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Abstract

Efficiently training a multi-task neural solver for various combinatorial optimization prob-
lems (COPs) has been less studied so far. Naive application of conventional multi-task
learning approaches often falls short in delivering a high-quality, unified neural solver. This
deficiency primarily stems from the significant computational demands and a lack of ad-
equate consideration for the complexities inherent in COPs. In this paper, we propose a
general and efficient training paradigm to deliver a unified combinatorial multi-task neural
solver. To this end, we resort to the theoretical loss decomposition for multiple tasks un-
der an encoder-decoder framework, which enables more efficient training via proper bandit
task-sampling algorithms through an intra-task influence matrix. By employing theoretically
grounded approximations, our method significantly enhances overall performance, regardless
of whether it is within constrained training budgets, across equivalent training epochs, or
in terms of generalization capabilities, when compared to conventional training schedules.
On the real-world datasets of TSPLib and CVRPLib, our method also achieved the best
results compared to single task learning and multi-task learning approaches. Additionally,
the influence matrix provides empirical evidence supporting common practices in the field
of learning to optimize, further substantiating the effectiveness of our approach. Our code
is open-sourced and available at https://github.com/LOGO-CUHKSZ/MTL-COP.

1 Introduction

Combinatorial optimization problems (COPs) (Korte et al., 2011) are fundamental in various fields, including
logistics (Cattaruzza et al., 2017; Bao et al., 2018), finance (Tatsumura et al., 2023), telecommunications
(Resende & Pardalos, 2008), and computer science, where they are essential for making optimal decisions
over discrete structures. Traditional methods for solving COPs, such as exact algorithms (Wolsey, 2020), ap-
proximation methods (Vazirani, 2001) and heuristics (Boussaïd et al., 2013), often face significant challenges
due to their computational complexity and inefficiency, especially in large-scale and dynamic scenarios. The
emergence of deep learning has introduced a transformative approach by leveraging powerful modeling ca-
pabilities to learn from data and generalize solutions across similar instances. Building on this idea, many
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studies have attempted to use machine learning-based methods, such as supervised learning (Vinyals et al.,
2015; Fu et al., 2021), reinforcement learning (Bello et al., 2017; Kool et al., 2019; Kwon et al., 2020; Lu et al.,
2020; Wu et al., 2021b), or unsupervised learning (Hibat-Allah et al., 2021; Schuetz et al., 2022; Sanokowski
et al., 2023; 2024), to solve COPs by proposing neural solvers. However, these approaches typically focus on
a single type of combinatorial optimization problem, or even a specific scale of that problem, significantly
limiting the feasibility of neural solvers in practical applications. Therefore, training a neural solver capable
of handling different types and sizes of COPs simultaneously is an urgent issue that needs to be addressed.
Recently, some research has begun to address this issue, proposing the use of a unified neural solver to
tackle different problems such as Vehicle Routing Problems (VRPs) (Liu et al., 2024; Lin et al., 2024; Berto
et al., 2024; Zhou et al., 2024) and graph-based COPs (Boisvert et al., 2024). However, these solutions are
often restricted to a specific category of problems. For instance, they may leverage specialist knowledge
to construct models based on the combinatorial characteristics of various VRPs (such as VRPTW, OVRP,
VRPB) or focus solely on graph-based COPs. As a result, they fail to develop a neural solver that can
simultaneously solve multiple types of COPs.

Although a generic neural solver for multiple COPs is appealing, training such a neural solver can be
prohibitively expensive, especially in the era of large models and this problem is less studied in the literature.
To relieve the training burden and better balance the resource allocation, in this paper, we propose a novel
training paradigm from a multi-task learning (MTL) perspective, which can efficiently train a multi-task
combinatorial neural solver to handle different types of COPs under limited training budgets.

To this end, we treat each COP with a specific problem scale as a task and manage to deliver a generic
solver handling a set of tasks simultaneously. Different from a standard joint training in MTL, we employ
multi-armed bandits (MAB) algorithms to select/sample one task in each training round, hence avoiding the
complex balancing of losses from multiple tasks. To better guide the MTL training, we employ a reasonable
reward design derived from the theoretical loss decomposition to derive the rewards with theoretical guaran-
tees in MAB algorithms for the widely adopted encoder-decoder architecture. This loss decomposition also
brings about an influence matrix revealing the mutual impacts between tasks, which provides rich evidence
to explain some common practices in the scope of COPs.

To emphasize, our method is the first-of-its-kind to consider training a generic neural solver for different
kinds of COPs. This greatly differs from existing works focusing on either solution construction (Vinyals
et al., 2015; Bello et al., 2017; Kool et al., 2019; Kwon et al., 2020) or heuristic improvement (Lu et al.,
2020; Wu et al., 2021b; Agostinelli et al., 2021; Fu et al., 2021; Kool et al., 2022). Some recent works seek
to generalize neural solvers to different scales (Hou et al.; Li et al., 2021; Cheng et al., 2023; Wang et al.,
2024) or varying distributions (Wang et al., 2021; Bi et al., 2022; Geisler et al., 2022), but with no ability to
handle multiple types of COPs simultaneously. Compared to methods aimed at building a universal neural
solver (Liu et al., 2024; Lin et al., 2024; Berto et al., 2024; Zhou et al., 2024; Boisvert et al., 2024), our focus
is a generalized training framework that does not require expert knowledge during the training phase, nor
does it necessitate specifying the type of problems. This framework is suitable for any neural solver and is
adaptable to a broad range of COPs

Experiments are conducted for 12 tasks: Four types of COPs, the Travelling Salesman Problem (TSP), the
Capacitated Vehicle Routing Problem (CVRP), the Orienteering Problem (OP), and the Knapsack Problem
(KP), and each of them with three problem scales. We compare our approach with single-task training (STL),
extensive MTL baselines (Mao et al., 2021; Yu et al., 2020; Navon et al., 2022; Kendall et al., 2018; Liu et al.,
2021a;b) and the SOTA task grouping method, TAG (Fifty et al., 2021) under the cases of the same training
budgets and same training epochs. Compared with STL, our approach needs no prior knowledge about tasks
and can automatically focus on harder tasks to maximally utilize the training budget. Additionally, when
comparing with STL under the same training epoch, our approach not only enjoys the cheaper training
cost which is strictly smaller than that of the most expensive task, but also shows the generalization ability
by providing a universal model to cover different types of COPs. Compared with the MTL methods, our
method only picks the most impacting task to train at each time. This mechanism improves the training
efficiency without explicitly balancing the losses. Furthermore, we also compare our approach with STL and
MTL methods on real-world datasets, TSPLib and CVRPLib, achieving the best experimental performance.
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In summary, our contributions can be concluded as follows: (1) We propose a novel framework for efficiently
training a combinatorial neural solver for multiple COPs via MTL, which achieves prominent performance
against standard training paradigms with limited training resources and can further advise efficient training
of other large models; (2) We study the intrinsic loss decomposition for the well-adopted encoder-decoder
architecture and propose a theoretically guaranteed approximation for it, leading to the influence matrix
reflecting the inherent task relations and reasonable reward guiding the update of MAB algorithms; (3)
We verify several empirical observations for neural solvers from previous works (Kool et al., 2019; Joshi
et al., 2021) by the influence matrix, demonstrating the validity and reasonableness of our approach; (4) We
compare our method to a wide range of baselines on synthetic and real-world datasets, demonstrating that
it outperforms STL and MTL approaches in efficiency and results.

2 Related Work

Neural solvers for COPs Pointer Networks (Vinyals et al., 2015) pioneered the application of deep neural
networks for solving combinatorial optimization problems. Subsequently, numerous neural solvers have been
developed to address various COPs, such as routing problems (Bello et al., 2017; Kool et al., 2019; Lu et al.,
2020; Wu et al., 2021b;b), knapsack problem (Bello et al., 2017; Kwon et al., 2020), job shop scheduling
problem (Zhang et al., 2020), and others. There are two prevalent approaches to constructing neural solvers:
solution construction (Vinyals et al., 2015; Bello et al., 2017; Kool et al., 2019; Kwon et al., 2020), which
sequentially constructs a feasible solution, and heuristic improvement (Lu et al., 2020; Wu et al., 2021b;
Agostinelli et al., 2021; Fu et al., 2021; Kool et al., 2022), which provides meaningful information to guide
downstream classical heuristic methods. In addition to developing novel techniques, several works (Wang
et al., 2021; Geisler et al., 2022; Bi et al., 2022; Wang et al., 2024) have been proposed to address generalization
issues inherent in COPs. For a comprehensive review of the existing challenges in this area, we refer to the
survey Bengio et al. (2020).

Multi-task learning Multi-Task Learning (MTL) aims to enhance the performance of multiple tasks by
jointly training a single model to extract shared knowledge among them. Numerous works have emerged
to address MTL from various perspectives, such as exploring the balance on the losses from different tasks
(Mao et al., 2021; Yu et al., 2020; Navon et al., 2022; Kendall et al., 2018; Liu et al., 2021a;b) designing
module-sharing mechanisms (Misra et al., 2016; Sun et al., 2020; Hu & Singh, 2021), improving MTL through
multi-objective optimization (Sener & Koltun, 2018; Lin et al., 2019; Momma et al., 2022), and meta-learning
(Song et al., 2022). To optimize MTL efficiency and mitigate the impact of negative transfer, some research
focuses on task-grouping (Kumar & III, 2012; Zamir et al., 2018; Standley et al., 2020; Fifty et al., 2021), with
the goal of identifying task relationships and learning within groups to alleviate negative transfer effects in
conflicting tasks. On the application level, MTL has been extensively employed in various domains, including
natural language processing (Collobert & Weston, 2008; Luong et al., 2016), computer vision (Zamir et al.,
2018; Seong et al., 2019), bioinformatics (Xu et al., 2017), and many others.

Foundation models for COPs Recently, research has increasingly focused on foundation models for com-
binatorial optimization problems. For instance, studies such as Liu et al. (2024); Lin et al. (2024); Berto
et al. (2024); Zhou et al. (2024) tackle cross-problem generalization in vehicle routing problems (VRPs)
using unified neural solvers that leverage attribute composition. However, these approaches rely on the com-
binatorial nature of VRP structures and necessitate specific expert knowledge for problem decomposition,
limiting their applicability to other types of COPs. Meanwhile, Boisvert et al. (2024) proposes a generic
representation for COPs via graph-based approaches, facilitating efficient learning with a novel graph neural
network architecture. Additionally, Drakulic et al. (2024) presents a generalist model that efficiently ad-
dresses multiple COPs using a mixed-attention backbone and multi-type transformer architecture, achieving
task-specific adaptability through lightweight adapters and showcasing strong transfer learning capabilities.
Furthermore, Jiang et al. (2024) introduces a model that solves diverse combinatorial optimization prob-
lems using natural language-formulated instances and a large language model for embedding, enhanced by
an encoder-decoder architecture and trained with conflict gradients erasing reinforcement learning, thereby
improving performance across tasks.
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Figure 1: Pipeline of MAB for Solving COPs in view of MTL. We consider four types of COPs: TSP, CVRP,
OP and KP, each with a corresponding header and decoder. The encoder, which is common to all COPs, is
also included. For each time step, we utilize the MAB algorithm to select a specific task for training, such as
CVRP-100 depicted in the figure. We then obtain the loss for the selected task, perform loss decomposition as
detailed in Section 3.1, and construct a reward using the methodology outlined in Section 3.2. Finally, we utilize
the reward to update the MAB algorithm.

