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DualFed: Enjoying both Generalization and Personalization in
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ABSTRACT
In personalized federated learning (PFL), it is widely recognized that
achieving both high model generalization and effective personal-
ization poses a significant challenge due to their conflicting nature.
As a result, existing PFL methods can only manage a trade-off be-
tween these two objectives. This raises an interesting question: Is
it feasible to develop a model capable of achieving both objectives
simultaneously? Our paper presents an affirmative answer, and the
key lies in the observation that deep models inherently exhibit hier-
archical architectures, which produce representations with various
levels of generalization and personalization at different stages. A
straightforward approach stemming from this observation is to se-
lect multiple representations from these layers and combine them to
concurrently achieve generalization and personalization. However,
the number of candidate representations is commonly huge, which
makes this method infeasible due to high computational costs. To
address this problem, we propose DualFed, a new method that can
directly yield dual representations correspond to generalization
and personalization respectively, thereby simplifying the optimiza-
tion task. Specifically, DualFed inserts a personalized projection
network between the encoder and classifier. The pre-projection rep-
resentations are able to capture generalized information shareable
across clients, and the post-projection representations are effective
to capture task-specific information on local clients. This design
minimizes the mutual interference between generalization and
personalization, thereby achieving a win-win situation. Extensive
experiments show that DualFed can outperform other FL methods.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence.

KEYWORDS
Federated Learning, Generalization, Personalization, Representa-
tion Learning

1 INTRODUCTION
Federated learning (FL) [41] is an emerging machine learning para-
digm that enables multiple clients to collaboratively train a model
while preserving their data privacy. In real-world applications, data
distributions across clients are often non-independent and iden-
tically distributed (Non-IID). For instance, in video surveillance,
the data collected by distributed cameras can vary significantly
due to differences in weather and lighting conditions [7, 19, 28, 42].
This Non-IID data distributions can significantly degrade the FL
model performance [64, 67]. Currently, there are primarily two
objectives to mitigate this issue: improving model generalization
to accommodate more clients or enhancing model personalization
to better adapt local data distributions. However, since local data

(a) (b) (c)

Global Parameters Personalized Parameters

Encoder Projection Network Classifier

Client 1 Client 1 Client 1
⋮ ⋮

Client M Client M Client M

⋮

Figure 1: Different forms that combines the representations
and the classifier. (a) Global encoder with personalized clas-
sifier, (b) Personalized classifier with global encoder, (c) Our
proposed DualFed that utilizes hierachical representations.

distributions often differ from the global distribution in Non-IID
FL, these two optimized objectives are typically in conflict.

Personalized federated learning (PFL), which aims to balance
model generalization with personalization, serves as an effective
approach to address the challenges posed by Non-IID data. Earlier
PFL approaches suggest sharing the classifier or encoder, while
personalizing the other [1, 12, 35]. This strategy aims to strike a bal-
ance between client collaboration and local adaptation, as presented
in Figure 1 (a) and (b). However, these approaches can only ensure
that the encoder to generate either the generalized or personalized
representations. Thereby, some PFL methods suggest personalizing
specific parameters within the encoder, allowing it to extract the
representations that exhibit both generalization and personaliza-
tion [33, 50, 52]. Additionally, some PFL techniques concurrently
use global and personalized classifiers for predictions [6, 63] to
harmonize generalization and personalization. Nevertheless, these
methods inherently involve a trade-off between model generaliza-
tion and personalization. This leads to an interesting question: Is
it feasible to create a model that can achieve both of these
objectives concurrently in Non-IID FL?

In fact, the dilemma in existed PFL methods primarily because
they rely solely on post-encoder representations for decision-making.
This design presents a significant hurdle as it necessitates the post-
encoder representations to simultaneously exhibit both high gen-
eralization and personalization – objectives that are inherently
contradictory in Non-IID FL. It is well known that deep models nat-
urally produce hierarchical representations, as evidenced in studies
such as [2, 18, 40, 44, 47, 51, 56, 59, 61]. The shallow layers capture
general patterns that are transferable across different data distribu-
tions. As we delve into deeper layers, the representations become
more specified for the downstream task. This implies that both the
generalization and personalization that PFL seeks for are already
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existed within the model. These observations do shed some lights
on us: Can we leverage the hierachical representations within
the deep model to achieve both high model generalization and
personalization simulatenously?

In this paper, we provide a positive response to the question
posed earlier. A straightforward method for leveraging hierarchical
representations involves directly selecting both generalized and
personalized representations from them. However, this approach
can incur substantial computational costs, owing to the volume
of the candidate representations [48]. To address this problem, we
introduce DualFed, a new PFL approach that not only straightfor-
ward to implement but also effectively decouple these two types of
representations. As shown in Figure 1 (c), in DualFed, wemodify the
commonly used encoder-classifier architecture by inserting a pro-
jection network between the encoder and classifier. This modifica-
tion generates representations at two distinct stages, aligning with
the objectives of generalization and personalization, respectively.
Specifically, the pre-projection representations generated before
the projection network, are isolated from local tasks, making them
more transferable across clients. Conversely, the post-projection
representations produced after the projection network are closer
to the decision layers, being more discriminative and personalized
to local data distributions. To align with the objectives of these two
representations, we maintain a shared encoder while localizing the
projection network. A global classifier and a personalized classifier
are trained using the pre-projection and post-projection represen-
tations, respectively. During inference, the outputs from these two
classifier are combined to yield the final predictions, effectively
benefiting from collaboration across clients and local adaptation.

