∣∣∣∣ûk∣∣∣∣2∣∣∣∣ML(W,W )− M̂L(Ŵ , Ŵ )

∣∣∣∣
2

= 2
∣∣∣∣uk − ûk∣∣∣∣∣∣∣∣ML(W,W )

∣∣∣∣
2

+
∣∣∣∣ML(W,W )− M̂L(Ŵ , Ŵ )

∣∣∣∣
2

≤ 2
∣∣∣∣uk − ûk∣∣∣∣∣∣∣∣W ∣∣∣∣2∣∣∣∣ML

∣∣∣∣
2

+
∣∣∣∣ML(W,W )− M̂L(Ŵ , Ŵ )

∣∣∣∣
2

≤ 2
∣∣∣∣uk − ûk∣∣∣∣∣∣∣∣W ∣∣∣∣2 +

∣∣∣∣ML(W,W )− M̂L(Ŵ , Ŵ )
∣∣∣∣

2
(49)

since
∣∣∣∣uk∣∣∣∣ =

∣∣∣∣ûk∣∣∣∣ = 1. Also, from Lemma 1,
∣∣∣∣ML

∣∣∣∣
2
≤
∣∣∣∣ML

∣∣∣∣
F
≤ 1, since

∣∣∣∣ML

∣∣∣∣
2

is a
tensor with the sum of its elements as 1.
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Now,∣∣∣∣ML(W,W )− M̂L(Ŵ , Ŵ )
∣∣∣∣

2

=
∣∣∣∣ML(W,W )−ML(Ŵ , Ŵ ) +ML(Ŵ , Ŵ )− M̂L(Ŵ , Ŵ )

∣∣∣∣
2

≤
∣∣∣∣ML(W,W )−ML(Ŵ , Ŵ )

∣∣∣∣
2

+
∣∣∣∣Ŵ ∣∣∣∣2∣∣∣∣ML − M̂L

∣∣∣∣
2

=
∣∣∣∣ML(W,W )−ML(W, Ŵ ) +ML(W, Ŵ )−ML(Ŵ , Ŵ )

∣∣∣∣
2

+
∣∣∣∣Ŵ ∣∣∣∣2∣∣∣∣ML − M̂L

∣∣∣∣
2

≤
∣∣∣∣ML(W,W )−ML(W, Ŵ )

∣∣∣∣
2

+
∣∣∣∣ML(W, Ŵ )−ML(Ŵ , Ŵ )

∣∣∣∣
2

+
∣∣∣∣Ŵ ∣∣∣∣2∣∣∣∣ML − M̂L

∣∣∣∣
2

≤
∣∣∣∣W ∣∣∣∣∣∣∣∣W − Ŵ ∣∣∣∣∣∣∣∣ML

∣∣∣∣
2

+
∣∣∣∣Ŵ ∣∣∣∣∣∣∣∣W − Ŵ ∣∣∣∣∣∣∣∣ML

∣∣∣∣
2

+
∣∣∣∣Ŵ ∣∣∣∣2∣∣∣∣ML − M̂L

∣∣∣∣
2

= (
∣∣∣∣W ∣∣∣∣+

∣∣∣∣Ŵ ∣∣∣∣)∣∣∣∣ML

∣∣∣∣
2
εW +

∣∣∣∣Ŵ ∣∣∣∣2εML

≤ (
∣∣∣∣W ∣∣∣∣+

∣∣∣∣Ŵ ∣∣∣∣)εW +
∣∣∣∣Ŵ ∣∣∣∣2εML

(50)

Therefore, ∣∣∣∣γk − γ̂k∣∣∣∣
≤ 2
∣∣∣∣uk − ûk∣∣∣∣∣∣∣∣W ∣∣∣∣2 + (

∣∣∣∣W ∣∣∣∣+
∣∣∣∣Ŵ ∣∣∣∣)εW +

∣∣∣∣Ŵ ∣∣∣∣2εML

≤ 16
ε

λk

∣∣∣∣W ∣∣∣∣2 + (
∣∣∣∣W ∣∣∣∣+

∣∣∣∣Ŵ ∣∣∣∣)εW +
∣∣∣∣Ŵ ∣∣∣∣2εML

≤ 16
ε

σK(M2)
+ (
∣∣∣∣W ∣∣∣∣+

∣∣∣∣Ŵ ∣∣∣∣)εW +
∣∣∣∣Ŵ ∣∣∣∣2εML

Since 1/λk =
√
πk ≤ 1. Assigning ε as the upper limit of εtw in Equation 44, with probability

1− δ,∣∣∣∣γk − γ̂k∣∣∣∣
≤ 16

σK(M2)

(
10

d̃2sσK(M2)5/2
+

2
√

2

d̃3sσK(M2)3/2

)
2ε1√
N

+
1 +
√

2√
σK(M2)

2

σK(M2)3/2

2ε1√
Nd̃2s

+
2

σK(M2)

4ε2√
Nd̃ls

≤
(

80

d̃2sσK(M2)7/2
+

16
√

2

d̃3sσK(M2)5/2
+

1 +
√

2

d̃2sσK(M2)2

)
4ε1√
N

+
8ε2

d̃lsσK(M2)
√
N

where, ε1 =

(
1 +

√
log(1/δ)

2

)
and ε2 =

(
1 +

√
log(2/δ)

2

)
. This completes the proof of Theorem

1.
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