Multi-armed bandits Multi-armed bandit (MAB) is a classical problem in decision theory and machine
learning that addresses the exploration-exploitation trade-off. Several algorithms and strategies have been
suggested to solve the MAB problem, such as the ϵ-greedy, Upper Confidence Bound (UCB) family of
algorithms (Lai et al., 1985; Auer et al., 2002), the Exp3 family (Littlestone & Warmuth, 1994; Auer et al.,
1995; Gur et al., 2014), and the Thompson sampling (Thompson, 1933; Agrawal & Goyal, 2012; Chapelle
& Li, 2011). These methods differ in their balance of exploration and exploitation, and their resilience
under distinct types of uncertainty. The MAB has been extensively studied in both theoretical and practical
contexts, and comprehensive details can be found in Slivkins et al. (2019); Lattimore & Szepesvári (2020).

3 Method

We consider K types of COPs, denoted as T i (i = 1, 2, ..., K), with ni different problem scales for each COP.
Thus, the overall task set is T =

⋃K
i=1 T i := {T i

j |j = 1, 2, ..., ni, i = 1, 2, ..., K}. For each type of COP T i,
we consider a neural solver SΘi(Ii

j) : T i
j , Yi

j , where Θi are the parameters for COP T i, Ii
j and Yi

j are the
input instance the output space for COP T i with the problem scale of nj (termed as task T i

j in the sequel).
The parameter vector Θi = (θshare, θi) contains the shared and task-specific parameters for the COP T i,
and the complete set of parameters is denoted by Θ =

⋃K
i=1 Θi. This parameter notation corresponds to

the commonly used Encoder-Decoder framework 1 in multi-task learning in Figure 1, where θshare represents
the encoder - shared across all tasks, and θi represents the decoder - task-specific for each task. Given the
task loss functions Li

j(Θi) for COP T i with the problem scale of nj , we investigate the widely used objective
function:

min
Θ

L(Θ) =
K∑

i=1

ni∑
j=1

Li
j(Θi). (1)

We propose a general Multi-task Learning (MTL) framework based on Multi-Armed Bandits (MAB) to
dynamically select tasks during training rounds and a reasonable reward is constructed to guide the selection
process. In particular, our approach establishes a comprehensive task relation by the obtained influence

1According to the Encoder-Decoder framework, encoder commonly refers to shared models, whereas decoder concerns task-
specific modules. In this study, the decoder component comprises two modules: "Header" and "Decoder" as illustrated in Figure
1.
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matrix, which has the potential to empirically validate several common deep learning practices while solving
COPs.

Overview We aim to solve equation 1 using the MAB approach. Given the set of tasks T = {T i
j |j =

1, 2, ..., ni, i = 1, 2, ..., K}, we select an arm (i.e., task being trained) at ∈ T following an MAB algorithm,
which yields a random reward signal rt that reflects the effect of the selection. The approximated expected
reward is updated based on the rewards. Essentially, our proposed method is applicable to any MAB
algorithm. The general framework of MAB algorithm for solving COPs within the context of MTL is
outlined in Figure 1.

3.1 Loss Decomposition

In the framework of solving COPs in view of MTL described in Figure 1, it is crucial to design a reasonable
reward for MAB algorithm to guide its update. In this part, we analytically drive a reasonable reward by
decomposing the loss function for the Encoder-Decoder framework . Note Θ =

⋃K
i=1 Θi = {θshare}

⋃
{θi, i =

1, 2, ..., K} are all trainable parameters.

We suppose that a meaningful reward should satisfy the following two properties: (1) It can benefit our
objective and reveal the intrinsic training signal; (2) When a task is selected, there is always positive effect
on it in expectation.

The decrease on loss function is a reasonable choice and previous work has used it to measure the task
relationship (Fifty et al., 2021). However, such measurement is invalid in our context because there are
no significant differences among tasks (see Appendix A.8) . What’s more, the computational cost of the
"lookahead loss" in TAG (Fifty et al., 2021) is considerably expensive when frequent reward signals are
needed. We instead propose a more fundamental way based on gradients to measure the impacts of training
one task upon the others.

To simplify the analysis, in Proposition 1 we assume the standard gradient descent (GD) is used to optimize
equation 1 by training one task at each step t, and then derive the loss decomposition under the encoder-
decoder framework. Any other optimization methods, e.g., Adam (Kingma & Ba, 2015), can also be used
here with small modifications. Detailed proofs for GD and Adam are in Appendix A.2.

Proposition 1 (Loss decomposition for GD) Using encoder-decoder framework with parameters Θ =⋃K
i=1 Θi = {θshare}

⋃
{θi, i = 1, 2, ..., K} and updating parameters with standard gradient descent: Θ(t + 1) =

Θ(t) − ηt∇L(Θ(t)), where ηt is the step size. Then the difference of the loss of task T i
j from training step t1

to t2: ∆Li
j(t1, t2) = Li

j(Θi(t2)) − Li
j(Θi(t1)) can be decomposed to:

∆Li
j(t1, t2)

= − (
t2−1∑
t=t1

ηt1(at = T i
j )∇T Li

j(Ψi(t))∇Li
j(Θi(t))︸ ︷︷ ︸

(a) effects of training task T i
j : ei

j
(t1,t2)

+
ni∑

q=1
q ̸=j

t2−1∑
t=t1

ηt1(at = T i
q)∇T Li

j(Ψi(t))∇Li
q(Θi(t))

︸ ︷︷ ︸
(b) effects of training task {T i

q , q ̸= j}: {ei
q(t1,t2),q ̸=j}

+
K∑

p=1
p ̸=i

np∑
q=1

t2−1∑
t=t1

ηt1(at = T p
q )∇T

θshareL
i
j(Ψi(t))∇θshareLp

q(Θp(t))

︸ ︷︷ ︸
(c) effects of training task {T p

q , p ̸= i}:{ep
q (t1,t2),q=1,2,...,np,p̸=i}

) ,

(2)

where ∇L(Θ) means taking gradient w.r.t. Θ and ∇Lθ(Θ) means taking gradient w.r.t. θ ⊆ Θ, Ψi(t) is
some vector lying between Θi(t) and Θi(t) and 1(at = T i

j ) is the indicator function.

Proof 1 (Proof of proposition 1:) Observe that
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∆Li
j(t1, t2) =

t2−1∑
t=t1

[
∆Li

j(t, t + 1)

(
K∑

p=1

np∑
q=1

1(at = T p
q )

)]
=

t2−1∑
t=t1

1(at = T i
j )∆Li

j(t, t + 1)

+
t2−1∑
t=t1

ni∑
q=1
q ̸=j

1(at = T i
q)∆Li

j(t, t + 1) +
t2−1∑
t=t1

K∑
p=1
p̸=i

np∑
q=1

1(at = T p
q )∆Li

j(t, t + 1).
(3)

where 1(at = T i
j ) is the indicator function which is introduced here because we only select one task at each

time step, taking 1 if selecting task T i
j at time step t, 0 otherwise. Then based on mean value theorem, we

take the first order Taylor expansion for

1(at = T p
q )∆Li

j(t, t + 1) =
{

− ηt∇T Li
j(Ψi(t))∇Li

q(Θi(t)) if p = i

− ηT ∇T
θshareL

i
j(Ψi(t))∇T

θshareL
p
q(Θp(t)) Otherwise

(4)

where Ψi(t) is some vector lying between Θi(t) and Θi(t+1). Suppose task T i
j is selected for ci

j times between
time step t1 and t2, After plugging equation 4 in equation 3, we obtain

Li
j(Θi(t2)) − Li

j(Θi(t1)) = −(∇T Li
j(Ψi(t1))

t2∑
t=t1

1(at = T i
j )ηt∇Li

j(Θi(t))︸ ︷︷ ︸
(a) effects of training task T i

j : ei
j

(t1,t2)

+

∇T Li
j(Ψi(t1))

ni∑
q=1
q ̸=j

t2∑
t=t1

1(at = T i
q)ηt∇Li

q(Θi(t))

︸ ︷︷ ︸
(b) effects of training task {T i

q , q ̸= j}: {ei
q((t1,t2)),q ̸=j}

+ ∇T
θshare Li

j(Ψi(t1))
K∑

p=1
p ̸=i

np∑
q=1

t2∑
t=t1

1(at = T p
q )ηt∇T

θshare Lp
q(Θp(t))

︸ ︷︷ ︸
(c) effects of training task {T

p
q , p ̸= i}:{e

p
q (t1,t2),q=1,2,...,np,p ̸=i}

).
(5)

The idea behind equation 2 means the improvement on the loss for task T i
j from t1 to t2 can be decomposed

into three parts: (a) effects of training T i
j itself w.r.t. Θi; (b) effects of training same kind of COP {T i

q , q ̸= j}
w.r.t. Θi; and (c) effects of training other COPs {T p, p ̸= i} w.r.t. θshare. Indeed, we quantify the impact of
different tasks on T i

j through this decomposition, which provides the intrinsic training signals for designing
reasonable rewards.

3.2 Reward Design and Influence Matrix Construction

In this part, we design the reward and construct the intra-task relations based on the loss decomposition
introduced in Section 3.1. Though equation 2 reveals the signal during training, the inner products of
gradients from different tasks can significantly differ at scale (see Appendix A.8). This may greatly mislead
the bandit’s update since improvements may come from large gradient values even when they are almost
orthogonal. To address this, we propose to use cosine metric to measure the influence between task pairs.
Formally, for task T i

j from t1 to t2, the influence from training the same type of COP T i
q to T i

j is:

mi
j(T i

q ; t1, t2) =
t2−1∑
t=t1

1(at = T i
q)∑t2−1

t=t1
1(at = T i

q)
∇T Li

j(Ψi(t))∇Li
q(Θi(t))

||∇T Li
j(Ψi(t))|| · ||∇Li

q(Θi(t))|| , (6)

and the influence from training other types of COPs T p
q to T i

j is:

mi
j(T p

q ; t1, t2) =
t2−1∑
t=t1

1(at = T p
q )∑t2−1

t=t1
1(at = T p

q )
∇T

θshareLi
j(Ψi(t))∇θshareLp

q(Θp(t))
||∇T

θshareLi
j(Ψi(t))|| · ||∇θshareLp

q(Θp(t))||
. (7)

Given equation 6 and equation 7, we denote the influence vector to T i
j as:

mi
j(t1, t2) = ( ..., mi

j(T i
1 ; t1, t2), ...,

influence from itself︷ ︸︸ ︷
mi

j(T i
j ; t1, t2) , ..., mi

j(T i
ni

; t1, t2)︸ ︷︷ ︸
influence from the same kind of COP

, ..., mi
j(T p

q ; t1, t2), ...︸ ︷︷ ︸
influence from other kinds of COPs

)T (8)
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Based on equation 8, an influence matrix M(t1, t2) = (..., mi
j(t1, t2), ...)T ∈ R(

∑K

k=1
nk)×(

∑K

k=1
nk) can be

constructed to reveal the relationship between tasks from time step t1 to t2. There are several properties
about influence matrix M(t1, t2): (1) M(t1, t2) has blocks M i(t1, t2) ∈ Rni in the diagonal position which
is the sub-influence matrix of a same kind of COP with different problem scales; (2) M(t1, t2) is asymmetry
which is consistent with the general understanding in multi-task learning; (3) The row-sum of M(t1, t2)
are the total influences obtained from all tasks to one task; (4) The column-sum of M(t1, t2) are the total
influences from one task to all tasks.

According to the implication of the elements in M(t1, t2), the column-sum of M(t1, t2):

r(t1, t2) = 1T · M(t1, t2) ∈ R1×
∑K

k=1
nk (9)

provides a meaningful reward signal for selecting tasks ,which we can use to update the bandit algorithm.
Moreover, we denote the update frequency of computing the influence matrix as ∆T and the overall train-
ing time is n∆T , then an average influence matrix W can be constructed based on influence matrices
{M(k∆T, (k + 1)∆T ), k = 0, 2, ..., n − 1} collected during the training process:

W = 1
n∆T

n−1∑
k=1

M (k∆T, (k + 1)∆T ) , (10)

revealing the overall task relations across the training process.

