
Seal-Tools: Self-Instruct Tool Learning Dataset for Agent Tuning and
Detailed Benchmark

Anonymous ACL submission

Abstract

This paper presents a new tool learning dataset001
Seal-Tools, which contains self-instruct API-002
like tools. Seal-Tools not only offers a large003
number of tools, but also includes instances004
which demonstrate the practical application005
of tools. Seeking to generate data on a large006
scale while ensuring reliability, we propose a007
self-instruct method to generate tools and in-008
stances, allowing precise control over the pro-009
cess. Moreover, our Seal-Tools contains hard010
instances that call multiple tools to complete011
the job, among which some are nested tool012
callings. For precise and comprehensive evalu-013
ation, we use strict format control and design014
three metrics from different dimensions. There-015
fore, Seal-Tools can serve as a new benchmark016
to evaluate the tool-calling ability of LLMs. Fi-017
nally, we evaluate several prevalent LLMs and018
our finetuned model on Seal-Tools. The results019
show that current systems are far from perfect.020
The code, data and experiment results will be021
available at https://github.com/ .022

1 Introduction023

Large Language Models (LLMs) have shown024

strong abilities in many tasks in recent years025

(Achiam et al., 2023, Wu et al., 2023). Many re-026

searchers attempt to use the LLMs as agents (Shen027

et al., 2023, Patil et al., 2023, Liang et al., 2023),028

which help users complete difficult tasks by using029

external tools or plugins. The agents serve as a030

bridge between the users and the tools. Therefore,031

it is particularly important to teach the LLMs how032

to understand and utilize tools correctly (Qin et al.,033

2023, Li et al., 2023). For this purpose, we need034

to prepare high-quality tool learning datasets for035

enhancing the capabilities of the LLMs as well as036

precise evaluation.037

A tool learning dataset often includes tool pool038

which contains different kinds of tools, and in-039

stances which call the tools to complete tasks. In040

the previous studies, the researchers have built sev- 041

eral datasets and achieved a certain of success (Hao 042

et al., 2023, Li et al., 2023, Xu et al., 2023), but 043

the datasets exhibit some shortcomings. Hao et al. 044

(2023) and Li et al. (2023) craft tools by hand but 045

the amount is limited. Xu et al. (2023) collects 046

real-world APIs from Rapid API Hub1 to construct 047

instances but results are evaled by ChatGPT with 048

simple metrics that causes inaccurate evaluation 049

and costs money. The benchmark of Li et al. (2023) 050

is coarse-grained, only considering text similarity 051

during evaluation. And its training data is not open 052

source. To summarize, a large-scale high-quality 053

dataset is urgently needed for tuning the agents and 054

performing the automatic precise evaluation. 055

In our preliminary experiments, we directly use 056

the LLMs to generate the tools and the instances. 057

It is easy to obtain a large-scale dataset. However, 058

the model has limited context length and often out- 059

puts duplicate tools. The generated instances are 060

mostly simple which can be solved with a quick 061

glance. Moreover, it’s hard to ensure the correct- 062

ness of tool callings in each instance due to the 063

LLM hallucination. 064

To overcome the above challenges, in this pa- 065

per we propose a self-instruct method to utilize 066

the LLMs to generate a new tool learning dataset, 067

named as Seal-Tools. In our method, we first use 068

a LLM to generate a set of fields which refer to 069

different domains, and then tools (just like in Fig- 070

ure 1) are generated for each field. This simple 071

strategy can well avoid the duplication and diver- 072

sity problems. Given the tool pool, we further 073

generate the instances which call single/multiple 074

tools to resolve requests. We separate the genera- 075

tion into multi steps and set up several checking 076

steps to greatly reduce errors caused by the LLM 077

hallucination. We use JSON format to describe 078

the tools and instances strictly. Besides, we suc- 079

1https://rapidapi.com/hub

1

https://github.com/
https://rapidapi.com/hub

Tool Template

api_name:

api_description:

field:

parameters:

required:

responses:

field / subfield

param_X

param_A : type description

param_B : type description

…

param_Y

resp_1 : type description

resp_2 : type description

…

An Example

api_name: getTemperature

api_description: Retrieve current temperature information

field:Weather/Temperature

parameters: {
location:{type:str, description:The location for which you want to
get the temperature (e.g., Beijing, London, New York)},
unit:{type:str, description:The desired unit for temperature (e.g.,
Celsius, Fahrenheit)},
time_of_day:{type:str, description:Specify a time of day for
temperature (e.g., morning, afternoon, night)}}

required: [location]

responses:{
temperature:{type:float, description:The temperature at the
specified location},
unit:{type:str, description:The unit of temperature in which the
temperature is provided}}

Figure 1: Tool template of Seal-Tools and the tool "getTemperature" as an example.

