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ABSTRACT

Recurrent Neural Networks (RNNs) are used in state-of-the-art models in domains
such as speech recognition, machine translation, and language modelling. Spar-
sity is a technique to reduce compute and memory requirements of deep learning
models. Sparse RNNs are easier to deploy on devices and high-end server pro-
cessors. Even though sparse operations need less compute and memory relative
to their dense counterparts, the speed-up observed by using sparse operations is
less than expected on different hardware platforms. In order to address this issue,
we investigate two different approaches to induce block sparsity in RNNs: prun-
ing blocks of weights in a layer and using group lasso regularization with pruning
to create blocks of weights with zeros. Using these techniques, we can create
block-sparse RNNs with sparsity ranging from 80% to 90% with a small loss in
accuracy. This technique allows us to reduce the model size by roughly 10x. Ad-
ditionally, we can prune a larger dense network to recover this loss in accuracy
while maintaining high block sparsity and reducing the overall parameter count.
Our technique works with a variety of block sizes up to 32x32. Block-sparse
RNNS eliminate overheads related to data storage and irregular memory accesses
while increasing hardware efficiency compared to unstructured sparsity.

1 INTRODUCTION

Improvements in several applications such as speech recognition (Amodei et al., 2016), language
modeling (J6zefowicz et al., 2016), and machine translation (Wu et al., 2016) are a result of large
Recurrent Neural Networks (RNNs) trained on large scale datasets. As the datasets available to train
these models have grown, so have model sizes. Deployment of such large models is compute and
memory intensive.

Pruning weights of deep neural networks is an effective strategy to reduce the overall memory and
compute requirements of these models (Narang et al., 2017; Han et al., 2015). However, these
approaches induce random, unstructured sparsity in the weight matrices. Speed-up obtained with
unstructured sparsity on various hardware platforms are often lower than expected (as shown in
Narang et al. (2017); Narang & Diamos (2017)). Sparse formats do not efficiently utilize the hard-
ware resources due to storage overheads and irregular memory access. Block sparsity can address
these issues. Saving indices of non-zero blocks instead of indices for non-zero elements reduces
the storage overhead by a factor of block size. Block-sparse formats store blocks contiguously in
memory reducing irregular memory accesses.

Another disadvantage of unstructured sparsity is that it cannot directly exploit array-data-paths in
modern processors. These include the 16x 16 TensorCore units in the Volta GPU (NVIDIA, 2017)
or the 256 X256 hardware units in the Tensor Processing Unit (TPU) (Jouppi et al., 2017). Structured
sparsity in the form of two-dimensional blocks allows us to take advantage of these faster units.

In order to induce block sparsity in RNNs, we propose a block pruning approach that zeros out
blocks of weights in the matrix while the network is training. At the end of training, the algorithm
creates a block-sparse RNN. In addition to this pruning technique, we examine the efficacy of group
lasso regularization (Yuan & Lin, 2006b) to induce block sparsity in the network. We also combine
group lasso regularization with block pruning.

We demonstrate that block pruning and group lasso regularization with pruning are successful in
creating block-sparse RNNs. Inducing block sparsity with 4 x4 blocks in vanilla RNNs and Gated
Recurrent Units (GRUs) (Cho et al., 2014) results in 9% to 17% loss in accuracy compared to the
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dense baseline. Model size reduces by nearly 10xfor speech recognition. Block sizes can be scaled
up to 32x32 with our approach. We can also reduce accuracy loss by starting with a larger dense
matrix than the baseline and then pruning it down while still reducing the number of parameters
compared to the baseline. We demonstrate that this approach works with Long Short Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) cells for Language Modelling as well.

Our approach is agnostic to the optimization algorithm and does not require any hyper-parameter
retuning (besides pruning and regularization hyper-parameters). Furthermore, since our approach
does not require re-training the model, training time remains constant.

2 RELATED WORK

There have been several approaches to reduce the network size by pruning the model. Hanson &
Pratt (1989) use several bias techniques to decay weights in a network. LeCun et al. (1989) and
Hassibi et al. (1993) both use Hessian-based approaches to prune weights below a certain threshold.
Simpler approaches like sorting or thresholding can be used to prune a neural network. Han et al.
(2015) and Liu et al. (2015) prune Convolution Neural Networks (CNNs) while maintaining high
accuracy. Yu et al. (2012) use a hard threshold to prune deep learning models. Narang et al. (2017)
and Zhu & Gupta (2017) prune recurrent neural networks during the initial training run with a small
accuracy loss using gradual pruning. Unlike our technique, all of the above approaches induce
random, unstructured sparsity in neural networks.