3.3 Theoretical Analysis and Implementation

When computing the bandit rewards, an issue arises with approximating ∇T Li
j(Ψi(t)) in Eqs. equation 6

and equation 7. A practical and justifiable approach involves using the approximation ∇T Li
j(Ψi(t)) ≈

∇T Li
j(Θi(t)) based on a Taylor expansion, as the parameter changes during neural network updates are

typically minimal. Nonetheless, obtaining this gradient information is challenging because only one task is
selected per training slot. To address this, we adopt the approximation

∇T Li
j(Θi(τi,j(t))) ≈ ∇T Li

j(Θi(t))

where τi,j(t) represents the most recent training slot for T i
j . This method is straightforward to implement

and offers the following theoretical guarantee.

Theorem 1 For each task, suppose there exists M > 0 such that ||∇2Li
j(Θi)|| ≤ M . Moreover,

we suppose the gradients have equal norm across the training period. For any task T p
q , we denote

m̂i
j(T p

q ; t1, t2) and m̃i
j(T p

q ; t1, t2) as the approximations of using ∇T Li
j(Θi(τi,j(t))) and ∇T Li

j(Θi(t)) in
mi

j(T p
q ; t1, t2), then

|m̂i
j(T p

q ; t1, t2) − m̃i
j(T p

q ; t1, t2)| ≤ Mηmax(t1, t2)
cp

q(t1, t2)

t2∑
t=t1

1(at = T p
q )(t − τi,j(t))

where ηmax(t1, t2) and cp
q(t1, t2) are the maximal learning rate and selection times of T p

q from t1 to t2.

In practice, this upper bound is reasonably negligible due to the small value of M (Sagun et al., 2017;
Ghorbani et al., 2019; Yao et al., 2020; Li et al., 2020) and ηmax(t1,t2)

cp
q (t1,t2)

∑t2
t=t1

1(at = T p
q )(t−τi,j(t)), indicating

a good approximation during the implementation. We leave the proofs and discussions in Appendix A.3

3.4 Computation Complexity of MTL Methods

In this part, we will make a detailed comparison on the computation complexity between our method and
other typical MTL methods. We first define some notations for the time complexity: N , Di, Fi and Bi where
Di, Fi and Bi are the dimension of parameters, the computation cost of feed-forward and backward for task i,
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Table 1: Computation complexity of different MTL methods for one training time slot. "Basic" measures the
computation for the feed-forward and backward process, "Extra" measures the extra computations used for guiding
MTL, and "All" is the sum of them.

Naive-MTL Bandit-MTL PCGrad Nash-MTL UW IMTL CAGrad Ours
Basic O (N(F + B)) O (N(F + B)) O (N(F + B)) O (N(F + B)) O (N(F + B)) O (N(F + B)) O (N(F + B)) O (F + B)
Extra 0 O (N) O

(
N2D

)
O
(
N2D

)
O (1) O

(
N2D + N3) - O (ND)

All O (N(F + B)) O (N(F + B + 1)) O (N(F + B + ND)) O (N(F + B + ND)) O (N(F + B)) O
(
N(F + B + N2 + ND)

)
- O (F + B + ND)

GPU Hours 1.00 1.04 6.02 5.87 1.00 5.61 5.24 0.07

and we denote D = max{Di, i = 1, 2, ..., N}, F = max{Fi, i = 1, 2, ..., N}, B = max{Bi, i = 1, 2, ..., N}. We
analyze the computation complexity for Bandit-MTL, PCGrad, Nash-MTL, Uncertainty-Weighting (UW)
and our method, results are shown in Table1, where "Basic" measures the computation for the feed-forward
and backward process, "Extra" measures the extra computations used for guiding MTL, and "All" is the sum
of them.

We ignore the complexity of sampling from a discrete distribution with N elements, e.g. sampling an arm in
MAB algorithm. What’s more, we also ignore the optimization process in Nash-MTL and UW because they
are quite efficient to compute. From the results in the Table 1, our method has moderate extra computation
costs comparing with other methods, however, when considering the overall computation cost, our method
achieves the lowest complexity because we only need to perform one feedforward-backward process which is
the most time-consuming part during training. We provide detailed descriptions of these MTL methods in
Appendix A.5.

4 Experiments

In this section, we conduct a comparative analysis between the proposed method against both single-task
training (STL) and extensive multi-task learning (MTL) methods to demonstrate the efficacy of our ap-
proach in addressing various COPs under different evaluation criteria. Specifically, we examine two distinct
scenarios: (1) Under identical training budgets, we aim to showcase the convenience of our method in auto-
matically obtaining a universal combinatorial neural solver for multiple COPs, circumventing the challenges
of balancing loss in MTL and allocating time for each task in STL; (2) Given the approximately same num-
ber of training epochs, we seek to illustrate that our method can derive a potent neural solver with excellent
generalization capability. Furthermore, we employ the influence matrix to analyze the relationship between
different COP types and the same COP type with varying problem scales.

We explore four types of COPs: the Travelling Salesman Problem (TSP), the Capacitated Vehicle Routing
Problem (CVRP), the Orienteering Problem (OP), and the Knapsack Problem (KP). Detailed descriptions
can be found in Appendix A.1. Three problem scales are considered for each COP: 20, 50, and 100 for
TSP, CVRP, and OP; and 50, 100, and 200 for KP. We employ the notation “COP-scale”, such as TSP-20,
to denote a particular task, resulting in a total of 12 tasks. We emphasize that the derivation presented
in Section 3.1 applies to a wide range of loss functions encompassing both supervised learning-based and
reinforcement learning-based methods. In this study, we opt for reinforcement learning-based neural solvers,
primarily because they do not necessitate manual labeling of high-quality solutions. As a representative
method in this domain, we utilize the Attention Model (AM) (Kool et al., 2019) as the backbone and employ
POMO (Kwon et al., 2020) to optimize its parameters. Concerning the bandit algorithm, we select Exp3
and the update frequency is set to 12 training batches. We discuss the selection of the MAB algorithms
and update frequency in Appendix A.4, with details on the solving logic of neural solvers and training
configurations in Appendix A.7.

4.1 Comparison under Same Training Budgets

We consider a practical scenario with limited training resources available for neural solvers for all tasks.
Our method addresses this challenge by concurrently training all tasks using an appropriate task sampling
strategy. However, establishing a schedule for STL is difficult due to the lack of information regarding
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Table 2: Comparison among our proposed method, multi-task learning (MTL), and single task training (STL)
utilizing the same training budget. Specifically, STLavg. and STLbal. denote the allocation of resources, with an
even distribution and a balanced allocation ratio of 1 : 2 : 3, respectively, among tasks with varying scales from
small to large. The reported results depict the optimality gap (↓) in the main aspects.

Method TSP20 TSP50 TSP100 CVRP20 CVRP50 CVRP100 OP20 OP50 OP100 KP50 KP100 KP200 Avg. Gap

Sm
al

lB
ud

ge
t

STLavg. 0.009% 0.347% 3.814% 0.466% 2.301% 5.966% −1.080% 1.289% 5.719% 0.028% 0.014% 0.017% 1.574%±0.102
STLbal. 0.021% 0.341% 3.176% 0.608% 2.312% 4.775% −0.970% 1.288% 4.799% 0.034% 0.014% 0.016% 1.368%±0.138
Naive-MTL 0.040% 0.779% 3.263% 0.663% 2.427% 4.364% −0.508% 2.380% 5.138% 0.037% 0.014% 0.017% 1.551%±0.086
UW 0.039% 0.496% 2.353% 0.464% 1.929% 3.742% −0.434% 2.268% 4.819% 0.035% 0.015% 0.017% 1.312%±0.262
Bandit-MTL 0.057% 1.203% 4.846% 0.947% 3.119% 5.460% −0.534% 2.058% 4.360% 0.043% 0.016% 0.020% 1.800%±0.584
PCGrad 0.460% 2.920% 7.776% 1.576% 4.890% 8.112% 0.600% 5.264% 9.129% 16.167% 0.019% 0.026% 4.745%±2.360
CAGrad 0.810% 4.584% 11.057% 1.642% 5.047% 8.208% 0.544% 5.074% 9.075% 0.047% 0.020% 0.036% 3.845%±0.692
Nash-MTL 0.372% 2.598% 7.047% 1.333% 4.232% 7.181% 0.365% 4.681% 8.526% 0.048% 0.018% 0.022% 3.035%±0.964
TAG 0.035% 0.678% 2.947% 0.622% 2.214% 3.916% −0.632% 1.530% 3.856% 0.063% 0.020% 0.042% 1.274%±0.096
Random 0.060% 0.577% 3.029% 0.608% 2.233% 4.117% −0.891% 1.061% 3.483% 0.041% 0.014% 0.021% 1.196%±0.060
Ours 0.024% 0.262% 1.407% 0.385% 1.521% 2.798% −1.081% 0.447% 1.883% 0.035% 0.015% 0.018% 0.643%±0.116

M
ed

ia
n

Bu
dg

et

STLavg. 0.005% 0.182% 2.240% 0.374% 1.664% 4.122% −1.156% 0.661% 3.627% 0.025% 0.013% 0.015% 0.981%±0.074
STLbal. 0.008% 0.184% 1.654% 0.450% 1.650% 3.476% −1.112% 0.677% 2.555% 0.028% 0.013% 0.013% 0.800%±0.022
Naive-MTL 0.022% 0.420% 2.239% 0.510% 1.974% 3.560% −0.870% 1.161% 3.179% 0.033% 0.013% 0.014% 1.021%±0.034
UW 0.031% 0.304% 1.796% 0.392% 1.621% 3.180% −0.741% 1.370% 3.770% 0.030% 0.013% 0.016% 0.982%±0.198
Bandit-MTL 0.030% 0.723% 3.319% 0.694% 2.430% 4.374% −0.859% 1.174% 3.000% 0.041% 0.015% 0.018% 1.247%±0.404
PCGrad 0.193% 1.583% 5.171% 1.144% 3.641% 6.215% 0.135% 3.854% 7.164% 16.161% 0.017% 0.020% 3.775%±4.050
CAGrad 0.986% 4.479% 10.354% 1.280% 3.805% 6.576% 0.023% 4.071% 7.557% 0.050% 0.019% 0.034% 3.269%±1.152
Nash-MTL 0.177% 1.400% 4.564% 0.906% 3.132% 5.589% −0.115% 3.525% 6.809% 0.046% 0.016% 0.020% 2.173%±0.650
TAG 0.023% 0.334% 1.767% 0.372% 1.480% 2.762% −0.812% 0.884% 2.804% 0.034% 0.016% 0.022% 0.807%±0.074
Random 0.044% 0.290% 1.779% 0.452% 1.706% 3.310% −1.050% 0.818% 2.028% 0.030% 0.011% 0.014% 0.786%±0.072
Ours 0.015% 0.192% 0.955% 0.335% 1.226% 2.260% −1.121% 0.165% 1.127% 0.028% 0.011% 0.013% 0.434%±0.066

La
rg

e
Bu

dg
et

STLavg. 0.002% 0.117% 1.290% 0.284% 1.278% 3.086% −1.222% 0.249% 2.101% 0.018% 0.011% 0.014% 0.602%±0.012
STLbal. 0.004% 0.115% 1.020% 0.367% 1.284% 2.588% −1.176% 0.255% 1.592% 0.024% 0.011% 0.012% 0.508%±0.022
Naive-MTL 0.015% 0.229% 1.300% 0.395% 1.611% 2.901% −0.965% 0.447% 1.910% 0.027% 0.013% 0.012% 0.658%±0.040
UW 0.028% 0.203% 1.254% 0.341% 1.364% 2.780% −0.843% 0.614% 1.904% 0.029% 0.013% 0.014% 0.642%±0.020
Bandit-MTL 0.008% 0.231% 1.113% 0.489% 1.366% 2.513% −1.201% 0.419% 1.975% 0.035% 0.013% 0.018% 0.581%±0.112
PCGrad −0.006% 0.412% 3.688% 0.625% 2.250% 4.033% −0.878% 1.938% 3.960% 15.176% 0.015% 0.019% 2.603%±1.650
CAGrad 0.194% 1.971% 6.947% 1.363% 2.802% 4.622% −0.611% 2.494% 5.848% 0.055% 0.025% 0.024% 2.145%±0.254
Nash-MTL 0.049% 0.658% 1.943% 0.502% 2.005% 3.478% −0.985% 1.642% 3.742% 0.045% 0.018% 0.021% 1.093%±0.070
TAG 0.006% 0.058% 1.193% 0.312% 1.287% 2.253% −0.929% 0.594% 2.092% 0.029% 0.013% 0.015% 0.577%±0.024
Random 0.019% 0.185% 1.177% 0.371% 1.449% 2.814% −0.922% 0.400% 2.060% 0.031% 0.013% 0.012% 0.634%±0.028
Ours 0.014% 0.173% 0.866% 0.321% 1.182% 2.165% −1.133% 0.093% 0.987% 0.025% 0.011% 0.011% 0.393%±0.056

resource allocation for each task, and MTL methods are hindered by efficiency issues arising from joint
task training. In this section, we compare our method with naive STL and MTL methods in terms of the
optimality gap: gap% = (1 − obj.

gt. ) × 100, averaged over 10,000 instances for each task under an identical
training time budget.