cessfully generate some instances with nested tool080

callings thanks to the well-designed construction081

method and calling template. These instances have082

extremely difficult queries to solve and are valuable083

for finetuning.084

To make Seal-Tools a comprehensive bench-085

mark, we design three evaluation dimensions for de-086

tailed metrics: Output Format, Tool Selection, and087

Tool-Parameter Filling-in. Since we post-process088

the LLM outputs into JSON format in Seal-Tools,089

the evaluation can be more automatic and precise090

compared to the previous ones.091

Contributions of this paper are listed as follow-092

ing:093

• We propose a self-instruct method to use094

LLMs to generate tool learning datasets. Our095

method can generate various in-field tools096

and single/multiple-tool instances which are097

mostly reliable through quality control.098

• A brand new tool learning dataset, named as099

Seal-Tools, is constructed for agent tuning.100

Compared with the previous datasets, Seal-101

Tools is relatively large and contains hard in-102

stances with nested tool callings. With the103

help of strict format control, we can perform104

precise evaluation automatically.105

• For a comprehensive evaluation, we design106

3 main metrics in different dimensions. We107

implement the mainstream agent system and108

finetune its foundation model with Seal-Tools. 109

From the results, we find that the current sys- 110

tems show room for improvement, especially 111

in nested calling. 112

2 Related Work 113

2.1 In-Context Learning 114

In-context learning (ICL) has become the paradigm 115

for the use of LLMs. We add some examples or so- 116

called demonstrations of the task in prompt. Mod- 117

els can finish what users want them to do very 118

well through learning from demos. According to 119

Dong et al. (2022), ICL presents for the first time 120

in GPT3’s technical report (Brown et al., 2020). As 121

it’s widely used, Hendel et al. (2023) explores the 122

operational mechanisms behind it. ICL demos may 123

play similar roles as continuous-value learnable 124

token of prompt tuning. Gao et al. (2023) proves 125

the importance of demo selection and studied how 126

to select better demos with the help of retriever. 127

Auto-ICL (Yang et al., 2023) attempts to let LLMs 128

generate similar questions with answers. ICL then 129

can be applied in scenarios without human supervi- 130

sion. 131

2.2 Tool Learning 132

Tool learning is actually a subtask of serving LLMs 133

as agents in our opinion. The agent which supports 134

for tool calling consists of the foundation model, 135

retriever and tool pool. The foundation model is 136

2

③ Instance Generation

② Tool Generation① Field Generation

Tool
Parameter

Value Example
Check

Rule

Tool Calling
Template

For privacy
information

For most
parametersFormat /

Duplication
Check

Parameter
Value Example

Format Check Duplication
Check

Field

Sub-Field

Tool Pool
Selection

Single-
Tool

Instance

Multiple-
Tool

Instance

Parameter
Value

Figure 2: Flowchart of the dataset construction method.

the core component which decides how to reply to137

users and whether to call tools. The retriever is re-138

sponsible for researching relevant tool information139

according to the user query. The tool pool is used140

to store and manage tool information. We look141

through a lot of related works and find that tool142

learning can be summarized into two categories143

(prompt-based and finetune-based) according to144

how LLMs learn to use tools.145

a. Prompt-Based Tool Learning146

Prompt-based agent has an external tool pool.147

The foundation model selects proper tools in148

prompt given by the retriever like ToolLLM (Qin149

et al., 2023) and API-Bank (Li et al., 2023). Hug-150

gingGPT (Shen et al., 2023) and Gorilla (Patil et al.,151

2023) serve models as tools for use. Prompt-based152

agent has more flexible and large-scale tool pools.153

We use this kind of framework in this paper to ex-154

plore how LLMs can call a huge amount of tools155

accurately.156

b. Finetune-Based Tool Learning157

Finetune-based agent doesn’t need an extra tool158

pool. The foundation model learns which tools it159

has and how to use them through finetuning. Go-160

rilla (Patil et al., 2023) tests the zero-shot scenario161

(which means no retriever) since it‘s finetuned with162

relevant self-instruct dataset. ToolkenGPT (Hao163

et al., 2023) transforms tools into special tokens164

and adds them into the vocabulary. Finetune-based165

agent calls tools accurately and rapidly but needs166

to be finetuned in advance to remember those tools. 167

3 Method 168

In this section, we talk about how our dataset con- 169

struction method works and what the quality of 170

constructed result is. The highlight of the method 171

is that it is convenient for everyone to try and does 172

not require too much human involvement. We can 173

put more efforts on designing the tool template and 174

ICL prompts, LLMs will finish all other jobs. The 175

amount of data generated can be controlled at will 176

within LLM capability. 177

3.1 Dataset Construction 178

We adopt the self-instruct strategy to generate 179

datasets with LLMs. But generative models have 180

shortcomings like hallucination, context length lim- 181

itations, etc. When constructing dataset with LLMs, 182

we must make sure there are no logical errors and 183

the answer matches the question because of the 184

hallucination. Also avoiding too many duplicates 185

when generating data on a large scale is a challenge 186

due to context length limitations. Thus, to over- 187

come the above challenges, we propose a novel 188

dataset construction method. As shown in Figure 2, 189

our solution contains three steps: Field Genera- 190

tion, Tool Generation and Instance Generation. In 191

our paper, Field, Tool, and Instance are defined as 192

follows: 193

Field: It describes the specific domain to which 194

3

the tool belongs. We categorize tools into specific195

layered fields (2 layers here, field and subfield)196

based on their use.197

Tool: A tool is able to perform a specific job. It198

has name, description, input/output parameters and199

so on as shown in Figure 1 before.200

Instance: It is a practical use case of the tool,201

containing user query and tool calling. There are202

two categories, single-tool instance and multiple-203

tool instance. Single-tool instance invokes only204

one tool while multiple-tool instance invokes mul-205

tiple tools.206

In brief, LLM crafts in-field tools according to207

pre-generated fields. Then LLM makes up some208

instances which can be solved by these tools.209

We construct dataset Seal-Tools by ChatGPT.210

Due to funding constraints, the dataset scale has211

not yet reached the upper limit of our construction212

method and model capacity.213

3.1.1 Field Generation214

This section is about how to generate various fields.215

We’ve tried skipping this step and going straight to216

tool generation. We find the tools generated repeat217

frequently in that way. To enhance tool diversity,218

we use field information as an anchor. Large mod-219

els are asked to generate tools corresponding to220

a segmented field. We set hierarchical fields to221

ensure that the functional classification of tools is222

sufficiently granular. The number of tools gener-223

ated has steadily increased.224

First take an field example as the initial demon-225

stration to fill in the prompt. LLM generates field226

set with the insturction "Please generate a field list227

in the format of a python list." through ICL. After228

that, subfields for all fields in field set are generated229

with the instruction "Please generate a subfield list230

in the format of a python list for the ? field."231

in the same way. Finally we generate 2 levels of232

fields, including 146 fields with 5,860 subfields..233

As shown in Figure 3, field “Science” has multiple234

subfields.235

3.1.2 Tool Generation236

Initially, we think this step would be simple and we237

just have to generate a lot of tools. In the next step,238

We try to generate instance with only tool informa-239

tion but it works badly. LLM tends to fill in api240

callings with general and repetitive concepts which241

are in low quality and these values may be not men-242

tioned in the query. We later find that it would be243

effective to generate examples of parameter values244

Field Subfield Tool

Science

Finance

Marketing

Entertainment

Mathematics

Physics

Chemistry

Computer
Science

calculateForce

calculateVelocity

balanceEquation

getMolarMass

…
…

…

…

Figure 3: Some examples of generated fields/subfields
and tools.