We conduct extensive experiments onmultiple datasets to demon-
strate the effectiveness of DualFed. The experimental results show
that DualFed can outperform state-of-the-art (SOTA) FL methods.

2 RELATEDWORK
Federated Learning. FL [22, 30] can be categorized into general
FL (GFL) [23, 31, 41] and personalized FL (PFL) [1, 12, 33, 35, 52, 53].
GFL aims to develop a generalized model that can be shared across
clients. However, in Non-IID FL, it becomes challenging for a global
model to satisfy the diverse needs of multiple clients, often leading
to significant performance degradation [64, 67]. Consequently, PFL
has emerged as an effective solution for these Non-IID situations
by introducing model personalization to better align with local
data distributions. There are various approaches to implement PFL,
including model clustering [3, 4, 16, 49], and the personalization of
specific parameters within the model [1, 12, 33, 35, 52]. However,
these PFL methods can only manage a trade-off between these
two objectives, as they expect the post-encoder representations to
achieve the conflicting objectives.

Representation Learning in Deep Models. Since advanced
deep learning models are typically organized as hierachical layers,
analysing how representations evolve during the representation
extraction process has been an established field [40, 44, 56, 59, 61].
Previous research indicates that deepmodels start by extracting gen-
eralized features and progressively filter out irrelevant components,
retaining only those crucial for downstream tasks [40, 59]. This

has inspired numerous studies that leverage intermediate represen-
tations, in domains like object detection [36], image classification
[14], and speech processing [11, 27]. However, selecting the opti-
mal representations for each specific problem is computationally
challenging [48]. In response, SimCLR [8] proposes to use a scal-
able projection network during training and discard it afterwards.
This design has become a common practice in both supervised
learning [15, 24, 57] and self-supervised learning [5, 9, 10, 17, 60].
Since then, numerous studies have explored the projector’s role in
model training from empirical [2, 32, 48, 57] and theoretical perspec-
tives [21, 56, 58]. The common explanation is that the projection
network differentiates the representations of the pre-training and
downstream tasks, thereby enhancing the model transferability
[57]. This situation is especially significant when the pre-training
and downstream tasks are misaligned [2]. Nevertheless, the effects
of projection network within FL are still not fully understood.

Federated Learning within Representation Space. The pri-
mary contribution of these methods is the regularization of the rep-
resentation space to mitigate data heterogeneity [37, 38, 46, 54, 62,
63, 65, 66]. A straightforward strategy in these approaches involves
directly calibrating the representation space. For instance, CCVR
[38] post-calibrates the classifier after federated training using vir-
tual representations. Another research direction links performance
degradation to the misalignment of representation spaces across
clients [65, 66]. In response, various methods have been developed
to explicitly align the representation space across clients. Notably,
FedProto [54], AlignFed [66], and FedFA [65] use class-wise repre-
sentation centers for representation alignment. Additionally, some
methods achieve alignment by implementing a fixed classifier. For
instance, FedBABU [43] employs a randomly initialized classifier,
SphereFed [13] introduces an orthogonal classifier, while FedETF
[34] implements an ETF (Equiangular Tight Frame) classifier during
model training. However, these representation alignment methods
primarily focus on extracting generalized representations shareable
across clients, often overlooking the personalized representations
specific to local tasks. Consequently, recent studies have concen-
trated on balancing both model generalization and personalization.
For example, Fed-RoD [6] achieving this goal combining the pre-
dictions of personalized and global classifiers. Yet, these methods
face challenges, as they rely solely on representations at the same
stage. Expecting the single-stage representations to exhibit both
generalization and personalization is often intertwined.

3 PRELIMINARIES
In this section, we present some preliminaries related to DualFed,
including the PFL framework and its motivation.

3.1 Federated Learning
In this paper, we consider a standard PFL setting which consists
of a central server and 𝑀 distributed clients. For each client𝑚 ∈
[𝑀], there are totally 𝑁𝑚 samples {𝒙𝑖𝑚,𝒚𝑖𝑚}𝑁𝑚

𝑖=1 drawn from the
distribution D𝑚 , where 𝒙𝑖𝑚 ∈ X𝑚 ⊆ R𝑛 represents the raw input
and 𝒚𝑖𝑚 ∈ Y𝑚 ⊆ {0, 1}𝐶 represents the corresponding label, with𝐶
denoting the total number of classes. In Non-IID scenarios within
PFL, the data distributions are assumed to be heterogeneous across
clients, indicating that D𝑖 ≠ D𝑗 ,∀𝑖, 𝑗 ∈ {1, 2, . . . 𝑀}, 𝑖 ≠ 𝑗 .
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The goal of a standard PFL setting is to develop a model𝜓𝑚 (·)
parameterized by Θ𝑚 for client𝑚. The corresponding optimization
objective can be expressed as:

arg min
Θ1,...,Θ𝑀

L(Θ1, . . . ,Θ𝑀 ) ≜ arg min
Θ1,...,Θ𝑀

1
𝑀

𝑀∑︁
𝑚=1

L𝑚 (Θ𝑚), (1)

where L(Θ1, . . . ,Θ𝑀 ) represents the overall optimization objective
for the PFL system,L𝑚 (Θ𝑚) denotes the empirical risk for client𝑚.
In PFL, directly optimizing L(Θ1, . . . ,Θ𝑀 ) is commonly infeasible
as the clients cannot access the data on other clients. Therefore, a
PFL training procedure typically involves the independently local
updating performed on participating clients utilizing their own
empirical risk and the model aggregation performed on the server.
Specifically, for client𝑚, its empirical risk is defined as:

L𝑚 (Θ𝑚) := 1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1

ℓ (𝒚𝑖𝑚, �̂�𝑖𝑚), (2)

with �̂�𝑖𝑚 = 𝜓𝑚 (𝒙𝑖𝑚 ;Θ𝑚) representing the model’s prediction for
𝒙𝑖𝑚 , and ℓ : Y ×Y → R being the loss function that quantifies the
prediction error (e.g., cross-entropy loss).