Table 3: Training time per epoch, represented
in minutes. The COPs are classified into three
scales: small, median, and large, which corre-
spond to the sizes of 20, 50, and 100, respec-
tively (50, 100, and 200 for KP).

COP Small Median Large
TSP 0.19 0.39 0.75
CVRP 0.27 0.50 0.90
OP 0.20 0.41 0.60
KP 0.34 0.61 1.10

Baselines The total training time budget is designated as
B. For STL framework, we consider three types of sched-
ules for the allocation of time across varying problem scales:
(1) Average allocation, denoted as STLavg., indicating a uni-
form distribution of resources for each task; (2) Balanced
allocation with each type of COP receiving resources equi-
tably for B

4 , denoted as STLbal., signifying a size-dependent
resource assignment with a 1:2:3 ratio from small to large prob-
lem scales,categorizing tasks into easy-median-hard levels; (3)
Allocation determined by the bandit algorithm, denoted as
STLbandit, utilizes the selection ratio of each task after training
the neural solver by the proposed method. The first schedule is
suitable for realistic scenarios where information regarding the
tasks is unavailable and the second is advantageous when prior
knowledge is introduced. Although the third strategy is not typically available in practical applications, it
serves to demonstrate the potential benefits of an adaptive training mechanism inherent in our proposed
method. What’s more, extensive MTL baselines are considered here: Bandit-MTL (Mao et al., 2021), PC-
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Grad (Yu et al., 2020), Nash-MTL (Navon et al., 2022), Uncertainty-Weighting (UW) (Kendall et al., 2018),
CAGrad (Liu et al., 2021a) and TAG (Fifty et al., 2021) (Detailed configurations for TAG are in Appendix
A.6). We also involve the random policy which samples the task uniformly at each training slot, and the
results of condensed version are presented in Table 2.

Experimental settings To mitigate the impact of extraneous computations, we calculate the time necessary
to complete one epoch for each task and convert the training duration into the number of training epochs
for STL. Utilizing the same device, the training time for for each task with STL and MTL methods can
be found in Table 3 and Table 1. We assess three distinct training budgets: (1) Small budget: the time
required to complete 500 training epochs using our method, approximately 1.59 days in GPU hours; (2)
Medium budget: 1000 training epochs, consuming 3.28 days in GPU hours; and (3) Large budget: 2000
training epochs, spanning 6.64 days in GPU hours.

All methods were trained five times independently to ensure robust evaluation and statistical significance.
Comprehensive experimental results are presented in Table 2. Due to horizontal space constraints, we report
only the average performance values for individual tasks, while for the Average Gap across all tasks, we
provide both the mean and two standard deviations across the five training runs. We refer the more detailed
analysis of the stability of each method on individual tasks to Figure 11 in Appendix A.12.

Small budget Median budget Large budget
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Figure 2: Comparative analysis of MTL methods during
training: The left graph shows the mean objective func-
tion for TSP and CVRP (with a lower-is-better criterion),
and the right graph shows the same for OP and KP (with
a higher-is-better criterion), demonstrating the superior
performance of our proposed method under varying com-
putational budgets.

Results In general, our method outperforms the
MTL and STL methods in terms of averge gap
across all the budgets used. When comparing with
all MTL methods, our method demonstrates two su-
perior advantages: (1) Better performance on the
solution quality and efficiency: In Table 2, typical
MTL methods fail to obtain a powerful neural solver
efficiently, and some of them even work worse than
naive MTL and STL in limited budgets. Further,
as illustrated in Figure 2, it can be seen that the
method proposed exhibits superior efficiency regard-
ing its convergence speed and overall effectiveness;
(2) More resources-friendly: The computation com-
plexity of typical MTL methods grows linearly w.r.t.
the number of tasks (a detailed analysis of the com-
putational complexity of each MTL method is avail-
able in Appendix 3.4), conducting these training
methods still needs heavy training resources (High-
performance GPU with quite large memories). The exact training time for one epoch w.r.t. GPU hour are
listed in Table 1. Under the same training setting, intermediate termination of prolonged training epoch for
typical MTL methods incurs wasted computation resources. However, our method trains only one task at
each time slot, resulting in rapid epoch-wise training that facilitates flexible experimentation and iteration.

As the training budgets increase, STL’s advantages become evident in easier tasks such as TSP, CVRP-20,
OP-20, and KP-50. However, our method continues to deliver robust results for more difficult tasks like
CVRP-100 and OP-100. In addition to performance gains, the most notable advantage of our approach is
that it does not require prior knowledge of the tasks and is capable of dynamically allocating resources for
each task, which is crucial in real-world scenarios. When implementing STL, biases are inevitably introduced
with equal allocation. As demonstrated in Table 2, the performance of two distinct allocation schedules can
differ significantly: STLbal. consistently outperforms STLavg. due to the introduction of appropriate priors
for STL. What’s more, the random policy achieves competitive results compared to MTL baselines due to
its efficient training strategy (sampling one task at a time). It slightly outperforms STL as our method(in
small and median budgets) because positive transfer exists between same-type COP during the early stages
of model training. However, unlike our method which selects tasks that maximize positive transfers across
all tasks, the random policy doesn’t actively explore and exploit task relationships. This lack of strategic
task selection explains why it underperforms compared to our approach.
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Table 4: The comparison results are obtained by training our model for 1000 epochs and STL models for 100
epochs each, amounting to a total of 1200 epochs.

TSP20 TSP50 TSP100 CVRP20 CVRP50 CVRP100 OP20 OP50 OP100 KP50 KP100 KP200 Avg. Gap
STL 0.013% 0.234% 1.673% 0.490% 1.613% 3.342% −1.156% 0.812% 2.678% 0.030% 0.014% 0.012% 0.813% ± 0.070
Ours 0.015% 0.192% 0.955% 0.335% 1.226% 2.260% −1.121% 0.165% 1.127% 0.028% 0.011% 0.013% 0.434% ± 0.066
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Figure 3: This figure compares the generalization performance across different scales for TSP, CVRP, OP, and KP.
The y-axis represents the average test optimality gap (%) on small, median and large scales for models trained
on small (blue), median (orange), and large (green) scale single-task datasets. The red line denotes the results
of our method after training for 1000 epochs.

4.2 Comparative Analysis and Generalization Performance

In this part, we evaluated the performance of our method against single-task training (STL) under approxi-
mately equivalent total training epochs and generalization performance. Specifically, our method was trained
for 1000 epochs across 12 tasks, while STL models were trained for 100 epochs per task, amounting to a
total of 1200 epochs. The results are summarized in Table 4, highlighting the optimality gap for various
tasks, including TSP, CVRP, OP, and KP. Compared to individual tasks, our method (trained 1000 epochs)
consistently outperforms STL (trained 100 × 12 = 1200 epochs) across most tasks, with exceptions noted in
TSP20, OP20, and KP50, indicating efficient utilization of the training epochs.

To assess the generalization performance, we compared our method, trained for 1000 epochs, against STL
models trained individually for 1000 epochs. Figure 3 illustrates the average optimality gaps for TSP, CVRP,
OP, and KP across different scales (small, median, and large). Our method demonstrates unparalleled
superiority in three ways: (1) when considering the average performance on all problem scales for each
type of COP, our method obtains the best results in CVRP, OP, and KP, and is equivalent to the results
achieved by training TSP for about 500 epochs. This showcases our method’s excellent generalization ability
for problem scales; (2) Our method can handle various types of COPs under the same number of training
epochs, which is impossible for STL due to the existence of task-specific modules; (3) Our method’s training
time is strictly shorter than the longest time-consuming task.

4.3 Study of the Influence Matrix

Our approach has an additional advantage as it facilitates the identification of the task relationship through
the influence matrix developed in Section 3.2. The influence matrix enables us to capture the inherent
relationships among tasks, providing empirical evidence based on experiences and observations within the
learning-to-optimize community. A detailed view of the influence matrix is presented in Figure ??, revealing
significant observations: (1) Figure ?? highlights that the influence matrix computed using equation 10
possesses a diagonal-like block structure. This phenomenon suggests a strong correlation between the same
type of COP, which is not present within different types of COPs due to the corresponding elements being
insignificant. Furthermore, within the same type of COP, we observe that the effect of training a task on
other tasks lessens with the increase in the difference of problem scales. Hence, training combinatorial neural
solvers on one problem scale leads to higher benefits on similar problem scales than on those that are further
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Figure 4: This figure provides a visual representation of the mutual influence between tasks. The left-hand side
displays the average influence matrix, as defined in equation ??, while the right-hand side illustrates the influence
value throughout the training process.

away. Such scale generalization challenge for COPs has been noted in previous works, such as Figure 5 in
Kool et al. (2019) and Figure 3 in Joshi et al. (2022), which demonstrate that neural solvers trained on specific
problem sizes show degraded performance on other scales, with performance declining as the gap between
training and testing sizes increases. This fact is in turn quantified by the influence matrix in our work. (2)
Figure ?? presents a visualization of the influence resulting from equation 6, equation 7 over the course of
the training process. Each point in the chart represents the influence of a particular task on another task at
a specific time step. Notably, tasks belonging to the same type of COP are highly influential towards each
other due to the large variance of their influence values. This phenomenon indicates that for different scales
of the same COP type, both positive and negative transfer exist simultaneously. Positive transfer enables
a trained neural solver to maintain basic solving capabilities compared to random initialization. However,
the negative transfer arising from scale differences hinders the neural solver’s generalization ability across
different problem sizes. In contrast, influences between different types of COPs are negligible, evident from
the influence values being concentrated around 0. This striking observation showcases that the employed
combinatorial neural solver and algorithm , AM (Kool et al., 2019) and POMO (Kwon et al., 2020), segregate
the gradient space into distinct orthogonal subspaces, and each of these subspaces corresponds to a particular
type of COP. Furthermore, this implies that the gradient of training each variant of COP is situated on a
low-dimensional manifold, motivating us to develop more parameter-efficient neural solver backbones and
algorithms.