at the same time as generating the tool. 245

When generating parameter values, We find 246

LLM tends to refuse to output entities in real world. 247

That’s probably a restriction added for security and 248

privacy. So we ask LLM to "make up" some proper 249

entities as parameter values. The experiment shows 250

that this kind of prompt works well. But there may 251

be potential privacy leaks from LLMs. 252

Then we figure out a suitable method for tool 253

generation. At first, we design the tool template 254

and make up a tool example to initialize the tool 255

pool. LLM generates tools in the given subfield 256

with the instruction "Please generate some APIs 257

according to the given field/sub-field. An API is 258

a function with input parameters and output re- 259

sponses." through ICL. When writing the prompt, 260

it’s important to add requirements of generating 261

examples of values in parameter description like 262

"(e.g. , ___, ___)". After checking the format of 263

generated new tools, we put them into the tool pool 264

if not repetitive. When LLM doesn’t output new 265

tools in one subfield for several times, we switch to 266

next subfield. After generating with all subfields, 267

we examined whether required parameters of each 268

tool have example values. If not, we collect them in 269

categories and generate examples in batch through 270

ICL. For some parameters of sensitive user infor- 271

mation (phone number, email address, etc.) , we 272

generate values using rules. In conclusion, we get 273

the tool set and parameter values now. Finally we 274

generate 4,076 tools. Every tool belongs to a sub- 275

field just like Figure 3. 276

3.1.3 Instance Generation 277

The instance contains two parts: the user query and 278

tool callings (how to invoke tools like Figure 4) 279

. LLMs can make up different styles of queries 280

4

Calling Template

api:

parameters:

responses: API_call_0 API_call_1

param_A :

param_B :
…

An Example

api: getTemperature

parameters: {
location: Shanghai
time_of_day: morning
}
Responses: [API_call_0, API_call_1]

query: Good morning. How's the temperature in Shanghai today?

Figure 4: An instance template for single-tool calling.

with given parameter values. For better finetuning281

effects, we choose to generate queries in a brief282

style.283

For single-tool instances, we choose the tool and284

pick up parameter values to fill in the prompt. It285

is successful to generate the single-tool invoking286

instance by ICL. Finally we generate 4076 single-287

tool instances.288

For multiple-tool instances, the prompt in single-289

tool instance generation is hard to get good output.290

The tool callings generated through ICL are mostly291

confusing in format. Since it might be difficult292

for LLMs nowadays, we try to simplify it into two293

steps and transform the question answering task294

into blank filling task. At the first step, LLM should295

choose several tools which can be combined into296

one query from huge amount candidate tools in297

prompt as shown in Figure 2. Then we generate298

the tool invoking template according to the chosen299

tools. At the second step, LLM only needs to fill300

in parameter values with given examples and gen-301

erate the relevant query. Finally we generate 10k302

multiple-tool instances.303

The innovation of this step is that we could gen-304

erate some multiple-tool instances with nested call-305

ing (simply called nested instances) in this way.306

In the nested instance, Figure 5 for example, the re-307

sponse value of the previous invoked tool could be308

parameter value of the next invoked tool. All tools309

invoked can form a directed acyclic graph instead310

of flow line. This is closer to complex real-world311

application scenarios and makes our evaluations312

more effective.313

Nested Calling Example

api: searchRestaurant
parameters:{...}
Responses: [API_call_0,

API_call_1, …]

api: checkTrafficConditions
parameters:{location:

...}
Responses: [API_call_3]

api: callTaxi
parameters:{status:

...}
Responses: [API_call_4, …]

api: planSchedule
parameters:{location:

time:
...}

Responses: [API_call_6, …]

Figure 5: An example for multiple-tool instance with
nested calling.

3.2 Dataset Analysis 314

We compare Seal-Tools with several common tool 315

learning datasets in Table 1: ToolBench2, API- 316

Bank3 and ToolAlpaca4. The result shows that 317

our dataset is competitive among all datasets. 318

Figure 6: Required parameters amount of tools compar-
ison between Seal-Tools and ToolBench.

With regard to tools, we propose the first open- 319

source batch generation method with self-instruct 320

strategy. The quality of tools generated may be not 321

inferior to real-world tools collected by ToolBench. 322

As Figure 6 shows, we find nearly 34% tools in 323

ToolBench have no required parameters. In Seal- 324

Tools, the amount is only 6%. Models have to fill 325

in more parameters in each instances just like the 326

avg. params amount show in Table 1. 327

As for instances, the scale of Seal-Tools is very 328

large, second only to ToolBench. It also contains 329

2ToolBench lists data in Table 1 of the original paper. We
count number of APIs as tools in our settings.

3API-Bank has evaluation data implemented by human
and self-instruct training data. We get information of APIs
and single/multiple callings in Table 2 of the original paper.
The training data seems to be not publicly available.

4ToolAlpaca lists data in Table 1 of the original paper. We
count number of functions as tools.

5

Seal-Tools
(ours)

ToolBench
(Xu et al., 2023)

API-Bank
(Li et al., 2023)

ToolAlpaca
(Tang et al., 2023)

Tools
Source self-instruct real-world self-instruct + annotation real-world + annotation
Amount 4,076 16,464 2,211 2,386
Avg. params (required) 1.551 1.013 unknown N/A†

Instances

Source self-instruct self-instruct self-instruct + annotation self-instruct
Amount 14,076 126,486 4,125 3,938
├Multiple-tool callings 10,000 ≈85,330 615 1,426
└Nested-tool callings 586 N/A♣ unknown N/A♣

Cross-field tool callings ✔ ✔ unknown ✘

Benchmark
Metric Acc, P/R/F1 Pass Rate, Win Rate Acc, Rouge N/A
Tool parameter ✔ ✘ ✔ N/A
Deterministic evaluation ✔ ✘ ✔ N/A

Total open-source? ✔ ✔ ✘ ✔

Extensible (fully self-instruct) ? ✔ ✘ ✘ ✘

Table 1: Comparison of several Tool Learning datasets. † Formatting confusion. ♣ Multi-step.