Once the local training on clients is completed, the participating
clients upload their updated global parameters within the model
to the server. The server then averages the parameters at corre-
sponding positions to generate new global parameters. These global
parameters are subsequently distributed to the clients for the next
round of local updating. By iteratively performing local training
and model aggregation, PFL facilitates collaborative model training
without the need to share raw data from the clients.

For the sake of brevity, we occasionally omit the superscript
denoting the sample index in subsequent sections of this paper. Ad-
ditionally, we sometimes denote personalized parameters with the
superscrip 𝑝 (e.g., Θ𝑝

𝑚), and global parameters with the superscript
𝑠 (e.g., Θ𝑠

𝑚), to clarify the expressions in the following sections.

3.2 Motivation of DualFed
As shown Figure 1 (a) and (b), in previous studies of PFL, the model
Θ𝑚 is commonly divided into an encoder 𝑓𝑚 (·) and a classifier
ℎ𝑚 (·) [1, 12, 43, 65, 66], parameterized by 𝜃 𝑓𝑚 and 𝜃ℎ𝑚 , respectively.
The encoder 𝑓𝑚 (·) : X𝑚 → Z𝑚 generally consists of a series
of stacked convolutional layers. It maps the raw input 𝒙𝑚 from
X𝑚 ⊆ R𝑛 into a representation spaceZ𝑚 ⊆ R𝑘 , which is denoted
as 𝒛𝑚 = 𝑓 (𝒙𝑚 ;𝜃 𝑓𝑚). Here, 𝒛𝑚 ∈ Z𝑚 denotes the representation
generated from 𝒙𝑚 utilizing the encoder 𝑓𝑚 (·). Practically, the
dimension of this representation is significantly smaller than that
of the raw input, which implies that 𝑘 ≪ 𝑛. The classifier, ℎ𝑚 (·) :
Z𝑚 → Y𝑚 , generally includes a fully connected (FC) layer and a
softmax layer. It generates the normalized predictions �̂�𝑚 based on
the representation 𝒛𝑚 , which is indicated as �̂�𝑚 = ℎ𝑚 (𝒛𝑚 ;𝜃ℎ𝑚).

Nonetheless, the widely used encoder-classifier architecture
proves to be problematic in PFL. In this framework, each client’s
model has dual objectives: collaborating with other clients to im-
prove its generalization and adapting to its own local data dis-
tribution for better personalization. Within the encoder-classifier
architecture, only the representations after the encoder, referred to
as the post-encoder representations, are used for decision-making.

This approach can lead to a dilemma in PFL, as generalization and
personalization are contradictory objectives, particularly in Non-
IID scenarios. More specifically, to enhance model generalization,
the post-encoder representations should capture shared informa-
tion across varying data distributions among clients. On the other
hand, enhancing model personalization requires these representa-
tions to capture specific information aligned with each client’s local
data distribution. When the data distribution varies significantly
across clients, these two types of information can be vastly different.
Consequently, in this encoder-classifier architecture, ensuring that
the post-encoder representations simultaneously meet these two
conflicting objectives is a challenging task.

To address the dilemma mentioned earlier, we shift our focus
on the process of representation extraction within the deep mod-
els. Advanced deep models are typically organized in a hierachical
architecture. As shown in previous studies, these models initially
extract generalized representations that are transferable across var-
ious data distributions [2, 18, 40, 44, 47, 51, 56, 59, 61]. As the model
progresses to deeper layers, it gradually discards irrelevant compo-
nents and retains only information relevant to the specific task. In
other words, both the generalized and personalized representations
that PFL seeks for are already existed within the model. By leverag-
ing these hidden generalized and personalized representations, we
can achieve both high generalization and personalization in PFL.
However, directly extracting these specific representations during
the representation extraction phase is computationally challenging
[48]. Therefore, DualFed adopts a simpler strategy by incorporating
a personalized projection network, which effectively decouples the
generalized and personalized representations. Further details on
this approach are discussed in the subsequent sections.

4 METHOD
In this section, we present a detailed discussion of our proposed
DualFed. First, we provide a framework overview of DualFed. Fol-
lowing that, we present the procedure of local training on the clients
and model aggregation implemented on the server, respectively.