4.4 Results on Real Datasets

In this section, we evaluate the efficacy of the proposed method using real-world datasets: TSPLib (Reinelt,
1991) and CVRPLib (Uchoa et al., 2017). The training encompasses six distinct tasks: TSP20, TSP50,
TSP100, CVRP20, CVRP50, and CVRP100. The experimental configurations adhere to those outlined in
section 4.1, considering two budget scenarios: Small and Medium. From Table 2, we select the most effective
baselines from Single-Task Learning (STL) and Multi-Task Learning (MTL), specifically STLbal. and UW
(Kendall et al., 2018), respectively. The performance of STLbal. for a given instance is derived from the best
outcomes across three models; for instance, the result for berlin52 in TSPLib is obtained from the optimal
model among TSP20, TSP50, and TSP100. We only report the average results across the instances in Table
5 and detailed instance-wise results can be found in Appendix A.10.
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Table 5: Comparison of different methods
across TSPLib and CVRPLib w.r.t optimal-
ity gap.

Small Budget Median Budget
TSPLib CVRPLib TSPLib CVRPLib

STLbal. 5.953% 6.300% 3.975% 4.630%
UW 13.145% 5.895% 6.277% 5.105%
Ours 4.550% 3.940% 3.177% 3.344%

Our experimental results demonstrate superior performance
across both TSPLib and CVRPLib datasets. Under small bud-
get constraints, our method achieves optimality gaps of 4.550%
and 3.940% for TSPLib and CVRPLib respectively, consis-
tently outperforming the baseline methods. The improvement
is particularly significant compared to UW, which shows high
variability (13.145% optimality gap for TSPLib small budget).
Under median budget conditions, our approach maintains its
advantage with the lowest optimality gaps (3.177% for TSPLib,
3.344% for CVRPLib), demonstrating robust performance across different problem settings and budget con-
straints.

5 Conclusions and Futhre Works

In the era of large models, training a unified neural solver for multiple combinatorial tasks is in increasing
demand, whereas such a training process can be prohibitively expensive. In this work, we propose an efficient
training framework to boost the training of multi-task combinatorial neural solvers with a multi-armed bandit
sampler. With this framework, we can efficiently obtain a unified neural solver capable of covering multiple
types of COPs simultaneously. We believe that this framework can be powerful for multi-task learning in a
broader sense, especially in scenarios where resources are limited, and generalization is crucial. It can also
help analyze task relations in the absence of priors.

Furthermore, the proposed framework is model-agnostic, which makes it applicable to any existing neural
solvers. We speculate that different neural solvers may produce varying results on the influence matrix, and
a perfect neural solver may gain mutual improvements even from different types of COPs. Therefore, there
is an urgent need to study the unified backbone and representation method for solving COPs.
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A Appendix

A.1 Problem Description

Traveling Salesman Problem (TSP) The objective is to determine the shortest possible route that visits
each location once and returns to the original location. In this study, we limit our consideration to the two-
dimensional euclidean case, where the information for each location is presented as (xi, yi) ∈ R2 sampled
from the unit square.

Vehicle Routing Problem (VRP) The Capacitated VRP (CVRP) (Toth & Vigo, 2014) consists of a
depot node and several demand nodes. The vehicle begins and ends at the depot node, travels through
multiple routes to satisfy all the demand nodes, and the total demand for each route must not exceed the
vehicle capacity. The goal of the CVRP is to minimize the total cost of the routes while adhering to all
constraints.

Orienteering Problem (OP) The Orienteering Problem (OP) is a variant of the Traveling Salesman
Problem (TSP). Instead of visiting all the nodes, the objective is to maximize the total prize of visited nodes
within a total distance constraint. Unlike the TSP and the Vehicle Routing Problem (VRP), the OP does
not require selecting all nodes.

Knapsack Problem (KP) The Knapsack Problem strives to decide which items with various weights and
values to be placed into a knapsack with limited capacity fully. The objective is to attain the maximum
total value of the selected items while not surpassing the knapsack’s limit.

A.2 Loss Decomposition For Adam Optimizer

Adam optimizer (Kingma & Ba, 2015) is more widely used and popular in practice than standard gradient
descent. Accordingly, we derive the loss decomposition for Adam optimizer in a manner consistent with the
previous method. We first summarize the update rule of Adam as follows:

Θ(t) = Θ(t − 1) − α

√∑t−1
τ=1 βt−τ

2∑t−1
τ=1 βt−τ

1

∑t
τ=1 βt−τ

1 g(τ)√∑t
τ=1 βt−τ

2 ||g(τ)||2 + ϵ
= Θ(t − 1) − ηt

t∑
τ=1

βt−τ
1 g(τ)

where g(τ) = ∇L(Θ(τ − 1)) and g0 = 0, ηt =

√∑t−1
τ=1

βt−τ
2∑t−1

τ=1
βt−τ

1

α√∑t

τ=1
βt−τ

2 ||gτ ||2+ϵ

, βi, i = 1, 2 are exponential

average parameters for the first and second order gradients. Our assumption is that sharing the second
moment term correction for all tasks can be easily implemented by using a single optimizer during training.

Given that the update is predicated on the optimization trajectory’s history, we can use comparable calcu-
lations in gradient descent to infer Adam’s contribution breakdown. Starting at the same point:

1(at = T p
q )∆Li

j(t, t + 1) =


− ηt∇T Li

j(Ψi(t))
t+1∑
τ=1

βt+1−τ
1 g(τ) if p = i

− ηt∇T
θshareLi

j(Ψi(t))
t+1∑
τ=1

βt+1−τ
1 gshare(τ) Otherwise

(11)

With a little abuse of notation, g(τ) means the gradient w.r.t. the selection task at time slot τ and gshare(τ)
is the version of taking derivatives only one shared parameters. Then plugging equation 11 into equation 3,
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we have
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(c) effects of training task {T p
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),

(12)

Three similar parts are obtained finally.

A.3 Proof and Discussion on Theorem 1

Proof 2 (Proof of theorem 1:)
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where (∗) holds because we suppose all gradients have the same norm G during the training which can be
guaranteed by regularizing the gradients; (∗∗) holds due to the Taylor expansion for ∇Li

j(Θi(t)) on Θi(τi,j(t))
and L

m(t′)
n(t′) denotes the loss for training task T

m(t′)
n(t′) selected at time step t′; (∗ ∗ ∗) is obtained from the

assumption on the bounded Hession of the loss function. Then let ηmax(t1, t2) = maxt=t1,...,t2{ηt}, cp
q(t1, t2) =∑t2

t=t!
1(at = T p

q ), the final result is obtained:
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|m̂i
j(T p

q ; t1, t2) − m̃i
j(T p

q ; t1, t2)| ≤ Mηmax(t1, t2)
cp

q(t1, t2)

t2∑
t=t1

1(at = T p
q )(t − τi,j(t)).

In practice, we can easily verify the magnitude of ηmax(t1,t2)
cp

q (t1,t2)
∑t2

t=t1
1(at = T p

q )(t − τi,j(t)) during the training
process. Following the experimental setup in the main paper, with ηmax = η = 10−4, and a selection
frequency of 12, we calculate the average of this error upper bound for all tasks within a selection cycle, i.e.,
ηmax(t1,t2)∑

i,j,p,q
1

∑
i,j,p,q

∑t2
t=t1

1(at=T p
q )(t−τi,j(t))

cp
q (t1,t2) . The experimental results are demonstrated in Figure 5, showing

that the average error upper bound steadily maintains at the magnitude of 10−4. Regarding the upper bound
of the norm of the Hessian matrix in neural networks, there have been numerous prior studies (Sagun et al.,
2017; Ghorbani et al., 2019; Yao et al., 2020; Li et al., 2020) investigating this topic. Specifically, Sagun
et al. (2017) pointed out that in the late stage of neural network optimization, most of the eigenvalues of its
Hessian matrix are near zero; Ghorbani et al. (2019) found that the large negative eigenvalues of the Hessian
disappeared rapidly, with the overall spectrum shape stabilizing in only very few training steps; Similarly,
Li et al. (2020) discovered that as training progresses, the larger eigenvalues of the neural network’s Hessian
gradually decrease and concentrate near zero. These findings have been validated on various image datasets
and neural network architectures. Although there are currently no specific observations for COP tasks, we
speculate that similar conclusions for small value of M might hold.

A.4 Discussion on The Bandit Algorithm and Update Frequency

As shown in equation 2, the effect of the training task T p
q on T i

j can be computed as

1(at = T p
q )∇T Li

j(Ψi(t))∇Lp
q(Θp(t)).

This is subject to the indicator function 1(at = T p
q ), which determines whether the task T p

q is selected at
time step t. We first highlight the following tips: (1) For the stability and accuracy of the gradients, it
is recommended to involve more than one step in the process of collecting gradient information. However,
having an overly slow update frequency may yield incorrect results due to the lazy update of the bandit
algorithm; (2) When the update frequency is larger than 1, UCB family algorithms are unsuitable as they
tend to greedily select the same task in the absence of updates. Therefore, the update frequency is a crucial
hyper-parameter to specify, and Thompson Sampling and adversary bandit algorithms are suitable in this
framework due to their higher level of randomness.
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Based on above discussions, we present empirical evidence and elaborate on the details. We performed
experiments for the 12 tasks under small budgets, with five repetitions each. Five update frequencies were
considered: 6, 12, 24, 36, and 48. The performances w.r.t. optimality gap are presented in Figure 6.

Effects of bandit algorithms The four algorithms considered are: Exp3, Thompson Sampling (TS),
Exp3R, and Discounted Thompson Sampling (DTS). They have more exploration characteristics than UCB
family algorithms with update delays. Moreover, Exp3R and DTS have the capability to handle changing
environments. According to Figure 6, TS performs the worst among these four algorithms, as it fails to handle
potential adversaries and changing environments. DTS performs more robustly than TS since it involves a
discounted factor. Exp3 and Exp3R provide good results because they are able to handle adversaries and
detect environmental changes. However, Exp3R does not perform significantly better than Exp3 due to the
neural solver’s gradual and slow improvement, resulting no abrupt changes for Exp3R to detect. Based on
the observed performance, it appears that simple procedures such as introducing a discounted factor in DTS
and basic adversary bandit algorithms such as Exp3 are sufficient for handling our case.

Effects of update frequency The update frequency affects the accuracy of influence information approx-
imation and the tension in the bandit algorithm. Appropriate selections must balance these two factors.
Figure 6 shows that the frequency of 12 generally yields the best results across different bandit algorithms.
DTS and Exp3 exhibit deteriorating performance with higher frequencies, resulting from numerous lazy
updates. By contrast, Exp3R does not have this property because increasing the frequency helps detect
changing points more quickly. As a consequence, the number of tasks (12 in our case) appears to be an
appropriate empirical choice to balance these two factors.

A.5 Details of Multi-task Learning Methods

In this section, we provide detailed descriptions of the MTL baselines used in our main experiments. Specif-
ically, we elaborate on the algorithm-level details of Bandit-MTL (Mao et al., 2021), PCGrad (Yu et al.,
2020), Nash-MTL (Navon et al., 2022), Uncertainty-Weighting (UW) (Kendall et al., 2018), CAGrad (Liu
et al., 2021a) and IMTL (Liu et al., 2021b). All these methods train multiple tasks simultaneously at each
training step and achieve positive transfer by designing different strategies to balance task-specific losses
through loss weights. Therefore, these methods share a basic computational complexity of O(N(F + B))
for network forward and backward propagation in one training step, where F and B denote the compu-
tational cost of forward and backward pass respectively. We also present the detailed derivation of their
computational complexity as shown in Table 1.

Bandit-MTL Bandit-MTL formulates the task weighting problem as an adversarial multi-armed bandit
problem. At each training step, it computes the loss weights by regularizing the variance of task losses,
which means it attempts to find weights that can both minimize the weighted sum of task losses and reduce
the variance among different task losses.These weights are optimized using mirror gradient ascent under the
constraint that they sum to one. Since the computation of loss weights only depends on the task losses and
the optimization process is efficient in practice, Bandit-MTL introduces an additional O(N) computational
complexity for updating the weights.