more hard instances like cross-field callings and330

nested callings which test LLM’s ability to think331

logically. Most datasets ask LLMs to call one tool332

in one response. It often needs multiple steps to333

handle difficult problems. While Seal-Tools asks334

LLMs to give above multiple-tool callings in one335

turn chat instead of step-by-step by other datasets.336

It is much more difficult to solve and closer to real-337

world scenarios. We think it helps improve agent338

execution efficiency.339

Seal-Tools also provides very detailed evalua-340

tions. We post-process the output of LLMs into341

JSON format for evaluating tool selection and pa-342

rameter filling-in. But ToolBench and API-Bank do343

not process it. ToolBench could only get pass rate344

and win rate given by ChatGPT. It is not determin-345

istic since ChatGPT has its own preferences and346

limitations. API-Bank calculates the rouge score.347

ToolAlpaca doesn‘t provide evaluation. When eval-348

uating agents, we could calculate the correctness349

of every selected tool and its parameters. Model350

capabilities such as understanding tools, generating351

parameters, etc. are presented more clearly.352

Moreover, it can be extended with our current353

most automated construction method. Seal-Tools354

can be used in more places without worrying about355

dataset scale. We just need to provide the universal356

tool template and ICL prompts to generate much357

more data. Other method can only generate more358

instances. Both tools and instances can be gen-359

erated much more within the capability of LLMs.360

Furthermore, tools and instances are generated to-361

gether in a complete self-consistent generative pro-362

cess in our method so they can be more harmonized363

with each other.364

4 Experiment 365

4.1 Evaluation Metric 366

There are currently no standardized evaluation met- 367

rics for tool learning task. For evaluating in detail, 368

we design 3 main eval metrics: Format ACC, Tool 369

P/R/F1 and Parameter P/R/F1. Specific calcula- 370

tions can be found in Appendix C. 371

Format ACC measures the format accuracy of 372

model output. The foundation model should fol- 373

low instructions in the prompt so that tools can be 374

invoked well. 375

Tool P/R/F1 measures the tool selection abil- 376

ity of foundation model. The specific calculation 377

is similar to P/R/F1 metrics for the information 378

extraction task. Please refer to the appendix for 379

details, the same below. 380

Parameter P/R/F1 measures the tool parameter 381

filling-in ability. We use these metrics to hierar- 382

chically examine the capability of the foundation 383

model to understand and use tools. 384

4.2 Main Result 385

4.2.1 Overall 386

Here is the main evaluation section of the paper. 387

We hope that this experiment simulates the perfor- 388

mance of agent in a real environment. As men- 389

tioned in Section 2.2, when a prompt-based agent 390

system receives a user query, it uses the retriever to 391

search for relevant tools firstly. Then the founda- 392

tion model decides whether to use candidate tools 393

according to the query and generate a reply. So 394

we eval the performance of different retrievers and 395

select the best retriever DPR to add to the system. 396

More details about the selection of retriever are in 397

Appendix D. 398

6

Model Format ACC Tool Parameter
P R F1 P R F1

ChatGPT (gpt-3.5-turbo-0613) 96.16 83.20 74.73 78.74 68.63 66.85 67.73
GPT4 (gpt-4-0613) 97.12 90.02 74.71 81.65 80.52 67.57 73.48

LLaMA2 7B 40.55 47.91 26.74 34.33 33.52 20.43 25.39
LLaMA2-Chat 7B 78.73 62.10 53.91 57.72 44.92 43.24 44.06
Vicuna 7B-v1.5 70.83 67.33 49.81 57.26 49.11 42.26 45.43
Mistral 7B-Instruct-v0.2 77.03 76.84 59.65 67.16 64.81 50.25 56.61
ToolLLaMA2 7B-v2 13.44 19.35 0.96 1.84 18.98 0.84 1.61
Ours (finetuned on LLaMA2-7B)

w/ BM25 95.57 79.67 74.79 77.15 73.51 70.76 72.11
w/ DPR 95.86 82.81 77.84 80.25 75.95 70.23 72.98

Table 2: Overall result. All LLMs use DPR retriever as default.

We finetune LLaMA2-7B5 with Seal-Tools. The399

tools in prompt are given mainly by retriever DPR.400

We add the missing gold tools to the prompt in the401

train split. When evaluating, DPR gives the top-5402

relevant tools.403

Table 2 represents the main result of tool learn-404

ing task. Open-source LLMs perform similarly.405

They all have great potential for making further406

progress. Searchers can try to add more tool learn-407

ing datasets in the pre-training phase.408

It is also reasonable that ToolLLaMA which is409

finetuned with ToolBench has a bad performance.410

Single dataset fine-tuning severely impacts LLM’s411

understanding of other instructions.412

After finetuning with Seal-Tools, our model can413

output much more correct tool callings than the414

base model. Tool F1 increases 45.92% and Pa-415

rameter F1 increases 47.59% as shown in Table 2.416

It even outperforms ChatGPT and is slightly infe-417

rior to GPT4. The score proves that Seal-Tools is418

efficient in finetuning.419

We discuss about various instances in Section420

4.2.2 and Section 4.2.3 below. The difficulty of421

different instances is shown in Figure 7 roughly for422

reference (Higher in the bar graph means simpler).423

Overall Single-Tool Multiple-Tool Nested

Figure 7: Simplicity level of different kinds of instances.
Visualized using Mistral’s Parameter F1 metric.

5https://huggingface.co/meta-llama/
Llama-2-7b-hf

4.2.2 Single/Multiple-Tool Instances 424

We count for single/multiple-tool instances in Ta- 425

ble 3 for more details. For most models, they do 426

better in single-tool instances than multi-tool in- 427

stances. Calling a single tool is easier than calling 428

multiple tools, which is to be expected. While 429

LLaMA2 and Vicuna are exceptions. Since this 430

looks a little strange, we check their outputs and 431

find that they tend to call more tools when dealing 432

with single-tool instances. Maybe LLaMA2 uses 433

some low-quality corpus during pre-training or it 434

is not well trained. LLaMA2 tends to invoke more 435

tools and doesn’t know how to make trade-offs. 436

Our model outperforms GPT4 in single-tool in- 437

stances but falls slightly behind in multiple-tool 438

instances. How to further improve the performance 439

of multiple-tool calling is the focus of our future 440

research. 441

4.2.3 Nested Instances 442

We collect all 586 nested instances in Seal-Tools. 443

The performance of different models is listed in 444

Table 4. It shows that nested instances are the most 445

difficult for models to solve. LLaMA2-Chat and 446

Mistral behaves poorly compared to other data. 447

For our model, since 501 of these data have been 448

used in the train split, We calculate the final scores 449

separately. Although the model has seen them dur- 450

ing the finetuning process, its Parameter F1 is only 451

77.12%, not too high. For unseen data, it performs 452

5.11% worse than multiple-tool instances. But it 453

is still better than raw model LLaMA2 which con- 454

firms the effect for finetuning. In summary, our 455

dataset Seal-Tools is of high quality with these 456

hard instances. 457

7

https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf

Model
Single-Tool Multi-Tool

Format ACC Tool Parameter Format Acc Tool Parameter
P R F1 P R F1 P R F1 P R F1

ChatGPT 98.98 88.01 94.90 91.33 74.28 83.94 78.82 95.38 82.70 73.01 77.55 68.11 65.49 66.77
GPT4 98.64 88.16 96.26 92.03 82.00 85.16 83.55 96.70 90.24 72.86 80.62 80.37 66.17 72.58