4.1 Framework Overview of DualFed
Figure 2 presents the framework of DualFed. It aligns with the
standard training framework of PFL, which includes iterative local
training on clients and global model aggregation on the server. The
key innovation in DualFed, as compared to previous PFL methods,
is the integration of a personalized projection network situated be-
tween the encoder and the classifier. We refer to this personalized
projection network as 𝑔𝑝𝑚 (·), with its parameters denoted by 𝜃𝑔,𝑝𝑚 .
Functionally, this projection network,𝑔𝑝𝑚 (·) : Z𝑚 → U𝑚 is usually
a MLP (multi-layer perceptron). By inserting this projection net-
work, the representations produced by the encoder are not directly
inputted into the classifier for prediction. Instead, they first pass
through the projection network, which remaps them to a personal-
ized representation space U𝑚 ⊆ R𝑑 . Formally, we represent this
process as 𝒖𝑚 = 𝑔(𝒛𝑚 ;𝜃𝑔,𝑝𝑚 ). For clarity, we term the representation
before the projection network (i.e., 𝒛𝑚) as the pre-projection rep-
resentations, and the representation after the projection network
(i.e., 𝒖𝑚) as the post-projection representations.
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③ ①
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Figure 2: Framework overview of DualFed. It consists of 4
steps in a single global round: 1) the server broadcasts global
encoder and classifier to each client; 2) each client performs
local updating by iteratively updaingmain branch and global
classifier; 3) each client uploads its updated global encoder
and classifier to the server; 4) the server aggregates encoders
and classifiers from clients to generate newones. This process
is repeated until the model converges.

Drawing on the hierarchical nature of deep model representation
extraction, the pre-projection and post-projection representations
in our framework exhibit distinct characteristics, aligning with
the generalized and personalized objectives of PFL, respectively.
Specifically, the pre-projection representations are separated from
the final outputs by the projector network, meaning that they are
not directly tied to the local tasks on each client. As previously
studies have shown, these pre-projection representations are easier
transferred across different data distributions [48, 57]. Therefore, in
DualFed, the post-projection representations are fed into a global
classifier ℎ𝑠𝑚 (·), which is parameterized by 𝜃

ℎ,𝑠
𝑚 . Additionally, to

encourage the encoder to extract more generalized information, we
let the encoder be shared among clients in DualFed. The predictions
from this global classifier is expressed as:

�̂�𝑠𝑚 = ℎ𝑠𝑚 ◦ 𝑓 𝑠𝑚 (𝒙𝑚),∀𝑚 ∈ [𝑀] . (3)

Conversely, the post-projection representations are more closely
aligned with the final outputs. This implies that these representa-
tions are more pertinent to accomplishing tasks related to the local
data distribution. In DualFed, to effectively adapt to these local dis-
tributions, we utilize a personalized classifier ℎ𝑝𝑚 (·) for each client,
parameterized by 𝜃ℎ,𝑝𝑚 , to adapt to the local data distribution. For
a given input 𝒙𝑚 , the prediction generated by this personalized
classifier can be expressed as follows:

�̂�
𝑝
𝑚 = ℎ

𝑝
𝑚 ◦ 𝑔𝑝𝑚 ◦ 𝑓 𝑠𝑚 (𝒙𝑚),∀𝑚 ∈ [𝑀] . (4)

During inference, the final predictions are derived by ensembling
the outputs from both the global classifier and the personalized
classifier. This process is expressed as follows:

�̂�𝑚 = �̂�
𝑝
𝑚 + �̂�𝑠𝑚,∀𝑚 ∈ [𝑀] . (5)

By integrating a personalized projection network between the
encoder and the classifier, DualFed effectively separates the contra-
dictory optimization objectives inherent in PFL into distinct stages
within the model. This approach resolves the conflict of pursuing
contradictory objectives within the representations in the same
stage, thereby can achieve a win-win situation between the model
generalization and personalization.

4.2 Local Training on Client
In DualFed, each client updates the model for 𝐸 rounds using its
own datasets after revceiving the global models from the sever. In
order to fully exploit the hierarchical characteristics of deep model
representations and achieve the optimization objectives of PFL, we
introduce a stage-wise training procedure for local clients.

At the first stage, we freeze the global classifier and training
the main branch of the model. The main branch comprises the
global encoder, the personalized projector, and the personalized
classifier, with their parameters collectively represented as Θ𝑚 :=
{𝜃 𝑓 ,𝑠𝑚 , 𝜃

𝑔,𝑝
𝑚 , 𝜃

ℎ,𝑝
𝑚 }. This stage allows the model to extract both gen-

eralized and personalized representations. To ensure the model’s
effectiveness in accomplishing local tasks, we employ cross-entropy
loss as the classification loss, as indicated in the following equation:

L𝑝𝑐𝑙𝑠 =

𝑁𝑚∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝒚𝑖,𝑐𝑚 log(�̂�𝑝,𝑖,𝑐𝑚 ), (6)

where𝒚𝑖,𝑐𝑚 denotes the value at 𝑐𝑡ℎ class of the one-hot ground-truth
label of the 𝑖𝑡ℎ sample on client𝑚, �̂�𝑝,𝑖,𝑐𝑚 represents the normalized
prediction probability of 𝑐𝑡ℎ classes of the 𝑖𝑡ℎ sample on client𝑚
from the personalized classifier.

As the post-projection representations are tailored to adapt to
the local data distribution, we further enhance its discrimination
by implementing supervised contrastive loss [24], as demonstrated
in the following equation:

L𝑐𝑜𝑛 = − 1
𝑁𝑚

𝑁𝑚∑︁
𝑖=1

1
|𝐴(𝑖) |

∑︁
𝑗∈𝐴(𝑖 )

log
exp(𝒖𝑖 ⊙ 𝒖 𝑗/𝜏)∑

𝑎∈𝐴\{𝑖 } exp(𝒖𝑖 ⊙ 𝒖𝑎/𝜏)
(7)

where 𝐴 is the full set of samples, 𝐴(𝑖) consists of samples in 𝐴

that belong to the same class as 𝒙𝑖𝑚 , ⊙ is the cosine similarity, and
𝜏 ∈ R+ is the temperature coefficient.