Several approaches exist to induce structured sparsity in neural networks. Mao et al. (2017) use
a simple threshold based technique to create structurally sparse CNNs. Yu et al. (2017) propose
Scalpel, which prunes CNNs taking into account the underlying target hardware architecture. Wen
et al. (2017) alter the structure of LSTMs to create cells with smaller memory footprint. They
demonstrate that this technique works for language modeling on the Penn Tree Bank dataset. Our
approach works with both vanilla RNN and GRU models trained on a large-scale datasets for speech
recognition.

Regularization is a known method to induce sparsity in deep neural networks (Faraone et al., 2017,
Fan et al., 2016). Group lasso regularization has been used as an efficient method for generating
sparse structures (Yuan & Lin, 2006b; Kim & Xing, 2010). Wen et al. (2016) use group lasso
regularization to induce structured sparsity in CNNs. Scardapane et al. (2017) also use group lasso
regularization to induce sparisty in fully connected networks. To the best of our knowledge, none of
these approaches have been used with RNNs trained on large-scale datasets.

Other approaches to reduce compute and memory footprint for deep learning models include quan-
tization (Micikevicius et al., 2017; Vanhoucke et al., 2011; Rastegari et al., 2016; Gupta et al., 2015)
and low-rank factorization (Denil et al., 2013; Denton et al., 2014). Our approach is orthogonal to
these methods and can be combined with them.

3 IMPLEMENTATION

3.1 BLOCK PRUNING

Our approach to pruning deep learning models builds on the work by Narang et al. (2017). They
propose a weight pruning algorithm that introduces random, unstructured sparsity in RNNs. In their
work, they propose pruning weights below a monotonically increasing threshold. Their pruning
strategy does not impose any structure on the weights.

We extend this approach to prune blocks of a matrix instead of individual weights. We divide the
weight matrix into a grid of two-dimensional blocks with a fixed block size. Block size ranges
between 4 x4 to 32x32 in our experiments. In order to prune blocks, we pick the weight with the
maximum magnitude to represent the entire block. If this maximum magnitude of a block is below
the threshold, we set all the weights in that block to zeros. Figure 1 depicts the process of generating
a block-sparse mask from a weight matrix for a given threshold. The block-sparse mask is multiplied
with the weights to generate block-sparse weight matrix. The monotonically growing threshold (¢)
causes more blocks to be pruned as training progresses. We stop pruning more blocks after 40% of
training has completed. All zeroed out blocks are held at zero until the end of training.
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Figure 1: Generating block-sparse masks from a weight matrix
Table 1: Heuristics to pick hyper-parameters for block-pruning
HYPER-PARAM DESCRIPTION HEURISTIC VALUES
start_itr Iteration to start pruning Start of second epoch
ramp_itr Iteration to increase the rate of pruning  Start of 20% of total epochs
end_itr Iteration to stop pruning more parame-  Start of 40% of total epochs
ters
start_slope Initial rate of increasing the threshold See Equation 2
Q]
ramp_slope Rate of increasing threshold after ramp 1.2 to 1.76
() iteration
freq Number of iterations after which € is 100
updated

Narang et al. (2017) use six hyper-parameters to determine the threshold at a given iteration. Table 1
provides the description and heuristics (adapted for block pruning) for these hyper-parameters. The
start_slope and ramp __slope determine the rate at which the threshold increases. In order to determine
start_slope, they recommend using weights from an existing dense model. To achieve 90% sparsity,
they assign g to the weight that is the 90th percentile of the absolute values in a weight matrix.
Assuming ¢ is 1.56, they use Equation 1 to determine 6.

2 x qx freq

0 =
2 X (ramp_itr — start_itr) + 3 x (end_itr — ramp_itr)

)

For block pruning, we need to modify the start_slope to take into account the number of elements in
a block (V). In order to calculate the start_slope, we first calculate start_slope for weight pruning
(6) using the Equation 1. Given 6,,, we suggest using Equation 2 to determine the initial slope
(6p) for block pruning. Based on empirical results, we have found that using this approach allows
us to achieve block sparsity ranging from 85% to 95%. Further tuning of these hyper-parameters is
required to achieve desired block sparsity.