LLaMA2 44.22 25.83 42.18 32.04 15.93 28.66 20.48 39.53 54.52 25.42 34.68 38.43 19.78 26.11
LLaMA2-Chat 85.37 40.27 81.63 53.93 26.54 63.21 37.38 76.89 67.02 51.54 58.27 49.03 41.64 45.03
Vicuna 76.53 47.65 72.45 57.49 33.79 59.76 43.17 69.25 71.13 47.88 57.23 51.85 40.87 45.71
Mistral 86.73 72.99 86.39 79.13 66.14 68.29 67.20 74.34 77.36 57.36 65.88 64.67 48.81 55.63
ToolLLaMA 21.77 12.50 2.72 4.47 11.94 1.63 2.86 11.13 22.95 0.81 1.57 21.05 0.78 1.50
Ours

w/ BM25 98.30 91.81 91.50 91.65 84.31 85.16 84.73 94.81 78.57 73.36 75.87 72.61 69.61 71.08
w/ DPR 98.30 93.13 92.18 92.65 85.54 85.37 85.45 95.19 81.88 76.61 79.16 75.12 69.02 71.94

Table 3: Results for single-tool / multiple-tool instances.

Model Format ACC Tool Parameter
P R F1 P R F1

LLaMA2-Chat 79.86 73.04 58.39 64.90 37.23 34.66 35.90
Mistral 68.43 84.16 57.67 68.44 52.00 36.94 43.20
Ours 96.76 89.64 85.82 87.69 77.32 74.15 75.70
├ has seen (501) 96.41 91.03 86.61 88.76 78.88 75.43 77.12
└ still unseen (85) 98.82 81.71 81.08 81.40 67.66 66.02 66.83

Table 4: Result for nested instances.

4.3 Extended Result458

4.3.1 Evaluation of Parameter Filling-In459

We focus on testing LLMs’ parameter filling-460

in ability for multiple-tool instances in this sub-461

section. Prompts for finetuning LLaMA2 and eva-462

lutation only contain gold tools. The results are463

listed in Table 5.464

For tool selection, since only gold tools are given465

in prompt, Tool P for each model should ideally466

reach 100%. Our model works as expected, but467

LLaMA2 and ChatGPT do not due to the in-context468

hallucination. For parameter filling in, as shown469

in Table 5, the finetuned model performs very well470

even through only the results of multiple-tool in-471

stances are counted. Considering all the above472

facts„ Seal-tools is helpful for improving the abil-473

ity of parameter filling-in for the LLM. However,474

how to finetune the LLM to make it more robust475

remains to be investigated.476

Model Format ACC Tool Parameter
P R F1 P R F1

LLaMA2-chat 82.74 99.86 80.72 89.27 72.37 70.38 71.36
ChatGPT 94.06 99.97 92.82 96.26 80.94 85.22 83.02
Ours 98.87 100.00 98.84 99.41 94.26 93.65 93.95

Table 5: Result of parameter filling-in. Only needed
tools are given in the prompt.

4.3.2 Error Analysis477

In Figure 8, we count the types of errors made478

by our model with retriever DPR in Section 4.2.479

Understanding where mistakes are made allows us 480

to continually strive for further improvement. 481

For tool selection, how to retrieve all needed 482

tools is most urgent. The limitations of existing 483

retriever training methods are mentioned in Ap- 484

pendix D. Hallucination also needs to be noted, 485

since models may generate tools that are not in the 486

retrieval results. 487

For parameter filling in, most of the errors are 488

that models do not extract the correct keywords 489

from queries. LLM omits the required parameters 490

for 7% and overfills with unmentioned parameters 491

for 9%. Besides, 14% of the errors are due to 492

models not understanding the query requirements 493

or not converting to the parameter request format. 494

Omission
7%

Surplus
9%

Extraction
70%

Transformation
14%

Parameter

Retriever
56%Selection

26%

Hallucination
18%

Tool

Figure 8: Error in tool selection and parameter filling-in.

5 Conclusion 495

In this paper, we present a novel construction 496

method for building dataset Seal-Tools which in- 497

cludes a set of tools and instances. In our method, 498

we carefully control the quality of auto-generated 499

data, increasing reliability and diversity. In Seal- 500

Tools, hard instances include nested tool callings 501

and cross-field callings, which have seldomly been 502

investigated in previous studies.. We further design 503

evaluation metrics from three dimensions. Experi- 504

mental results show that current agent systems still 505

have room for improvement. We believe that Seal- 506

Tools can serve as a new benchmark and boost the 507

research on tool learning with LLMs. 508

8

Limitations509

One possible limitation of our work is the format510

of tools. We refer to previous work and use JSON511

format to store and call tools. We cannot prove512

whether LLMs are good at handling data in JSON513

format. The final evaluation results may be affected514

to some extent. We need to find a more reasonable515

data format or try to avoid its impact on the tool516

learning task in the future.517

Another limitation is that our data is generated518

by LLMs so that we cannot control the number of519

high quality hard instances. We think instances520

with nested tool callings is of extremely high qual-521

ity. However, it accounts for a relatively small por-522

tion of our generated instances with multiple-tool523

callings.524

Besides, we talk about the extensibility of Seal-525

Tools with our self-instrcut dataset construction526

method. However, there is no discussion of the up-527

per limit of its construction. As the LLM continues528

to output, the tools or instances generated will be529

more easily duplicated. Due to funding limitations,530

we are unable to do larger scale construction ex-531

periments on ChatGPT and GPT4. However, there532

is no downward trend in the unit response valid-533

ity of ChatGPT in our trial which can be seen in534

Appendix B.535

References536

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama537
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,538
Diogo Almeida, Janko Altenschmidt, Sam Altman,539
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.540
arXiv preprint arXiv:2303.08774.541

Tom Brown, Benjamin Mann, Nick Ryder, Melanie542
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind543
Neelakantan, Pranav Shyam, Girish Sastry, Amanda544
Askell, et al. 2020. Language models are few-shot545
learners. Advances in neural information processing546
systems, 33:1877–1901.547

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai548
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel549
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young550
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To-551
ward a realistic and diverse dialog dataset. In Pro-552
ceedings of the 2019 Conference on Empirical Meth-553
ods in Natural Language Processing and the 9th In-554
ternational Joint Conference on Natural Language555
Processing (EMNLP-IJCNLP), pages 4516–4525,556
Hong Kong, China. Association for Computational557
Linguistics.558

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-559
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and560