PCGrad PCGrad addresses the gradient conflict issue in multi-task learning through gradient surgery.
At each training step, it identifies conflicting gradients between task pairs and modifies them by projecting
each gradient onto the normal plane of the other, effectively removing the interfering components. Since
PCGrad needs to compute pair-wise gradient projections for the gradients of model parameters, it introduces
an additional computational complexity of O(N2D) at most, where D is the number of model parameters.

Nash-MTL Nash-MTL reformulates the gradient combination in multi-task learning as a cooperative
bargaining game, where each task is treated as a player negotiating for an agreed update direction. It
utilizes the Nash bargaining solution from game theory to find a proportionally fair update direction that
benefits all tasks without being dominated by any single large gradient. To compute this solution, Nash-
MTL requires calculating pairwise gradient inner products and solving a linear system using a variation of
the concave-convex procedure. Although the optimization process is efficient in practice, the computation
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of pairwise gradient operations introduces an additional computational complexity of O(N2D), where D is
the number of model parameters.

UW UW proposes a principled approach to balance multiple task losses by leveraging homoscedastic uncer-
tainty. It interprets the homoscedastic uncertainty as task-dependent weighting and uses this interpretation
to automatically adjust the relative weights of different tasks. The method derives these weights directly
from the estimated noise levels of each task, making it applicable to both regression and classification tasks.
Since the weights can be directly computed from given noise levels and applied to the losses, UW introduces
only O(1) additional computational complexity.

CAGrad CAGrad proposes a novel approach to balance multiple tasks by considering both the average
loss and the worst-case local improvement of individual tasks. At each training step, it seeks an update
direction that maximizes the minimum improvement across all tasks within a neighborhood of the average
gradient, thereby ensuring that no single task is disproportionately disadvantaged. Due to the complexity
of solving the underlying min-max optimization problem, the explicit computational complexity analysis of
CAGrad is not provided in our study.

IMTL IMTL aims to achieve fair optimization across tasks through two key components: loss balanc-
ing and gradient balancing. For task-shared parameters, it computes scaling factors through a closed-form
solution to ensure that the aggregated gradient has equal projections onto individual task gradients. For task-
specific parameters, it dynamically adjusts task loss weights to maintain comparable loss scales across tasks.
The method involves two stages of computation: the loss balance stage (IMTL-L) which requires normalized
gradients computation for each task, and the gradient balance stage which involves matrix operations for
computing scaling factors. Due to these computations, IMTL introduces an additional computational com-
plexity of O(N2D + N3), where the N2D term comes from matrix multiplications between task gradients,
and the N3 term arises from solving a (N − 1) × (N − 1) linear system.

A.6 Configurations and Detailed Results of TAG

Strictly speaking, TAG (Fifty et al., 2021) is not suitable as a baseline because it involves two stages:
collecting task affinity and training. The main challenges lie in how to allocate weights to these two stages
under limited resources and how to determine the optimal number of groups. However, to highlight the
superiority of the proposed method, we disregard the time required for collecting task affinity and allocate
training time proportionally to the number of tasks in each group. The number of groups is set to 2, 3,
and 4, and the best-performing result is ultimately selected. The grouping results obtained from TAG are
demonstrated in Table 6. As evident from the table, the results of TAG are comparable to those of MTL-
based methods under all budget constraints and grouping strategies, both of which are significantly inferior
to our proposed approach.

A.7 Experimental Settings

Solving Logic of POMO POMO (Kwon et al., 2020) applies the construction scheme to solve combinatorial
optimization problems (COPs) by generating a feasible solution for an instance incrementally. For example,
in the Travelling Salesman Problem (TSP), when solving an instance with n nodes, if the partial solution
currently contains k nodes, one node needs to be selected from the remaining n - k nodes. Once a specific
node is selected and added to the partial solution, the next partial solution, containing k + 1 nodes, is
determined. This process continues until all nodes are included in the partial solution, at which point a
feasible solution is achieved.

Model structure We adopt the same model structures as in POMO (Kwon et al., 2020) to build our model.
To train various COPs in a unified model, we use a separate MLP on top of the model for each problem,
which we call Header. This header facilitates correlation of input features with different dimensions. For
TSP, we use two-dimensional coordinates, {(xi, yi), i = 1, 2, ..., n}, as input, while CVRP and OP have
additional constraints on customer demand and vehicle capacity, in addition to two-dimensional coordinates.
Hence, their input dimensions are 3 and 3, respectively. Moreover, in OP, the prize is assigned based on the
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Table 6: Performance of TAG under different grouping strategies. The reported results depict the optimality gap
(↓) in the main aspects.

Group TSP20 TSP50 TSP100 CVRP20 CVRP50 CVRP100 OP20 OP50 OP100 KP50 KP100 KP200 Avg. Gap

Sm
al

lB
ud

ge
t

1 - - - 0.624% 2.196% 3.965% - - - - - - 1.270%2 0.033% 0.663% 2.857% 0.630% 2.303% 4.103% −0.622% 1.542% 3.882% 0.059% 0.020% 0.039%

1 0.015% 0.237% - - - - - - - - - -
1.401%2 - - - 0.648% 2.317% 4.182% - - - - - -

3 0.038% 0.737% 3.031% 0.660% 2.402% 4.209% −0.553% 1.720% 4.155% 0.045% 0.015% 0.018%

1 0.021% 0.270% - - - - - - - - - -

1.370%2 0.050% 0.443% 2.179% - - - - - - - -
3 - - - 0.678% 2.377% 4.322% - - - - - -
4 0.046% 0.792% 3.274% 0.703% 2.468% 4.344% −0.516% 2.010% 4.649% 0.037% 0.014% 0.020%

M
ed

ia
n

B
ud

ge
t

1 - - - 0.379% 1.496% 2.787% - - - - - - 0.754%2 0.025% 0.310% 1.745% 0.459% 1.820% 3.285% −0.812% 0.896% 2.590% 0.032% 0.016% 0.023%

1 0.008% 0.141% - - - - - - - - - -
0.755%2 - - - 0.400% 1.577% 2.915% - - - - - -

3 0.031% 0.368% 1.975% 0.482% 1.883% 3.429% −0.794% 0.957% 2.736% 0.034% 0.015% 0.018%

1 0.012% 0.186% - - - - - - - - - -

0.849%2 0.028% 0.212% 1.218% - - - - - - - - -
3 - - - 0.447% 1.741% 3.199% - - - - - -
4 0.035% 0.452% 2.378% 0.555% 2.063% 3.667% −0.700% 1.134% 3.092% 0.035% 0.014% 0.019%

La
rg

e
B

ud
ge

t

1 - - - 0.301% 1.174% 2.212% - - - - - - 0.566%2 0.022% 0.210% 1.212% 0.352% 1.518% 2.797% −0.910% 0.543% 1.919% 0.032% 0.013% 0.018%

1 0.004% 0.078% - - - - - - - - -
0.562%2 - - - 0.310% 1.207% 2.260% - - - - - -

3 0.020% 0.211% 1.251% 0.368% 1.521% 2.785% −0.913% 0.556% 1.979% 0.031% 0.013% 0.014%

1 0.006% 0.093% - - - - - - - - - -

0.581%2 0.009% 0.109% 0.667% - - - - - - - - -
3 - - - 0.328% 1.337% 2.509% - - - - - -
4 0.024% 0.264% 1.443% 0.420% 1.670% 3.040% −0.853% 0.654% 2.163% 0.037% 0.014% 0.013%

distance between the node and the depot node, following the setting in AM (Kool et al., 2019). The KP takes
two-dimensional inputs, {(wi, vi), i = 1, 2, ..., n}, with wi and vi representing the weight and value of each
item, respectively. As such, we introduce four kinds of Header to embed features with different dimensions
to 128. The embeddings obtained from the Header are then passed through a shared Encoder, composed
of six encoder layers based on the Transformer (Vaswani et al., 2017). Finally, we employ four type-specific
Decoders, one for each COP, to make decisions in a sequential manner. The shared Encoder has the bulk
of the model’s capacity because the Header and Decoder are lightweight 1-layer MLPs. Furthermore, when
solving a specific COP, we only need to use the relevant Encoder, Header, and Decoder for evaluation. Since
the model size is precisely the same, the inference time required is similar to that of single-task learning.

Hyperparameters In each epoch, we process a total of 100×1000 instances with a batch size of 512. The
POMO size is equal to the problem scale, except for KP-200, where it is 100. We optimize the model using
Adam (Kingma & Ba, 2015) with a learning rate of 1e-4 and weight decay of 1e-6. The training of the model
involves 1000 epochs in the standard setting. The learning rate is decreased by 1e-1 at the 900th epoch.
During the first epoch, we use the bandit algorithm to explore at the beginning of the training process. We
then collect gradient information by updating the bandit algorithm with every 12 batches of data. The model
is trained using 8 Nvidia Tesla A100 GPUs in parallel, and the evaluations are done on a single NVIDIA
GeForce RTX 3090.

Bandit settings We utilized the open-source repository (Besson, 2018) for implementing the bandit algo-
rithms in this study with default settings.

A.8 Loss and Gradient Norm of Each Task

One intuitive method of measuring the effect of training is to calculate the ratio of losses between adjacent
training sessions. These ratios can be used to calculate training rewards for each corresponding task. How-
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Figure 7: Training loss for each task.
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Figure 8: Gradient norm for each task.

ever, as shown in Figure 7, this method of calculating rewards is not effective because they are not sufficiently
distinct to guide the training process properly.

Computing the inner products of corresponding gradients to analyze how training one task affects the others
can lead to a misleading calculation of rewards and training process. Figure 8 visualizes gradient norms for
each task in the logarithmic scale. We observe that the gradient norms are not in the same scale, which
becomes problematic when jointly training different COP types. In such cases, the rewards of certain COP
types (such as CVRP in our experiments) may dominate the rewards of other types.

A.9 Clarification on Performance Improvements and Further Ablations

We would like to clarify that cross-problem-type performance improvements do not stem from the shared
encoder learning mutual improvement information. Rather, the improvements come from efficient training
(see GPU hours/epoch in Table 3) and positive transfers in independent model parameter subspaces for
each COP type: As observed through the influence matrix in Figure ??, different COP types correspond to
nearly orthogonal subspaces in the model parameter space. Each subspace learns solution information for
its corresponding COP type, though this allocates fewer training parameters to each COP type. Based on
this understanding, we further enhanced our method by the following setting.

Given a neural solver backbone and considering that different types of COPs exhibit minimal correlation,
we investigate the effectiveness of our method by training separately on each COP type. Following the
experimental setup in Table 2, we compared two training approaches: (1) class-specific training (Ours-4G),
which groups 12 tasks into four problem classes (TSP, CVRP, OP, and KP) with the budget equally divided
among these classes, and (2) collective training of all 12 tasks (Ours-12T). The comparison was conducted
across three budget levels: Small, Medium, and Large.