The optimization objective at this stage is then defined as:

Θ
𝑡
𝑚 = arg min

Θ𝑚

L𝑝𝑐𝑙𝑠 + 𝜆L𝑐𝑜𝑛, (8)

where 𝜆 denotes the hyperparameter used for balancing these two
loss terms, 𝑡 denotes the local updating epochs.

After updating Θ𝑚 , we freeze its parameters and train the global
classifier using the pre-projection representations to fulfill the local
task, as represented in the following equation:

L𝑠𝑐𝑙𝑠 =

𝑁𝑚∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝒚𝑖,𝑐𝑚 log(�̂�𝑠,𝑖,𝑐𝑚 ), (9)

where 𝒚𝑖,𝑐𝑚 denotes the value at 𝑐 class of the one-hot ground-truth
label of the 𝑖𝑡ℎ sample on client𝑚, �̂�𝑠,𝑖,𝑐𝑚 represents the normalized
prediction probability of 𝑐 classes of the 𝑖𝑡ℎ sample on client𝑚 from
the global classifier.
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The optimization objective in this stage can be expressed as:

𝜃
ℎ,𝑠,𝑡
𝑚 = arg min

𝜃
ℎ,𝑠
𝑚

L𝑠𝑐𝑙𝑠 . (10)

In DualFed, both optimization objectives, as described in Eqs.
(8) and (10), are optimized using mini-batch stochastic gradient
descent (SGD). As evidenced by our experiments, this stage-wise
optimization strategy diminishes the impact of local tasks on the
pre-projection representations, thereby effectively preserving its
generalization.

4.3 Model Aggregation on Server
Once the local updating process is complete, the clients send their
global encoder and classifier parameters to the server. The server
then aggregates these parameters using the following equation:

𝜃 𝑓 ,𝑠 =

𝑀∑︁
𝑚=1

1
𝑀
𝜃
𝑓 ,𝑠
𝑚 , 𝜃ℎ,𝑠 =

𝑀∑︁
𝑚=1

1
𝑀
𝜃
ℎ,𝑠
𝑚 . (11)

Following the model aggregation, the server broadcast the up-
dated model back to the clients to initiate the subsequent round of
local training.

5 EXPERIMENT
In this section, we conduct extensive experiments to showcase the
effectiveness of DualFed, mainly including the comparative results
with existed FL methods, and the additional analysis of DualFed.

5.1 Dataset Description
Our experiments are conducted on PACS [29], DomainNet [45], and
OfficeHome [55]. The PACS dataset includes 4 distinct domains:
Photo (P), Art Painting (A), Cartoon (C), and Sketch (S), each fea-
turing images from 7 common categories. The DomainNet dataset
encompasses 6 distinct domains: Clipart (C), Infograph (I), Painting
(P), Quickdraw (Q), Real (R), and Sketch (S). Initially, each domain
comprises 345 classes, but for our study, we narrow this down to
10 commonly used classes to create our experimental dataset. The
Office-Home dataset contains images from 4 distinct domains: Art
(A), Clipart (C), Product (P), and Real-World (R), each containing 65
classes. We retain all classes to conduct a comprehensive evaluation
of DualFed on a larger-scale dataset.

For these datasets, we select the images from a single domain to
form the dataset of an individual client. In both PACS and Domain-
Net, we choose a subset of 500 training images per client from the
same domain for the training dataset. For Office-Home, we set the
number of training samples to 2, 000 for the Clipart, Product, and
Real-World domains. In the case of the Art domain, the number is
limited to 1, 942, matching the total number of samples available
in this domain. All the images from the test dataset are reserved
for evaluation for these datasets. We apply random flipping and
rotational augmentations to these images during the training.

5.2 Compared Methods
We perform a comparative analysis against the following meth-
ods, including FedAvg[41], FedProx[31], FedPer[1], FedRep[12], LG-
FedAvg[35], FedBN[33], FedProto[54], SphereFed[13], Fed-RoD[6],
FedETF[34]. Additionally, the SingleSet method, where separate

models are trained and tested for each client using only their private
data, is also used for comparison in our experiments.

5.3 Implementation Details
The adopted encoder is from the one of the ResNet18 model pre-
trained on the ImageNet dataset [20]. It is followed by a projector
network, which consists of an FC network with the architecture:
[Linear(512, 256) - ReLU - BN - Linear(256, 512) - BN]. To ensure
uniformmodel capacity, all comparedmethods employ this Encoder-
Projector architecture for representation extraction.

The learning rate is set 0.01, with a momentum of 0.5, for all
methods except SphereFed . For SphereFed, we set the learning rate
to 1.0 for Office-Home and to 0.1 for both DomainNet and PACS.
During local updating, a batch size of 256 is consistent across all
methods. The epoch of local updating is set to 1 for all methods
except FedRep. For FedRep, it has a total of 5 local epochs, with
the initial 4 epochs focusing on classifier optimization and the
last epoch on encoder and projector optimization. The total global
rounds is set to 300.

The other hyperparameters for different methods are selected by
grid searching. To mitigate cross-domain interference and potential
privacy issues related to BN layers, we localize the running-mean
and running-var components within these layers for all methods.

To ensure the reliability of our results, each experiment is re-
peated 5 times with different random seeds: {0, 1, 2, 3, 4}. The sub-
sequent sections will detail the mean and standard deviation of the
highest test accuracy achieved during FL training. More implemen-
tation details are provided in Appendix.

5.4 Experimental Results
Tables 1 - 3 showcase the experimental results of our proposed
DualFed alongside other FL methods on the PACS, DomainNet, and
Office-Home datasets, respectively. Notably, DualFed presents a
significant performance gain in comparison to these SOTAmethods.