Zhifang Sui. 2022. A survey for in-context learning. 561
arXiv preprint arXiv:2301.00234. 562

Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan, 563
Kazuma Hashimoto, Karthik Raman, and Michael 564
Bendersky. 2023. Ambiguity-aware in-context learn- 565
ing with large language models. arXiv preprint 566
arXiv:2309.07900. 567

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting 568
Hu. 2023. Toolkengpt: Augmenting frozen lan- 569
guage models with massive tools via tool embeddings. 570
arXiv e-prints, pages arXiv–2305. 571

Roee Hendel, Mor Geva, and Amir Globerson. 2023. 572
In-context learning creates task vectors. In Find- 573
ings of the Association for Computational Linguis- 574
tics: EMNLP 2023, pages 9318–9333, Singapore. 575
Association for Computational Linguistics. 576

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 577
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 578
Wen-tau Yih. 2020. Dense passage retrieval for open- 579
domain question answering. In Proceedings of the 580
2020 Conference on Empirical Methods in Natural 581
Language Processing (EMNLP), pages 6769–6781, 582
Online. Association for Computational Linguistics. 583

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, 584
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang, 585
and Yongbin Li. 2023. API-bank: A comprehensive 586
benchmark for tool-augmented LLMs. In Proceed- 587
ings of the 2023 Conference on Empirical Methods 588
in Natural Language Processing, pages 3102–3116, 589
Singapore. Association for Computational Linguis- 590
tics. 591

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, 592
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji, 593
Shaoguang Mao, et al. 2023. Taskmatrix. ai: Com- 594
pleting tasks by connecting foundation models with 595
millions of apis. arXiv e-prints, pages arXiv–2303. 596

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E 597
Gonzalez. 2023. Gorilla: Large language model 598
connected with massive apis. arXiv e-prints, pages 599
arXiv–2305. 600

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 601
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 602
Bill Qian, et al. 2023. Toolllm: Facilitating large 603
language models to master 16000+ real-world apis. 604
arXiv e-prints, pages arXiv–2307. 605

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, 606
Raghav Gupta, and Pranav Khaitan. 2020. Towards 607
scalable multi-domain conversational agents: The 608
schema-guided dialogue dataset. In Proceedings of 609
the AAAI conference on artificial intelligence, vol- 610
ume 34, pages 8689–8696. 611

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 612
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 613
gpt: Solving ai tasks with chatgpt and its friends in 614
huggingface. arXiv e-prints, pages arXiv–2303. 615

9

https://doi.org/10.18653/v1/D19-1459
https://doi.org/10.18653/v1/D19-1459
https://doi.org/10.18653/v1/D19-1459
https://doi.org/10.18653/v1/2023.findings-emnlp.624
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,616
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-617
alized tool learning for language models with 3000618
simulated cases. arXiv e-prints, pages arXiv–2306.619

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-620
bert, Amjad Almahairi, Yasmine Babaei, Nikolay621
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti622
Bhosale, et al. 2023. Llama 2: Open foundation623
and fine-tuned chat models. arXiv e-prints, pages624
arXiv–2307.625

Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang626
Liu, Qing-Long Han, and Yang Tang. 2023. A brief627
overview of chatgpt: The history, status quo and628
potential future development. IEEE/CAA Journal of629
Automatica Sinica, 10(5):1122–1136.630

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,631
Zhengyu Chen, and Jian Zhang. 2023. On the tool632
manipulation capability of open-source large lan-633
guage models. arXiv e-prints, pages arXiv–2305.634

Jinghan Yang, Shuming Ma, and Furu Wei. 2023. Auto-635
icl: In-context learning without human supervision.636
arXiv preprint arXiv:2311.09263.637

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara,638
Raghav Gupta, Jianguo Zhang, and Jindong Chen.639
2020. MultiWOZ 2.2 : A dialogue dataset with640
additional annotation corrections and state tracking641
baselines. In Proceedings of the 2nd Workshop on642
Natural Language Processing for Conversational AI,643
pages 109–117, Online. Association for Computa-644
tional Linguistics.645

A Prompts of Dataset Construction646

A.1 Field Generation647

Generating Initial Field
Please generate a field list in the format of a648

python list. Try to cover all areas.649

Tips:650

1. The field should be coarse-grained.651

2. The job is really important. Please finish it652

perfectly with your full effort.653

For example:654

field_list = [655

"{}",656

"{}",657

]658

Generating Sub-Field
Please generate a subfield list in the format of a659

python list for the "{}" field.660

Tips:661

1. The subfield should be fine-grained.662

2. The subfield list is used to classify tasks to the663

specified subfield.664

3. The job is really important. Please finish it665

perfectly with your full effort.666

A.2 Tool Generation 667

Generating In-Field Tool
Please generate some APIs according to the 668

given field/sub-field. An API is a function with 669

input parameters and output responses. It’s like 670

a tool to help with all kinds of fields. The gener- 671

ated APIs should be related to the field. This task 672

is really important for human beings, so please 673

finish it with your best effort. 674

675

676

For example: 677

field:"{}" 678

sub-field:"{}" 679

{} 680

681

682

Tips: 683

1. Generate enough parameters in "parameters" 684

list. Parameters in the "required" list are defi- 685

nitely needed each time; only core parameters 686

should be selected from "parameters" list. 687

2. The format of the "field" key is "field/sub- 688

field". 689

3. Your answer should be in JSON format，the 690

format of your answer should be strictly consis- 691

tent with the example. 692

4. Make sure descriptions of parameters end with 693

examples of values in the format of "(e.g., value1, 694

value2, value3, ...)". You can just make up some. 695

5. The "type" key in lists of "parameters" and 696

"responses" should be selected from ["str", "int", 697

"float", "bool"]. 698

699

700

Now generate some APIs like above as many as 701

possible. 702

703

704

field:"{}" 705

sub-field:"{}" 706

{{ }} 707

A.3 Instance Generation 708

Generating Single-Tool Instance
Please generate the task description. The task 709

requires calling API to finish. Make sure the 710

task description coherent and natural. Please 711

don’t mention API in task description, API call- 712

ing should be obtained by logical derivation. 713

714

715

10

https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13
https://doi.org/10.18653/v1/2020.nlp4convai-1.13