Table 7: Comparison of performance between Ours-12T and Ours-4G under different budget sizes

Budget Method TSP20 TSP50 TSP100 CVRP20 CVRP50 CVRP100 OP20 OP50 OP100 KP50 KP100 KP200 Avg. Gap

Small Ours-12T 0.019% 0.248% 1.325% 0.373% 1.476% 2.741% -1.107% 0.402% 1.826% 0.033% 0.014% 0.020% 0.614%
Ours-4G 0.013% 0.167% 0.919% 0.342% 1.323% 2.444% -1.025% 0.602% 2.126% 0.045% 0.017% 0.017% 0.583%

Medium Ours-12T 0.014% 0.195% 0.911% 0.331% 1.199% 2.219% -1.138% 0.119% 1.040% 0.029% 0.012% 0.013% 0.412%
Ours-4G 0.008% 0.134% 0.697% 0.295% 1.131% 2.105% -1.126% 0.193% 1.373% 0.047% 0.029% 0.019% 0.409%

Large Ours-12T 0.013% 0.181% 0.842% 0.315% 1.156% 2.122% -1.135% 0.041% 0.901% 0.025% 0.011% 0.011% 0.374%
Ours-4G 0.005% 0.077% 0.427% 0.281% 0.967% 1.823% -1.201% 0.034% 0.971% 0.045% 0.018% 0.015% 0.288%

Table 7 presents the performance comparison between class-specific training (Ours-4G) and collective training
(Ours-12T) under different budget sizes. Across all three budget levels, Ours-4G consistently outperforms
the best results of Ours-12T among 5 repeated runs, achieving lower average optimality gaps (0.583% vs.
0.614% for small budget, 0.409% vs. 0.412% for medium budget, and 0.288% vs. 0.374% for large budget).
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This superior performance of Ours-4G demonstrates that when task relationships are known a priori (e.g.,
through the influence matrix), separating tasks into groups can lead to better results. This improvement may
be attributed to reduced interference from less correlated tasks, allowing the model to focus more effectively
on training highly correlated tasks together. However, it’s worth noting that Ours-12T, which trains all tasks
collectively without requiring any prior knowledge of task relationships, exhibits more general applicability
while still achieving competitive results as shown in Table 2. These results highlight the complementary
advantages of our proposed methods: Ours-4G achieves optimal performance when task relationships are
known, while Ours-12T provides a robust and effective solution when no prior knowledge is available, making
our framework adaptable to various practical scenarios.

A.10 Detailed Results on TSPLib and CVRPLib

In this section, we present the experimental results on TSPLib and CVRPLib that were omitted in the main
text.

Table 8: Comparison results on TSPLib. The reported
results depict the optimality gap (%) (↓) in the main
aspects.

Instances Small Budget Median Budget
STLbal. UW Ours STLbal. UW Ours

berlin52 0.077% 11.849% 0.988% 0.065% 3.161% 0.0%
st70 0.997% 3.125% 1.024% 0.837% 1.258% 0.35%
pr76 0.828% 2.575% 0.818% 0.032% 1.552% 0.69%
eil76 2.61% 4.565% 2.39% 1.237% 1.978% 1.894%
rd100 1.877% 9.044% 0.568% 0.665% 0.855% 0.673%
kroA100 4.887% 11.177% 3.229% 1.907% 4.494% 0.772%
kroC100 1.269% 12.014% 1.564% 1.508% 6.239% 0.292%
kroD100 4.223% 12.277% 2.352% 2.528% 5.378% 1.699%
eil101 2.966% 7.203% 2.379% 2.379% 3.526% 1.343%
lin105 3.727% 15.204% 3.449% 3.873% 7.177% 3.775%
ch130 4.7% 8.739% 2.783% 2.689% 2.899% 1.448%
ch150 4.715% 12.064% 3.295% 2.539% 3.739% 2.432%
tsp225 14.127% 23.313% 11.544% 10.105% 13.452% 7.579%
a280 20.685% 32.413% 14.464% 14.112% 18.635% 11.46%
pcb442 21.608% 31.618% 17.406% 15.15% 19.807% 13.254%
Avg. Gap 5.953% 13.145% 4.55% 3.975% 6.277% 3.177%

The results presented in Table 8 clearly illustrate
the superiority of our proposed method across both
budget scenarios on the TSPLib dataset. Notably,
our method consistently achieves the lowest optimal-
ity gaps, highlighting its robust performance under
varying budget constraints. The average optimality
gap for our method is 4.55% and 3.18% for small and
median budgets respectively, which are significantly
lower compared to the other approaches, including
STLbal. and UW. Moreover, an analysis of instances
with problem scales of 100 or greater reveals that
our method not only maintains but often enhances
its performance advantage as the problem scale in-
creases. This trend underscores our method’s ex-
cellent scalability and generalization across larger
problem sizes, which is critical for practical applica-
tions where larger datasets are common.

In the results presented for CVRPLib in Table 9,
our approach demonstrates a clear advantage over
the other methods, with an average optimality gap of 3.94% in the small budget scenario and 3.344%
in the median budget scenario. These results are superior to those achieved by STLbal. (6.3% and 4.63%,
respectively) and UW (5.895% and 5.105%, respectively). Such findings highlight the efficacy of our method,
especially under more constrained budget conditions. Furthermore, analogous to the results on TSPLib, our
method exhibits superior performance particularly for instances where the problem size exceeds 100. Notably,
for instances in the "X" series, our method consistently achieves the lowest optimality gaps compared to both
STLbal. and UW. Furthermore, we present a more comprehensive comparison of results on CVRPLib X-set
instances in Table 10. Our method achieves the best performance in terms of Avg. Gap under both small
and median budgets, with 9.21% and 9.174% respectively. Notably, for large-scale instances (n>536) under
the small budget, our method consistently outperforms all alternatives. However, it is evident that the
performance improvement from small to median budget is not significant, indicating that out-of-distribution
generalization to untrained scales remains a bottleneck.

A.11 Demonstration of the Bandit Algorithms

This section presents detailed information on various bandit algorithms, as shown in Figure 9, including
the selection count and average return for each task. It is evident that TS algorithm dominates in all 12
tasks, leading to poor performance on tasks where training is limited. In contrast, other bandit algorithms
maintain balance across all tasks, resulting in better average results.
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Table 9: Comparison results on CVRPLib. The reported results depict the optimality gap (%) (↓) in the main
aspects.

Instances Small Budget Median Budget
STLbal. UW Ours STLbal. UW Ours

E-n76-k10 3.718% 2.96% 2.291% 2.78% 2.493% 2.49%
E-n76-k7 5.742% 4.817% 2.777% 3.393% 4.489% 2.7%
E-n51-k5 3.833% 6.296% 4.167% 5.117% 5.183% 3.263%
E-n101-k14 5.439% 6.803% 4.439% 5.398% 5.018% 4.417%
E-n22-k4 0.075% 0.075% 0.075% 0.075% 0.402% 0.075%
E-n101-k8 7.085% 6.824% 5.182% 5.109% 5.855% 4.247%
E-n33-k4 1.088% 2.321% 2.021% 1.234% 1.662% 0.562%
E-n23-k3 0.9% 0.991% 0.402% 0.634% 0.634% 0.61%
E-n76-k8 4.534% 3.425% 2.486% 2.814% 2.802% 2.044%
E-n76-k14 2.931% 3.233% 2.287% 3.571% 3.945% 1.767%
B-n57-k9 2.354% 3.336% 2.666% 3.08% 2.693% 2.602%
B-n50-k7 4.209% 3.241% 2.666% 2.387% 2.387% 2.188%
B-n45-k5 3.276% 3.424% 1.554% 2.706% 3.415% 2.547%
B-n64-k9 5.576% 7.892% 6.274% 6.225% 5.674% 5.527%
B-n52-k7 3.808% 5.024% 2.101% 1.8% 3.048% 1.878%
B-n38-k6 2.702% 2.983% 1.901% 1.87% 2.82% 1.727%
B-n41-k6 1.546% 1.67% 1.132% 0.719% 1.807% 1.413%
B-n39-k5 3.877% 2.198% 1.623% 1.735% 2.463% 1.02%
B-n63-k10 5.197% 5.137% 3.69% 4.31% 5.508% 2.268%
B-n78-k10 7.877% 5.947% 5.123% 4.805% 4.889% 4.753%
B-n66-k9 2.698% 3.774% 2.327% 3.547% 2.984% 1.902%
B-n57-k7 2.612% 1.715% 0.434% 1.402% 2.024% 0.061%
B-n45-k6 6.94% 7.247% 6.786% 2.885% 6.918% 2.257%
B-n56-k7 6.94% 6.823% 4.134% 4.106% 5.888% 2.848%
B-n67-k10 4.882% 4.788% 4.574% 4.793% 4.582% 3.959%
B-n34-k5 2.409% 1.404% 1.278% 1.201% 1.911% 1.156%

Continued in next column

STLbal. UW Ours STLbal. UW Ours
B-n35-k5 2.804% 2.746% 1.605% 1.915% 3.375% 1.449%
B-n31-k5 2.535% 2.164% 2.201% 0.887% 2.868% 1.734%
B-n43-k6 2.07% 1.612% 1.328% 1.433% 1.162% 1.091%
B-n50-k8 2.653% 2.22% 0.753% 2.081% 1.537% 0.908%
B-n44-k7 4.102% 4.496% 2.999% 1.648% 4.506% 2.935%
B-n68-k9 2.978% 3.814% 3.087% 2.005% 3.628% 2.674%
X-n129-k18 4.634% 4.969% 3.272% 4.152% 4.443% 1.606%
X-n157-k13 13.281% 7.763% 3.434% 8.206% 6.047% 3.243%
X-n162-k11 9.169% 7.895% 4.925% 5.887% 6.812% 3.77%
X-n106-k14 6.514% 5.357% 4.021% 5.848% 4.832% 2.897%
X-n153-k22 14.706% 12.736% 9.842% 13.081% 12.746% 11.582%
X-n172-k51 9.696% 8.034% 5.79% 8.685% 7.601% 5.574%
X-n143-k7 13.044% 11.111% 5.389% 8.501% 9.398% 5.679%
X-n139-k10 6.853% 6.412% 3.201% 4.548% 4.61% 2.667%
X-n167-k10 9.207% 9.577% 5.261% 6.896% 7.714% 4.51%
X-n176-k26 9.509% 9.657% 8.049% 9.96% 9.42% 10.584%
X-n134-k13 12.317% 11.499% 6.519% 9.79% 9.204% 5.727%
X-n125-k30 6.379% 5.126% 5.176% 5.327% 5.31% 4.863%
X-n181-k23 7.51% 5.866% 3.14% 4.759% 4.317% 2.812%
X-n101-k25 7.612% 6.11% 4.17% 6.356% 4.849% 4.715%
X-n120-k6 11.344% 9.381% 5.698% 6.232% 7.243% 4.003%
X-n110-k13 3.906% 5.189% 3.022% 2.966% 3.243% 1.866%
X-n115-k10 7.958% 8.94% 4.115% 5.348% 4.232% 2.674%
X-n148-k46 9.003% 7.867% 5.387% 7.881% 6.486% 5.012%
F-n45-k4 4.241% 4.458% 3.135% 3.875% 4.323% 2.144%
F-n135-k7 30.986% 28.722% 16.019% 16.893% 24.714% 8.727%
F-n72-k4 16.616% 14.387% 12.906% 12.541% 14.458% 11.514%
Avg. Gap 6.3% 5.895% 3.94% 4.63% 5.105% 3.344%

A.12 Stability of Each Method

This section examines the stability characteristics of the compared methods presented in Figure 11. The con-
fidence interval plots reveal significant differences in stability among the various approaches. For small-scale
problems such as TSP20 and CVRP20, most methods demonstrate relatively narrow confidence intervals,
indicating consistent performance across trials. However, approaches like CAGrad and Nash-MTL exhibit
increasingly wide error bars on large-scale problems, suggesting high variance in solution quality. In contrast,
our proposed method maintains remarkably tight confidence intervals across all problem scales and budget
configurations. For instance, in the TSP100 scenario, while methods like TAG and UW show error bars
spanning over 2% in optimality gap, our approach maintains a confidence interval below 1%, demonstrating
exceptional stability. Similarly, for CVRP100, our method achieves not only the lowest mean optimality gap
but also the narrowest confidence interval among all compared approaches, particularly notable given the in-
herent complexity of vehicle routing problems. This stability advantage extends to OP100 and KP200, where
our method consistently delivers reliable performance regardless of the computational budget allocated.