Table 1: Experimental Results on PACS Dataset.

Method P A C S Avg.
SingleSet 97.78±0.56 88.12±0.25 89.19±0.37 91.01±0.73 91.52±0.10
FedAvg 97.72±0.56 89.24±1.01 89.32±0.60 91.01±0.70 91.82±0.34
FedProx 97.90±0.38 89.14±1.18 89.40±0.61 91.52±0.72 91.99±0.38
FedPer 98.20±0.42 89.54±1.16 91.28±0.75 91.29±0.60 92.58±0.57
FedRep 97.84±0.35 89.83±1.33 89.96±0.27 91.39±0.48 92.25±0.22
LG-FedAvg 97.60±0.54 88.46±0.45 89.74±0.30 91.36±0.66 91.79±0.24
FedBN 92.20±0.46 89.88±0.86 90.38±0.75 91.34±0.53 92.45±0.37
FedProto 97.90±0.19 91.15±0.50 92.22±0.61 92.99±0.59 93.57±0.34
SphereFed 98.26±0.35 88.95±0.87 91.11±0.42 91.03±0.82 92.34±0.26
Fed-RoD 98.02±0.36 88.85±1.04 89.79±0.49 90.85±0.59 91.88±0.31
FedETF 97.43±0.24 90.95±0.77 90.26±0.29 90.70±0.68 92.33±0.30
DualFed 98.32±0.24 92.47±0.42 94.91±0.63 94.32±0.61 95.01±0.31

Interestingly, the SingleSet model stands out as a strong bench-
mark, despite not collaborating with other clients. This is particu-
larly evident in simpler domains, such as the Quickdraw domain
in the DomainNet dataset. The underlying reason is that these
simpler domains requires less complex semantic information for
downstream tasks. In these cases, a personalized encoder’s repre-
sentations are sufficient, and collaboration for extensive semantic
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Table 2: Experimental Results on DomainNet Dataset.

Method C I P Q R S Avg.
SingleSet 88.25±0.81 50.99±1.24 89.60±1.00 82.78±0.43 94.07±0.12 88.16±0.53 82.31±0.19
FedAvg 89.47±0.97 53.70±0.86 89.60±0.52 80.58±0.80 92.85±0.52 88.56±0.58 82.46±0.33
FedProx 89.47±0.86 53.79±0.96 89.56±0.55 80.56±0.87 92.87±0.54 88.63±0.56 82.48±0.38
FedPer 89.70±0.81 54.22±0.68 92.12±0.98 82.18±0.65 94.76±0.41 89.57±0.66 83.76±0.32
FedRep 89.62±0.76 54.19±0.71 90.60±0.37 80.84±0.91 93.03±0.49 89.03±0.77 82.88±0.24
LG-FedAvg 88.56±0.83 51.54±1.18 89.89±0.78 82.68±0.74 94.20±0.32 88.59±0.70 82.58±0.09
FedBN 89.85±0.67 54.58±1.04 91.34±0.90 80.62±0.68 93.76±0.44 89.06±0.41 83.20±0.36
FedProto 90.04±0.86 54.31±0.91 92.18±0.55 84.82±0.67 94.82±0.25 90.40±0.56 84.43±0.30
SphereFed 88.97±0.52 51.02±1.63 90.69±0.43 78.50±1.18 92.65±0.33 88.77±0.54 81.77±0.48
Fed-RoD 89.70±0.99 52.91±0.89 90.18±0.51 81.64±0.50 93.03±0.46 88.88±0.73 82.72±0.25
FedETF 88.97±0.81 55.65±0.85 91.76±0.52 79.76±0.48 94.15±0.23 89.03±0.39 83.22±0.31
DualFed 92.51±0.41 56.77±0.95 94.41±0.30 85.18±0.30 94.69±0.08 92.27±0.54 86.14±0.12

extraction might be unnecessary or even detrimental. This obser-
vation is supported by LG-FedAvg’s performance, which, while
also utilizing a personalized encoder for representation extraction,
outperforms SingleSet by leveraging collaborative training for a
global classifier.

However, as the complexity within a domain increases, such as in
the Infograph domain of DomainNet, the benefits of sharing the en-
coder among clients become apparent. This collaborative approach
allows the encoder to extract more nuanced semantic information
from the raw data, improving overall model performance, as demon-
strated by the results of FedAvg and FedProx. FedRep and FedPer,
employing a personalized classifier to adapt the representations
from the global encoder, often outperform FedAvg and FedProx.
However, these methods primarily leverage the global encoder’s
representations and do not fully utilize personalized information
to cater to the local data distribution on individual clients.

FedProto significantly improves model performance by aligning
representations from different clients within a unified represen-
tation space. Nonetheless, this alignment can result in a loss of
semantic information pertinent to local tasks due to varying data
distributions across clients. This issue is even more pronounced
in models like SphereFed and FedETF, which employ a predefined
classifier for representation alignment and lack specific semantic
information about local data.

Table 3: Experimental Results on Office-Home Dataset.