For example:716

function calling =717

{{"api":"translate", "parameters":{{"text":"Hello718

world", "source_language":"English", "tar-719

get_language":"Japanese"}}}}720

Task description =721

[Tell me how to speak "Hello world" in722

Japanese.]723

724

725

function calling =726

{{"api":"book_meeting", "parame-727

ters":{{"meeting_title":"academic research",728

"meeting_date":"2023-09-10", "meet-729

ing_time":"3:00 p.m."}}}}730

Task description =731

[Book a meeting for "academic research" on732

September 10, 2023, at 3:00 p.m.]733

734

735

Now finish the following content in the format736

of the example above.737

738

739

function calling =740

{}741

Task description =742

[]743

Tool combination
Here is a list of APIs. Please select and com-744

bine parts of given_apis to create a specific and745

complex task.746

Tips:747

1. Ensure that the selected APIs have a strong748

association and a logical relationship to each749

other.750

2. You don’t need to follow the original order of751

the APIs, but the chronological order of execu-752

tion.753

754

755

For example:756

input:757

given_apis = [{{’getWeatherForecast’: ’Re-758

trieve weather forecast information’}}, {{’calcu-759

lateBMI’: ’Calculate Body Mass Index (BMI)760

based on height and weight’}}, {{’translate-761

Text’: ’Translate text from one language to an-762

other’}}, {{’generateQRCode’: ’Generate a QR763

code for a given text or URL’}}, {{’getHotelDe-764

tails’: ’Retrieve detailed information about a765

hotel’}}, {{’getAirQualityIndex’: ’Retrieve the 766

air quality index (AQI) information for a spe- 767

cific location’}}, {{’searchRestaurant’: ’Search 768

for a restaurant based on various criteria’}}, 769

{{’checkTrafficConditions’: ’Retrieve current 770

traffic conditions information’}}, {{’searchHo- 771

tels’: ’Search for hotels based on various crite- 772

ria’}}, {{’reserveRentalCar’: ’Reserve a rental 773

car for a specific location and time’}}, {{’check- 774

FlightAvailability’: ’Check the availability of 775

flights for a specified route and date’}}, {{’getAr- 776

ticleDetails’: ’Retrieve details of an article by 777

providing its identifier’}}, {{’cancelHotelReser- 778

vation’: ’Cancel a hotel reservation’}}, {{’call- 779

Taxi’: ’Request a taxi service for transporta- 780

tion’}}] 781

output: 782

selected_apis = [’searchHotels’, ’getHotelDe- 783

tails’, ’cancelHotelReservation’] 784

task_description = [’Find the reserved hotel and 785

obtain its information in order to cancel the reser- 786

vation due to a schedule change.’] 787

788

789

Please return the chosen list of APIs in the format 790

of a Python list named ’selected_apis’ and gen- 791

erate a paragraph describing the task, as shown 792

in the upper example. Don’t mention any API in 793

the ’task_description’. 794

795

796

input: 797

given_apis = {} 798

output: 799

Generating Multiple-Tool Instance
Please use APIs in api_list to create a specific 800