@b = 9w X \4/ Nb (2)

We prune all the recurrent and fully connected layers in the network using the same block size. The
pruning hyper-parameters are same for each type of layer in the network — recurrent weight layer
and linear or fully connected layer.

3.2 GROUP LASSO REGULARIZATION

Group lasso is a type of weight regularization that works on groups of weights. For each group, we
add a loss term proportional to the 5 norm of the group.

G
L= Ltraining + >\g Z HU}(Q)HZ

g=1
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where w(9) is a group of weights, ||w9) |5 is the £, norm of the group, and G is the total number
of groups. Our use of {5 norm is a variant of the more general group lasso defined in Yuan & Lin
(2006a) as ||n||x = (n'Kn)'/2.

A large enough A\, will drive all weights within certain groups to zeros. The choice of grouping
varies by application, and group lasso is widely-used to induce various kinds of structured sparsity
(Wen et al., 2017; Scardapane et al., 2017). By choosing groups to exactly match our 2D grid of
blocks, we can induce block-sparsity. Thus, group lasso is an existing sparsity algorithm that we can
readily compare to our block pruning approach.

In addition, we extend group lasso to work with block pruning. The groups match the 2D grid
of blocks used by the pruning algorithm. One interpretation of weight regularization is that less
important weights are driven towards zero and more important weights retain large absolute values.
Thus, group lasso guides the selection of blocks to prune. We apply group lasso to coincide with the
pruning schedule. We use a relatively small A\, to avoid underfitting due to excessive regularization.
We turn off group lasso when the pruning schedule ends, which is typically after around 40% of
training epochs. Weights that were already set to zero remain unchanged after this point.

Group lasso is related to the well-known ¢; regularization. In Appendix A, we discuss exploration
of ¢; regularization combined with weight pruning.

4 EXPERIMENTS

We present results on two different applications: Speech Recognition (Section 4.1) and Language
Modelling (Section 4.2).

4.1 SPEECH RECOGNITION

We run block sparsity experiments on two different speech recognition models from Amodei et al.
(2016). The RNN model consists of seven bidirectional vanilla recurrent layers with 1760 hidden
units for a total of 67 million parameters. The GRU model consists of three recurrent layers with
GRU cells with 2560 hidden units for a total of 115 million parameters. Both models use the
Connectionist Temporal Classification (CTC) (Graves et al., 2006) cost function. We use a training
set of 2100 hours of speech and validation set of 3.46 hours. The Character Error Rate (CER) results
are reported on an independent test set, consisting of 2.9 hours of English data.

In order to introduce block sparsity in these models, we run two different types of experiments —
Block Pruning (BP) and Group Lasso with block pruning (GLP). We prune weights in the recurrent
layers (both linear and recurrent weights) and fully connected layers. Biases, batch-normalization
parameters and weights in the convolutional and CTC layers are not pruned since they account for a
small portion of the total weights in the network. No existing hyper-parameter changes were required
for sparse training runs. The models are trained using Nesterov Stochastic Gradient Descent (SGD)
with momentum. All models are trained for 25 epochs.

In Section 4.1.1, we report results for different sparse models pruned with 4 x4 blocks and compare
these results with other pruning approaches. In Section 4.1.2, we discuss the impact of varying the
block size on the accuracy of the model.

4.1.1 BLOCK SPARSITY

Initially, we prune the dense RNN model. Using BP, we are able to reduce the parameter count for
both these models by nearly 10x. As shown in Table 2, the block-sparse RNN model with 1760
hidden units has an overall block sparsity of 89% with a CER of 17.93.

As mentioned in Section 3, group lasso by itself can induce block-sparsity. However, as shown in
Table 2, group lasso results in significantly worse CER than our block pruning approach. In order
to achieve high sparsity (80% or higher) with group lasso, we need to set A, to a relatively high
value. This high regularization factor hurts the model accuracy. The dense baseline model is trained
without any regularization. Therefore, group lasso results in underfitting the training data due to the
high value of \4. Group lasso could be more successful in inducing block-sparsity where the dense
model overfits the training dataset.
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Table 2: Bidirectional RNN model results. Block-Sparse models are trained with 4x4 blocks