Method A C P R Avg.
SingleSet 66.52±1.27 74.27±0.60 87.46±1.02 77.54±0.58 76.45±0.32
FedAvg 68.82±1.30 74.91±1.02 85.82±0.36 80.30±0.53 77.46±0.35
FedProx 68.78±1.37 74.73±0.79 85.73±0.35 80.25±0.70 77.37±0.33
FedPer 70.31±1.07 75.03±0.38 87.76±0.18 80.51±0.43 78.40±0.40
FedRep 70.23±0.96 75.44±0.69 85.82±0.45 80.39±0.92 77.97±0.37
LG-FedAvg 67.22±1.30 75.33±0.19 87.44±0.43 77.80±0.27 76.94±0.26
FedBN 68.58±1.23 76.01±0.45 86.31±0.96 79.40±0.40 77.58±0.29
FedProto 67.92±0.74 75.76±0.57 87.80±0.30 77.89±0.41 77.34±0.25
SphereFed 66.68±0.89 69.12±0.82 81.92±0.95 76.76±0.28 73.62±0.48
Fed-RoD 68.21±0.86 75.42±0.37 86.40±0.72 80.30±0.79 77.58±0.22
FedETF 69.90±1.14 74.64±0.41 85.52±0.35 80.18±0.39 77.56±0.29
DualFed 71.01±0.71 77.41±0.47 88.84±0.47 81.70±0.28 79.74±0.37

Fed-RoD adopts an architecture similar to ours, utilizing both
global and personalized classifiers to capture generalized and per-
sonalized information. However, it attempts to utilize representa-
tions at the same stage, posing challenges in simultaneously meet-
ing these two contradictory objectives. In contrast, our proposed
method strategically separates these two conflicting objectives into
different stages of the model. This division allows us to achieve
both generalization and personalization more effectively, ultimately
resulting in superior performance across a wider range of scenarios.

5.5 Additional Analysis
Comparison of global and personalized classifiers. To gain
a deeper understanding of the behavior of the global and person-
alized classifiers, we compare their accuracy, individually and in
combination, during training. Figure 3 shows the corresponding
experimental results on DomainNet. It is evident that personalized
classifier significantly surpasses the global one, owing to its better
alignment with local data distributions. Nevertheless, the accuracy
of the local classifier can be significantly improved by combining
its predictions with those from the global classifier. This enhance-
ment is particularly notable in complex domains, such as Infograph.
Conversely, in simpler domains like Quickdraw and Sketch, the
benefit of combining classifiers becomes less pronounced. This oc-
curs because, in simpler domains, the representations extracted by
the personalized projection network are sufficient for each client’s
local tasks, thereby reducing the necessity for more diverse repre-
sentations from the global encoder.

Visualization of generalized and personalized representa-
tions. To intuitively understand the generalized and personalized
representations, we utilize t-SNE [39] for visualization. Figure 4
illustrates the visualization of both the generalized and personal-
ized representations on DomainNet dataset. In these visualizations,
different colors indicate different classes. It is noticeable that the
personalized representations are more discriminative than the gen-
eralized ones, yet they exhibit lower consistency across clients. This
demonstrates that DualFed can effectively separate the representa-
tion extraction process into two distinct stages, each characterized
by high levels of generalization and personalization, respectively.
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Figure 3: Test accuracy during training on DomainNet.
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Figure 4: Visualization of representations on DomainNet.

Quantitative evaluation of generalized and personalized
representations. We employ two metrics to quantitatively evalu-
ate the evolution of generalized and personalized representations
during training. To quantify the personaliztion of representations
on clients, we adopt the class-wise separation in [25]. Additionally,
we adopt the linear centered kernel alignment (CKA) [26], to mea-
sure the generalization ability of representation. Figure 5 presents
the varying of 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 during the training. The personalized
representations can achieve higher class separation compared with
the generalized representations. However, as shown in Figure 6,
the similarity between clients of generalized representations is
significant higher that that of the personalized representations.
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Figure 5: Class-wise separation during training.

Comparison of Training Strategy. DualFed employs a stage-
wise training strategy, ensuring that the pre-projection representa-
tion remain undisturbed by specific local tasks, thereby maintaining
its generalization. Here, we compare this training strategy with
the one that training all parameters simultaneously. As shown in
Table 4, when 𝐸 is relatively small (i.e., 𝐸 = 1), simultaneous train-
ing can, in fact, outperforms stage-wise training. However, as 𝐸
increases (i.e., 𝐸 = 20), simultaneous training lead to a obvious
performance drop in PACS and DomainNet. This trend can be at-
tributed to the fact that an increased number of local epochs causes
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Figure 6: Client-wise CKA similarity during training.

the pre-projection representations to align more closely with the
local task, thereby reducing their generalization.

Table 4: Experiments with Different Training Strategy.

𝐸 Strategy PACS DomainNet Office-Home

1 Stage-wise 95.01±0.31 86.14±0.12 79.74±0.37
Simu. 95.15±0.16 86.68±0.20 80.57±0.09

20 Stage-wise 94.17±0.28 84.49±0.18 75.93±0.77
Simu. 93.85±0.30 84.71±0.33 75.42±0.65

Effect of Projector Architecture.We investigate the impact of
the architecture of the projection network in three key aspects: the
model depth (𝐷), the dimension of hidden layers (𝐻 ), the impact of
BN layers. The corresponding results are shown in Table 5. While
increasing 𝐷 can lead to more generalized pre-projection repre-
sentations, it simultaneously reduces their discriminative power.
Therefore, it is advisable to select an optimal 𝐷 that maintains a
balance in the discriminative and generalized ability of the pre-
projection representations. Increasing 𝐻 can enhance the model
performance in most times. The importance of BN layers becomes
more pronounced as the scale of the dataset increases.

Table 5: Experiments with Different Projector Architecture.