and complex task. First, fill in the blanks with 801

parameter values in api_calling. Then, write the 802

task description based on the api calling. 803

Tips for improved_api_calling generation: 804

1. Borrow from the parameter description or 805

make up some specific and niche entities in real- 806

ity as parameter values, without using the word 807

"example". 808

2. Whenever possible, use the re- 809

sponses("API_call_" + serial number) of 810

previous APIs as parameter values. 811

3. For different parameters, try to set the same 812

value to combine APIs together and make the 813

task more consistent. 814

Tips for task_description generation: 815

11

1. Make sure that all parameter values in the816

improved_api_calling list are mentioned in the817

task_description except the "API_call_" + serial818

number or "API".819

820

821

For example:822

input:823

api_list = [{{"api_name": "searchRestaurant",824

"api_description": "Search for a restaurant825

based on various criteria", "parameters": {{"cui-826

sine": {{"type": "str", "description": "The827

type of cuisine you prefer"}}, "price_range":828

{{"type": "str", "description": "The price829

range you’re looking for"}}, "rating": {{"type":830

"float", "description": "The minimum rating831

you want for the restaurant"}}, "open_now":832

{{"type": "bool", "description": "Specify if833

you want to find restaurants that are cur-834

rently open (true or false)"}}}}, "required":835

[], "responses": {{"location": {{"type": "str",836

"description": "The location of the enquired837

restaurant"}}}}}}, {{"api_name": "checkTraf-838

ficConditions", "api_description": "Retrieve cur-839

rent traffic conditions information", "param-840

eters": {{"location": {{"type": "str", "de-841

scription": "The location for which you want842

to check traffic conditions"}}, "time_of_day":843

{{"type": "str", "description": "Specify the844

time of day for checking traffic conditions"}},845

"traffic_source": {{"type": "str", "description":846

"Specify the source of traffic information"}},847

"include_incidents": {{"type": "bool", "descrip-848

tion": "Include information about traffic inci-849

dents and accidents"}}}}, "required": ["loca-850

tion"], "responses": {{"traffic_level": {{"type":851

"str", "description": "The traffic level at the852

specified location"}}, "estimated_travel_time":853

{{"type": "int", "description": "The estimated854

travel time in minutes based on current traf-855

fic conditions"}}, "average_speed": {{"type":856

"int", "description": "The average speed of857

traffic in miles per hour (mph)"}}, "inci-858

dents": {{"type": "str", "description": "In-859

formation about any traffic incidents or ac-860

cidents (if included in the request)"}}}}}},861

{{"api_name": "callTaxi", "api_description":862

"Request a taxi service for transportation",863

"parameters": {{"pickup_location": {{"type":864

"str", "description": "The location where865

you want to be picked up"}}, "destination":866

{{"type": "str", "description": "The destina- 867

tion address where you want to go"}}, "pas- 868

senger_count": {{"type": "int", "description": 869

"The number of passengers"}}, "ride_type": 870

{{"type": "str", "description": "The type of 871

ride you prefer"}}, "special_requests": {{"type": 872

"str", "description": "Any special requests or 873

instructions for the driver"}}}}, "required": 874

["pickup_location", "destination"], "responses": 875

{{"status": {{"type": "str", "description": "The 876

status of the taxi request"}}, "driver_name": 877

{{"type": "str", "description": "The name of 878

the assigned taxi driver (if available)"}}, "es- 879

timated_arrival_time": {{"type": "str", "descrip- 880

tion": "The estimated time of arrival of the 881

taxi"}}}}}}] 882

origin_api_calling = [{{"api": "searchRestau- 883

rant", "parameters": {{"cuisine": ___}}, "re- 884

sponses": ["API_call_0"]}}, {{"api": "check- 885

TrafficConditions", "parameters": {{"loca- 886

tion": ___, "time_of_day": ___}}, "responses": 887

["API_call_1", "API_call_2", "API_call_3", 888

"API_call_4"]}}, {{"api": "callTaxi", "param- 889

eters": {{"pickup_location": ___, "destina- 890

tion": ___}}, "responses": ["API_call_5", 891

"API_call_6", "API_call_7"]}}] 892

output: 893

improved_api_calling = [{{"api": "searchRestau- 894

rant", "parameters": {{"cuisine": "Italian"}}, 895

"responses": ["API_call_0"]}}, {{"api": "check- 896

TrafficConditions", "parameters": {{"location": 897

"API_call_0", "time_of_day": "afternoon"}}, 898

"responses": ["API_call_1", "API_call_2", 899

"API_call_3", "API_call_4"]}}, {{"api": "call- 900

Taxi", "parameters": {{"pickup_location": "Nan- 901

jing Road", "destination": "API_call_0"}}, 902

"responses": ["API_call_5", "API_call_6", 903

"API_call_7"]}}] 904

task_description = ["Please help me to plan a 905

convenient and enjoyable dinner outing. Find a 906

nearby Italian restaurant with good reviews, then 907

check the current traffic conditions from Nanjing 908

Road to the restaurant"s location. If the traffic 909

is favorable, you can reserve a rental car at 5:00 910

p.m. for the evening."] 911

912

913

Please complete the following content in the 914

provided format above. You only need to re- 915

turn the "improved_api_calling" list and the 916

"task_description". 917

12

input:918

api_list = {}919

origin_api_calling = {}920

output:921

B Generated Tool Amount per Time922

In the whole process, The amount of generated923

tools holds up like in Figure 9. Benefits from the924

pre-generated field information, tools can be gener-925

ated on a larger scale. Otherwise we may get only926

around 100 tools by ChatGPT.927

350

300

250

200

150

100

50

0

unfilterd tools filtered tools

Figure 9: Generated Tool amount per 200 times. Dupli-
cate tools are filtered in real-time.

C Detailed Formulae for Evaluation928

Metrics929

FormatACC =
amountcorrect format

amountall

Tool P =
amountcorrect tools
amountpredict tools

Tool R =
amountcorrect tools
amountgold tools

Tool F1 =
2 · Tool P · Tool R
Tool P + Tool R

Parameter P =
amountcorrect tools
amountpredict tools

Parameter R =
amountcorrect tools
amountgold tools

Parameter F1 =
2 · Parameter P · Parameter R

Parameter P + Parameter R

930

D Retriever Comparison931

Two classical retrievers are tested, the discrete re-932

triever BM25 and the dense retriever DPR. There is933

something special when training DPR. Retrievers934

like DPR are used in open-domain QA task before.935

Generally speaking, a open-domain question may936

have multiple answers but it’s okay to answer only937

one of them. However in the tool learning task, the938

retriever is asked to find out all needed tools. Even939

one missing tools means that the reply can’t be gen- 940

erated properly. The loss function in training step 941

is different from that in traditional settings. We try 942

to use contrastive loss but the result is terrible. The 943

gold tools of one query is trained one by one and 944

the retriever seems to only remember the last tool 945

seen. We use the ranking loss finally and get sig- 946

nificantly improved result. There should be better 947

prescription remained to be studied. 948

Figure 10: Retriever: DPR v.s. BM25.

As the result in Figure 10 shows, DPR performs 949

better than BM25 which means the retrieval task 950

involves semantic understanding. We can’t find 951

out all relevant tools by simple keywords matching. 952

We use DPR as the retriever in agent system finally. 953

How to optimize the retriever deserves further re- 954

search. 955

E Generalization Verification 956

Model Tool_ACC Param_Selection_F1 Param_Fill-in_F1

LLaMA2-Chat 55.49/26.78/13.49/25.05 48.80/35.55/17.76/29.83 27.79/24.02/16.51/23.61
Ours 32.56/26.58/27.75/31.60 42.87/40.20/42.85/44.02 32.30/31.76/35.93/33.01

Table 6: Experiments on Benchmark which is trans-
formed from TOD datasets.

We construct a small tool learning benchmark 957

for initial validation before. In the early stages of 958

exploring the tool learning task, we think it’s a good 959

idea to get useful data from other tasks since there 960

is a serious lack of it. This dataset is transformed 961

from task-oriented dialogues (TOD) datasets SGD 962

(Rastogi et al., 2020), Multwoz2.2 (Zang et al., 963

2020) and Taskmaster (Byrne et al., 2019). The 964

dataset contains 20 tools and 519 instances. 965

We design 4 styles of prompts (vanilla, role-play, 966

task description and imitaton) to eval through ICL 967

in Table 6: 968

Vanilla: It’s the basic instruction containing a 969

brief introduction to the task. 970

13

Role-play: We let LLM play the role of an NLP971

technologist who is well versed in all kinds of972

tasks. The Prompt focuses on describing the pow-973

erful natural language understanding capabilities974

of the technologist and does not describe the task975

specifics.976

Task description: In such prompts, we inform977

LLMs in detail how to fulfill the corresponding978

tasks. We explain the key concepts involved in979

detail and describe how to perform them step by980

step.981

Imitation: Given LLM’s strong in-context learn-982

ing or few-shot learning capabilities, this prompt983

focuses on guiding LLM to learn how to complete984

the task from the examples given.985

It’s somewhat unexpected that the model fine-986

tuned in Section 4.3.1 performs better than the chat987

model. Our Seal-Tools might be helpful in instruc-988

tion tuning to enhance the overall capabilities of989

LLMs. But when we test the finetuned model in990

Section 4.2, it perfroms badly. We might get out991

some conclusions: the model learns how to fill in992

parameters when given all needed tools in prompt;993

the model learns how to select tools and what tools994

are used for when given the retrieved tool list.995

14

	Introduction
	Related Work
	In-Context Learning
	Tool Learning

	Method
	Dataset Construction
	Field Generation
	Tool Generation
	Instance Generation

	Dataset Analysis

	Experiment
	Evaluation Metric
	Main Result
	Overall
	Single/Multiple-Tool Instances
	Nested Instances

	Extended Result
	Evaluation of Parameter Filling-In
	Error Analysis

	Conclusion
	Prompts of Dataset Construction
	Field Generation
	Tool Generation
	Instance Generation

	Generated Tool Amount per Time
	Detailed Formulae for Evaluation Metrics
	Retriever Comparison
	Generalization Verification