LAYER #PARAMS CER PRUNING

MODEL SIZE (in millions) (% LOSS) EPOCHS ALGORITHM
RNN Dense 1760 67 15.36 (0.0%) 25 N/A
RNN Block-Sparse 1760 10.9  30.14 (-96%) 25  Group lasso
RNN Sparse 1760 8.3 18.91 (-23%) 25 Yuetal. (2012)
RNN Sparse 1760 73 1732 (-13%) 25 Narang et al. (2017)
RNN Sparse 1760 7.1 15.41 (-0.3%) 60 Han et al. (2015)
RNN Block-Sparse 1760 7.3 1793 (-17%) 25 Ours (BP)
RNN Block-Sparse 2560 129 15.89 (-3.4%) 25  Ours (GLP)
RNN Block-Sparse 3072 25.8 15.66 (-1.9%) 25 Ours (BP)

Table 3: GRU model results with 4 x4 blocks

LAYER #PARAMS CER PRUNING
MODEL SIZE (in millions) (% LOSS) EPOCHS ALGORITHM
GRU Dense 2560 115 15.42 (0.0%) 25 N/A
GRU Block-Sparse 2560 10.8 16.78 (-8.8%) 25 Ours (GLP)
GRU Block-Sparse 3584 25.6  16.23 (-5.3%) 25  Ours (BP)

Comparison to other pruning methods: In addition to group lasso, we compare our block prun-
ing approach with three existing pruning methods. As shown in Table 2, our block-sparse model
achieves better accuracy than the hard thresholding scheme in Yu et al. (2012). Sparse RNNs gen-
erated using Narang et al. (2017) is about 4% better than the block-sparse model. The sparse RNN
model generated using iterative pruning (Han et al., 2015) is significantly better than than block-
sparse model. However, this approach requires training the model for 60 epochs instead of 25 epochs
for all other approaches. This results in 180 hours of additional training time for the RNN model.
This 2-3 xincrease in training time may not be practical for state-of-the-art models trained on large
datasets, which usually need weeks of training time. Additionally, all the above approaches generate
random, unstructured sparsity in the model. In current hardware, the compute and memory savings
with block sparsity are significantly higher than random sparsity. We discuss the performance aspect
in more detail in Section 5.

Larger models: In order to recover the accuracy loss with our approach, we train sparse models
with more hidden units in each recurrent layers. For RNN models, we increase the hidden layer
size to 2560 and 3072. As shown in Table 2, the RNN sparse 3072 is only 1.9% worse than the
dense baseline model. The 2560 and 3072 sparse RNN models reduce the overall parameter count
by 5xand 2.5 xrespectively relative to the dense model with 1760 hidden units in each layer.

GRU model: Similar to the RNN models, the block-sparse GRU model can reduce the overall
parameter count by 11x. As shown in Table 3, the block-sparse GRU model achieves slightly
higher sparsity (90%) with a CER of 16.23 which is only 9% worse than the dense GRU model.
This indicates that the block-sparse GRU model retains most of the capacity of the dense model. As
demonstrated with the RNN model, pruning a larger GRU model with 3584 hidden nodes reduces
the accuracy loss to about 5% while still shrinking the model by 4.5 xrelative to the dense model
with 2560 hidden nodes in each layer.

4.1.2 BLOCK SIZE VARIATION

Table 4 shows that block pruning works for block sizes upto 32x32. Increasing the block size to
16x 16 and 32 x 32 requires reducing the sparsity to 83.6% and 79.1% respectively for RNN models
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Table 4: Results for GRU model with 2560 layer size and bidirectional RNN model with 170 layer
size pruned with different block sizes using BP.

BLOCK #PARAMS CER
MODEL SIZE (in millions) SPARSITY (% LOSS)
RNN Block-Sparse  4x4 7.3 89.2% 17.93 (-17%)
RNN Block-Sparse  12x2 10.8 84.1% 16.96 (-10%)
RNN Block-Sparse  8x8 10.7 84.1%  17.66 (-15%)
RNN Block-Sparse  16x16 11.1 83.6% 17.10 (-11%)
RNN Block-Sparse  32x32 14.1 79.1% 16.67 (-8.5%)
GRU Block-Sparse  4x4 16.2 86.0% 16.97 (-10%)
GRU Block-Sparse  16x16 20.8 81.9% 16.84 (-9.2%)

Table 5: Word language modelling results on Penn Tree Bank using BP for 4 x4 blocks.