𝐷 𝐻 BN PACS DomainNet Office-Home
1 256 ✓ 94.72±0.18 86.16±0.09 79.96±0.24
2 256 ✓ 95.01±0.31 86.14±0.12 79.74±0.37
3 256 ✓ 94.97±0.18 85.91±0.26 79.31±0.36
2 64 ✓ 95.35±0.19 86.06±0.32 79.43±0.24
2 128 ✓ 95.15±0.18 85.95±0.18 79.49±0.21
2 512 ✓ 95.21±0.17 86.23±0.23 79.97±0.35
2 256 ✗ 95.13±0.19 86.23±0.26 79.22±0.38

Effect of Position of Global Classifier. In DualFed, we employ
a global classifier for generalized representations and a personalized
classifier for personalized representations. Here we conduct experi-
ments when placing the global classifier after the projector. In these
experiments, we maintained a shared encoder and investigated two
configurations: sharing the projection network (DualFed-G) and
personalizing it (DualFed-P). As indicated in Table 6, removing
the global classifier to the same stage as the personalized classifier
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results in a significant performance decrease. This observation un-
derscores the importance of the representations at different stages,
as they provide complementary information that can enhance the
overall performance of the model.

Table 6: Experimental Results when Placing Global Classifier
at Different Positions.

PACS DomainNet Office-Home
DualFed 95.01±0.31 86.14±0.12 79.74±0.37
DualFed-P 94.95±0.18 85.55±0.09 78.24±0.29
DualFed-G 94.84±0.12 84.90±0.42 78.08±0.17

Effect of Personalized Layers. Table 7 presents the model
performance with different personalization strategy. The results
indicate that combining a global encoder with a personalized pro-
jection network significantly enhances model performance, as it
integrates both generalized and personalized information.

Table 7: Experimental Results with Different Parameter Per-
sonalized Strategies, where ✓ Denotes the Personalized Pa-
rameters, ✗ Denotes the Global Parameters.

Enc. Prj. P.C. G.C. PACS DomainNet Office-Home
✗ ✓ ✓ ✓ 94.96±0.26 86.16±0.27 79.33±0.41
✗ ✓ ✓ ✗ 95.01±0.31 86.11±0.19 79.74±0.28
✗ ✗ ✗ ✗ 94.58±0.22 84.55±0.30 78.58±0.46
✗ ✗ ✓ ✗ 94.80±0.20 85.21±0.16 79.19±0.19
✓ ✓ ✓ ✓ 93.73±0.08 83.50±0.43 77.85±0.44

Communication Costs.We assess the communication costs by
using the total number of model parameters transferred to reach a
predefined target accuracy during training. For PACS, DomainNet,
and Office-Home, the target accuracies are set to 85%, 75%, and
70%, respectively. As illustrated in Table 8, DualFed outperforms
other methods by achieving the same target accuracy with lower
communication costs, showcasing its practical efficiency.

Table 8: Averaged Communication Costs (MB) when Reach-
ing the Same Target Accuracy during Training.

PACS DomainNet Office-Home
FedAvg 1920.93 2008.52 2538.72
FedProx 1833.62 2008.52 2538.72
FedPer 1658.47 1658.47 2007.62
FedRep 2705.92 3316.94 3753.37
FedBN 1482.91 1832.08 2098.97
SphereFed 3142.36 5586.42 18330.43
Fed-RoD 1135.10 1309.90 1663.30
FedETF 11783.85 15537.22 15973.66
DualFed 611.21 873.27 1225.59

Effect of Hyper Parameters.We conduct experiments using
various hyperparameters, including the temperature coefficient (𝜏 ),
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Figure 7: Test accuracy with varying temperature coefficient.
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Figure 8: Test accuracy with varying loss balance coefficient.

1 10 20 50
Local Epochs 

 (a)

84

86

88

90

92

94

96

A
cc

ur
ac

y 
(%

)
PACS

FedAvg
DualFed

1 10 20 50
Local Epochs 

 (b)

70

75

80

85

A
cc

ur
ac

y 
(%

)

DomainNet

FedAvg
DualFed

1 10 20 50
Local Epochs 

 (c)

70

72

74

76

78

80

A
cc

ur
ac

y 
(%

)

OfficeHome

FedAvg
DualFed

Figure 9: Test accuracy with varying local epochs.

the loss balance coefficient (𝜆), and the number of local epochs (𝐸).
As depicted in Figure 7, we observe that as 𝜏 increases, its effective-
ness in distinguishing between different classes diminishes, thereby
losing the advantage of contrastive loss. Figure 8 presents the test
accuracy with varying 𝜆. Setting 𝜆 to 0 is equivalent to training the
model solely with cross-entropy loss. Increasing 𝜆 enhances the
distinctiveness and relevance of personalized representations to the
local task, which, in turn, improves model performance. However,
as 𝜆 value exceeding a certain threshold might cause training fail-
ures. Figure 9 shows the test accuracy with different local epochs,
it illustrates that DualFed consistently surpasses FedAvg across
various local epochs, demonstrating its robustness to local epochs.

6 CONCLUSION
In this paper, we have developed a newPFL approach called DualFed.
DualFed decouples the objectives of generalization and personaliza-
tion in PFL by a personalized projection network. This modification
reduce the mutual interference between the conflicting optimiza-
tion objectives in traditional PFL, thereby can achieve a win-win
situation of both generalization and personalization in Non-IID FL.
Our experiments across various datasets have shown that DualFed
performs better than other FL methods, proving its effectiveness in
handling the unique demands of PFL.
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