LAYER #PARAMS PERPLEXITY PRUNING
MODEL SIZE (in millions) (% LOSS) EPOCHS ALGORITHM
LSTM Dense 1500 66.0  78.29 (0.0%) 55 N/A
LSTM Block-Sparse 1500 23.1  77.04 (1.6%) 55  Ours (BP)
LSTM Block-Sparse 1500 11.6  80.25 (-2.5%) 55 Ours (BP)
LSTM Block-Sparse 1500 795 82.72 (-5.7%) 55 Ours (BP)

to obtain good accuracy. Similar results hold true for the GRU model as well. Large sparse blocks
reduce memory overhead for storing non zero values and can take advantage of array data-paths in
modern processors. Therefore, even though large blocks achieve lower sparsity, they result in lower
memory and compute requirements.

The exact choice of block size for a given application depends on the underlying hardware used for
inference. For example, NVIDIA’s Volta processor supports 16x 16 blocks whereas ARM proces-
sors support blocks of 12x2. We demonstrate that our approach is agnostic to block size and can be
used to generate block-sparse models for arbitrary blocks.

4.2 NEURAL LANGUAGE MODELLING

We conducted block pruning experiments on Penn Tree Bank (PTB) (Marcus et al., 1993) dataset
using word level language models. For our experiments, we use the large LSTM model with 1500
hidden units from Zaremba et al. (2014). The hyperparameters are unchanged from the original
model, except for slightly increased dropout keep probability which ranges from 0.4 to 0.52 for the
sparse models. We prune weights in the embedding, LSTM and softmax layers of the model.

We report results on the test set using BP with 4 x4 blocks in Table 5. Block pruning can reduce
the parameter count by nearly 3 xwhile retaining the accuracy of the dense model. With a 5% loss
in accuracy, we can reduce the parameter count by 8.3 x. There is a trade-off between sparsity and
accuracy of the model. For inference, we would pick the model that meets the desired memory and
compute budget. Further work remains in evaluating this technique for large scale datasets like the
Billion word datasets (Chelba et al., 2013) for language modelling.

5 PERFORMANCE

Sparse formats incur at least three types of overhead: i) indexing overhead, ii) irregular memory
accesses, and ii) incompatibility with array-data-paths, all of which are mitigated by using larger
block sizes.
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Indexing Overheads. Sparse formats use extra memory to track the location of each non-zero
value. For example, the compressed-sparse-row (CSR) format uses between one and two extra index
values for each non-zero value. Assuming that neural network weights and indices are represented
with 16-bits as in Micikevicius et al. (2017), this is at least 100% overhead. Block sparsity reduces
this overhead by a factor of the block size because the index is shared over the entire block. For
example, using a block size of 4x4 reduces the memory bloat to 6.25%, and using a block size of
16x16 reduces it to less than 1%.

Irregular Memory Accesses. Caches lines, DRAM row buffers, and TLBs provide the best perfor-
mance when memory is accessed in relatively large contiguous units (e.g. 64 bytes for cache lines,
4KB for a DRAM row) as opposed to in fine-grained random accesses. Block-sparse formats store
blocks contiguously in memory, resulting in large coalesced accesses.

Array Data-Paths. Block-sparse models make it easier to exploit array-data-paths in modern pro-
cessors. There are significant advantages of using these units, for example, on the Volta V100 GPU,
they enable up to 8x higher throughput than the SIMD data-paths. In order to keep these units busy,
the block size should be at least as large as the hardware data-path size (16x 16 or larger on V100).

5.1 INFERENCE PERFORMANCE

Inference performance depends of three different factors: accuracy, latency of evaluation and mem-
ory requirements. In order to understand the trade-off between unstructured sparsity and block
sparsity, we benchmark the General Matrix Multiply (GEMM) speed-up and memory reduction for
a single layer in the speech recongition RNN model. We evaluate GEMM speed-up with batch size
of 16 using NVIDIA’s CuSparse and CuBLAS libraries on a TitanX Maxwell GPU. Sparse matrices
are represented in CSR or Block-CSR format depending on the sparsity structure. Memory savings
are calculated using CSR and Block Sparse Row (BSR) from Scipy module in Python. We evalu-
ate a single layer with different block sizes. We also evaluate the best unstructured sparsity result
obtained using iterative pruning from Han et al. (2015).

As shown in Table 6, the unstructured sparsity model (Han et al., 2015) achieves the best accuracy
but requires much longer training time and does not improve the compute time relative to the dense
model. For a small loss in accuracy, block-sparse models can significantly reduce both compute and
memory requirements. For example, layers with 16x16 block sparsity reduce memory consumption
by 11xand speedup compute by 3xwith a 10% loss in accuracy. Additionally, Figure 2 shows that
block-sparse matrices achieve higher speed-up than unstructured sparsity for large batch sizes for
RNN and GRU layers. The speed-up is achieved due to reducing irregular memory accesses and
improving load balance. Future work involves efficient implementation of block-sparse kernels to
take advantage of array-data-paths in modern processors.

Table 6: Accuracy, speed-up and memory reduction for sparse layers. Block-sparse layers achieve
higher speedup and memory reduction with some loss in accuracy.

LAYER GEMM MEMORY CER
MODEL SIZE SPEEDUP  SAVINGS (% LOSS) ALGORITHM
RNN Sparse 1760 1.0x 5.0x 1541 (-0.3%) Han et al. (2015)
RNN Block-Sparse 2560 1.1x 6.2x  15.89 (-3.4%) BP (4x4)
RNN Block-Sparse 1760 1.5x 7.1x  16.67 (-8.5%) BP (32x32)
RNN Block-Sparse 1760 3.0x 11x 17.10 (-11%) BP (16x16)
RNN Block-Sparse 1760 1.9x 17 x 17.93 (-17%) BP (4x4)

6 IMPACT OF SPARSITY ON ACCURACY

Using our baseline RNN model, we run many Weight Pruning (WP) (using (Narang et al., 2017))
and block pruning experiments, varying hyper-parameters to produce a spectrum of results ranging
from 70% to 97% sparsity. For these experiments, the models are trained for 20 epochs and the
accuracy is reported on the validation set. As shown in Figure 3, models pruned using WP with
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Figure 2: Speed-up for sparse matrix multiply over GEMM. RNN matrix sizes are (1760,1760)
with 90% sparsity and (1760, batch_size). GRU matrix sizes are (7680,2560) with 95% sparsity and
(2560, batch_size). Block-sparse matrices achieve consistently good speedup across batch-sizes
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Figure 3: Relative accuracy for different block sizes (4x4, 16x16) and WP for varying sparsity on
the RNN 1760 model. Any models with relative accuracy worse than -75% are capped at 75%.

sparsity less than 95% have relative accuracy ranging from -20% to -27%. Increasing the sparsity
for the model beyond 95% results in 30% or more accuracy loss. This “accuracy clift” is earlier for
models pruned with block sparsity. For block size 4 x4, models with sparsity greater 90% yield a
relative accuracy loss of 30% or higher. Similarly, for blocks of 16x 16, models with sparsity greater
than 86% have 30% or more accuracy loss. A similar trend is observed for block size 32x32. This
indicates that there is a trade-off between sparsity and block-size for a given accuracy. Larger blocks
reach the “accuracy cliff” sooner.

7 CONCLUSION AND FUTURE WORK

We have demonstrated that using block pruning and group lasso combined with pruning during
training can build block-sparse RNNs that are about as accurate as the dense baseline models. The
block-sparse models have significantly fewer parameters than the dense baselines reducing memory
requirements. Block-sparse models can take advantage of the underlying hardware efficiently.

We would like to investigate if pruning can be performed even earlier in the training, thereby al-
lowing us to train sparse models. Training sparse models would allow us to reap the benefits of
sparsity during training resulting in lesser compute and memory demands. Further work remains
to implement efficient block-sparse matrix multiplies for array-data-paths in modern processors that
would provide increased speed-up during deployment.
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A {1 AND {1/ REGULARIZATION

Prior to our work with group lasso regularization, we considered ¢; and /¢ /2 regularizers to induce
sparsity in the network. These regularizers act on individual weights and could aid in inducing
unstructured sparsity in the network. ¢; regularization is defined as:

k
L= Llraining + A Z |U)7|

i=1

where |w;]| is the absolute value of a weight and & is the total number of weights. Note the gradient
expression for each weight w;:
k
0
ij Z lwi| = sgn(w;)
i=1
As with the group lasso experiments described in 3.2, we explore ¢; regularization with and without
pruning. The weight pruning (WP) algorithm from Narang et al. (2017) is used along with regu-
larization. The motivation is the same as group lasso block sparsity experiments: either to guide
pruning or to produce sparsity directly.

We also explore ¢, /5 regularization which is defined as:

k
L= L[raining +A Z |wi|1/2
i=1

Fan et al. (2016) uses /; /, regularization to produce sparsity directly. The gradient for /; ;, regular-
ization is %\wj | ~1/2. This term is smaller for weights with larger magnitude. Our expectation is that
£1 /5 will drive unimportant weights towards zero while leaving large weights relatively unaffected,
thus avoiding the accuracy loss associated with excessive regularization.

For our /1 and /;/, experiments, we use the Deep Speech 2 Bidirectional RNN baseline model
described in Section 4. These models are trained for 25 epochs on our internal training dataset of
2000 hours. The results are reported on a independent test set consisting of 2.9 hours.

Table 7: ¢1 and £, / results with the bidirectional RNN model with 1760 hidden units

# PARAMS RELATIVE PRUNING
MODEL  (in millions) SPARSITY CER PERF ALGORITHM
RNN Dense 67 0.0% 15.36 0.0% N/A
RNN Sparse 7.3 89.2% 17.32 -12.8%  Weight pruning
RNN Sparse 11.2 83.6%  24.8 -61.5% ¢
RNN Sparse 7.4 89.1% 17.28 -12.5% ¢, with pruning
RNN Sparse 6.6 90.3% 18.50 -20.4% ¢, 5 with pruning

Without pruning, ¢; model results in significantly worse accuracy compared to the dense baseline.
Combining ¢; with weight pruning allows us to recover the loss in accuracy with similar sparsity.
The £, /o with pruning model performs worse than the ¢; with pruning model. Comparing the two
regularizers, this result indicates that ¢; is better at guiding pruning than £, /5, more suitable as a
regularizer, or both.

Similar to group lasso experiments, ¢; regularization experiments require a significantly higher A
to achieve high sparsity without any pruning. We suspect that these regularizers would be more
successful in inducing sparsity for models that overfit the training training dataset.
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B PRUNING CHARACTERISTICS

In this section, we discuss some pruning characteristics and how they relate to training and accuracy
of the models.

B.1 PRUNING SCHEDULE

In Figure 4a, we plot the pruning schedule of a recurrent and linear layer of the bidirectional model
trained with Block Pruning (BP) and Weight Pruning (WP) (Narang et al., 2017) and Group lasso
with block pruning (GLP). For all three algorithms, pruning begins just after the first epoch at 2700
iterations. The BP and GLP models result in a sharper curve with more weights being set to zero in
a short span of iterations. In these experiments, we use the max function to reduce the blocks to a
single value which could be the cause of the sharpness in pruning. Also the GLP model reaches 90%
sparsity just before 10,000 iterations which is significantly earlier than the BP model. GLP training
encourages sparsity early on in the training run by pushing the blocks of weights towards zero.

B.2 OuTtpPUT CONNECTIONS

Figure 4b shows the histogram of the number of output connections for all the neurons in a network
for two models with different sparsity pruned with BP. The 94% sparse model does significantly
worse than the 89% sparse. For the model with 89% sparsity, only 180 neurons have all their output
weights set to zero out of a total of 38270. This model produced good accuracy relative to the dense
baseline. However, increasing the sparsity to 94% for the layer results in 1620 neurons having all
zero output weights. Additionally, a lot more neurons have a smaller number of non-zero output
weights.

80
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40

20
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o 300 600
Iteration number Output connections
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Figure 4: Figure 4a shows the pruning schedule for two layers in the network for WP, GLP and BP
models. The GLP and BP models use block size of 4x4. Figure 4b plots the histogram of the number
of output connections for all neurons in the network using block pruning with 4 x4 blocks.

B.3 SPARSITY VS LAYERS

Figure 5 shows the sparsity of all the recurrent layers in the network using BP and WP. All recurrent
layers have the same pruning hyper-parameters. Layer 1 is the first recurrent layer and layer 14 is the
final recurrent layer before the CTC cost layer. For both block pruning and weight pruning, we see
that the initial layers are pruned more aggressively compared to the final layers. Increasing sparsity
in the layers closer to the output results in poor accuracy. Additionally, the variance in sparsity
across the layers increases with the block size. This increasing variance makes it harder to increase
the block size beyond 32 %32 with the same pruning hyper-parameters for all recurrent layers.
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Figure 5: Sparsity of different recurrent layers in the network in the RNN model, pruned using BP
and WP.
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