We further demonstrate the stability of each model obtained by the specific methods on 10000 test instances
from each COP and the corresponding 2-sigma error bar plot is shown in Figure 10. It is generally accepted
that longer training epochs lead to reduced standard variance for each method. Additionally, our method
produces a model with the most stable performance in most scenarios when compared to other MTL methods
across almost all cases.

A.13 Additional Experiments on Other Domains

We select the challenge domain on Time Series to evaluate the performance of our method. Following the
common practice in this domain, there are multiple series in one piece of data and the prediction on each
series is seen as a task. 2We consider Long-term Forecasting tasks comprising ETT (4 subsets), Weather,

2For forecasting and imputation tasks, we ignore the Electricity and Traffic dataset because all MTL methods meet out of
memory errors because there are too many tasks.
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Table 10: Comparison results on CVRPLib large X-set instances. The reported results depict the optimality gap
(%) (↓) in the main aspects.

Instances Small Budget Median Budget
STLbal. UW Ours STLbal. UW Ours

X-n153-k22 14.706% 12.736% 9.842% 13.081% 12.746% 11.582%
X-n157-k13 13.281% 7.763% 3.434% 8.206% 6.047% 3.243%
X-n162-k11 9.169% 7.895% 4.925% 5.887% 6.812% 3.77%
X-n167-k10 9.207% 9.577% 5.261% 6.896% 7.714% 4.51%
X-n172-k51 9.696% 8.034% 5.79% 8.685% 7.601% 5.574%
X-n176-k26 9.509% 9.657% 8.049% 9.96% 9.42% 10.584%
X-n181-k23 7.51% 5.866% 3.14% 4.759% 4.317% 2.812%
X-n186-k15 8.134% 6.2% 4.538% 5.593% 6.196% 3.55%
X-n190-k8 23.249% 22.66% 11.446% 15.895% 19.829% 8.168%
X-n195-k51 11.579% 8.789% 6.58% 8.67% 8.08% 7.032%
X-n200-k36 7.974% 9.087% 5.255% 6.128% 6.436% 6.136%
X-n204-k19 10.312% 7.49% 4.979% 7.239% 6.413% 4.065%
X-n209-k16 9.162% 8.672% 5.258% 6.981% 7.342% 4.02%
X-n214-k11 20.68% 17.096% 8.92% 15.749% 13.682% 7.321%
X-n219-k73 4.375% 3.497% 4.571% 3.615% 3.233% 9.83%
X-n223-k34 7.853% 6.587% 4.546% 7.276% 5.984% 4.405%
X-n228-k23 14.332% 13.957% 7.996% 12.66% 14.121% 9.17%
X-n233-k16 15.036% 13.044% 7.36% 11.054% 10.225% 6.318%
X-n237-k14 12.34% 9.22% 5.873% 9.229% 8.42% 4.985%
X-n242-k48 7.898% 6.473% 4.18% 5.885% 5.295% 3.768%
X-n247-k50 13.286% 11.53% 9.837% 12.483% 11.252% 12.42%
X-n251-k28 9.639% 6.9% 5.38% 8.354% 7.026% 4.555%
X-n256-k16 12.559% 11.406% 7.483% 10.57% 9.952% 5.664%
X-n261-k13 15.276% 12.801% 8.105% 11.256% 11.87% 6.037%
X-n266-k58 11.201% 9.328% 6.785% 9.059% 7.605% 7.123%
X-n270-k35 10.776% 9.511% 5.699% 6.707% 6.614% 4.996%
X-n275-k28 12.332% 9.559% 7.728% 11.486% 7.87% 11.82%
X-n280-k17 14.627% 12.623% 8.265% 9.79% 12.037% 7.689%
X-n284-k15 28.634% 19.965% 11.425% 17.151% 17.287% 9.917%
X-n289-k60 10.273% 9.286% 6.553% 8.843% 7.496% 6.114%
X-n294-k50 11.923% 8.741% 6.137% 10.047% 7.505% 6.46%
X-n298-k31 11.893% 10.425% 6.204% 9.784% 9.086% 5.791%
X-n303-k21 15.677% 12.521% 7.1% 12.006% 10.066% 6.113%
X-n308-k13 20.819% 17.586% 11.602% 13.931% 15.671% 8.787%
X-n313-k71 10.101% 7.316% 6.385% 8.206% 7.284% 5.154%
X-n317-k53 8.573% 7.698% 6.984% 7.461% 5.571% 7.512%
X-n322-k28 13.077% 9.637% 7.348% 10.97% 8.948% 6.152%
X-n327-k20 16.5% 12.753% 8.583% 13.25% 11.878% 7.405%
X-n331-k15 17.917% 14.3% 8.582% 12.255% 12.554% 7.65%
X-n336-k84 10.591% 8.832% 6.135% 8.698% 6.894% 5.45%
X-n344-k43 12.481% 9.243% 6.333% 9.793% 8.089% 5.927%
X-n351-k40 23.583% 19.07% 10.175% 19.736% 13.74% 8.873%

Continued in next column

X-n359-k29 13.357% 10.196% 6.311% 8.97% 9.258% 5.188%
X-n367-k17 26.92% 25.243% 12.559% 22.251% 17.674% 11.841%
X-n376-k94 8.37% 5.268% 4.461% 6.62% 4.62% 19.442%
X-n384-k52 12.47% 9.467% 7.249% 8.922% 8.793% 5.539%
X-n393-k38 15.021% 11.46% 7.761% 13.005% 10.953% 7.308%
X-n401-k29 14.462% 12.664% 6.402% 10.178% 12.125% 5.985%
X-n411-k19 31.257% 29.84% 17.378% 26.846% 22.044% 14.923%
X-n420-k130 13.386% 9.999% 7.311% 12.665% 9.314% 7.341%
X-n429-k61 14.223% 10.818% 7.665% 10.63% 8.634% 7.716%
X-n439-k37 17.993% 10.405% 11.945% 14.041% 9.48% 19.02%
X-n449-k29 17.373% 12.241% 8.217% 12.251% 11.785% 7.431%
X-n459-k26 35.717% 33.254% 15.816% 27.829% 25.709% 13.068%
X-n469-k138 12.839% 10.714% 8.997% 11.404% 9.554% 13.673%
X-n480-k70 13.093% 10.31% 7.602% 9.71% 8.144% 8.86%
X-n491-k59 12.518% 11.1% 7.449% 11.76% 8.725% 7.053%
X-n502-k39 31.767% 11.941% 16.177% 13.729% 14.196% 13.057%
X-n513-k21 36.662% 22.441% 14.372% 28.895% 21.226% 12.102%
X-n524-k153 11.975% 10.539% 10.766% 12.89% 10.372% 11.341%
X-n536-k96 15.463% 13.286% 9.865% 14.05% 12.02% 9.003%
X-n548-k50 13.354% 10.535% 6.862% 10.33% 8.727% 9.076%
X-n561-k42 21.571% 13.463% 10.129% 16.558% 11.263% 8.809%
X-n573-k30 57.107% 37.495% 21.593% 25.765% 29.072% 15.744%
X-n586-k159 14.7% 12.448% 9.937% 12.221% 10.015% 12.783%
X-n599-k92 15.264% 12.339% 8.936% 11.369% 10.018% 10.044%
X-n613-k62 18.895% 14.054% 8.76% 15.746% 11.519% 9.232%
X-n627-k43 32.829% 29.237% 15.841% 21.009% 17.086% 11.597%
X-n641-k35 21.398% 16.795% 11.724% 15.384% 14.725% 10.383%
X-n670-k130 18.374% 14.581% 12.882% 17.64% 13.113% 14.493%
X-n685-k75 22.086% 14.013% 10.585% 16.578% 12.948% 10.125%
X-n701-k44 20.035% 13.744% 9.216% 13.87% 14.069% 8.404%
X-n716-k35 52.99% 27.968% 17.734% 31.692% 25.924% 15.159%
X-n733-k159 18.048% 12.284% 9.352% 13.937% 9.87% 9.005%
X-n749-k98 24.317% 17.183% 12.182% 19.278% 14.994% 10.94%
X-n766-k71 19.917% 16.109% 11.691% 14.925% 14.048% 10.732%
X-n783-k48 26.122% 17.523% 12.083% 17.502% 15.687% 10.984%
X-n801-k40 25.352% 16.169% 13.368% 18.48% 16.591% 17.866%
X-n837-k142 16.701% 11.45% 8.473% 12.523% 10.398% 10.42%
X-n876-k59 32.379% 26.154% 14.322% 16.465% 20.461% 11.984%
X-n895-k37 35.09% 22.169% 15.525% 23.595% 21.286% 16.001%
X-n916-k207 15.837% 14.357% 11.17% 10.88% 10.047% 12.44%
X-n936-k151 24.645% 18.922% 17.4% 23.302% 17.602% 20.523%
X-n957-k87 28.359% 17.266% 13.175% 21.262% 13.764% 16.707%
X-n979-k58 21.886% 28.181% 13.832% 14.21% 18.18% 13.084%
X-n1001-k43 33.074% 23.709% 16.201% 23.08% 20.05% 14.098%
Avg. Gap 17.709% 13.659% 9.21% 13.134% 11.655% 9.174%

Table 11: For Long-term Forecasting tasks, all the results are averaged from 4 different prediction lengths, that
is {24, 36, 48, 60} for ILI and {96, 192, 336, 720} for the others. "Baseline" provides the the results in the original
paper. Results in bold mean achieving the best performance among all methods.

ETT-h1 ETT-h2 ETT-m1 ETT-m2 Whether Exchange ILI
Method MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

MTL 0.496 0.487 0.450 0.459 0.588 0.517 0.327 0.371 0.338 0.382 0.613 0.539 3.006 1.161
Bandit-MTL 0.438 0.420 0.398 0.363 0.533 0.643 0.304 0.220 0.327 0.254 0.319 0.181 1.424 3.955
UW 0.420 0.385 0.400 0.359 0.502 0.557 0.325 0.236 0.308 0.231 0.287 0.153 1.425 3.942
CAGrad 0.468 0.466 0.390 0.351 0.477 0.488 0.304 0.220 0.312 0.241 0.310 0.174 1.411 3.856
IMTL-G 0.445 0.423 0.392 0.352 0.465 0.462 0.303 0.219 0.319 0.245 0.286 0.153 1.399 3.776
Nash-MTL 0.468 0.472 0.409 0.370 0.468 0.483 0.310 0.225 0.315 0.240 0.302 0.165 1.376 3.806
Ours 0.418 0.385 0.383 0.343 0.506 0.547 0.299 0.215 0.360 0.277 0.333 0.193 1.689 5.189

Exchange and ILI datasets, and Imputation task comprising ETT and Weather. The backbone is AutoFormer
(Wu et al., 2021a) and all the experimental settings keep the same as the original paper.
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Figure 9: Further results of the bandit information. The caption of each subfigure "A-B" means the influence
matrix obtained by algorithm A with update frequency B.

Results show that there are no consisting best methods for all datasets, however, our method can achieve
the best performance consistently on 3 out of 7 datasets.

From these results, our method performs well in some cases, but generally speaking, there is no one universal
approach which can handle all tasks or even on all datasets in a task.
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(c) Large budget

Figure 10: Stability of the model obtained by different methods on 10000 instances from each COP with different
budget allocations.
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Figure 11: Comparison of methods across different budgets (small, median, and large) on TSP, CVRP, OP, and
KP with varying problem scales. The results are presented as the optimality gap (%) for each method, with error
bars indicating the standard deviation over 5 runs.

Broader Impact Statement

Our contributions significantly impact machine learning and its applications by introducing a novel frame-
work for training combinatorial neural solvers with multi-task learning. Based on this, we not only enhance
performance over standard paradigms but also offer a scalable method for training large models under re-
source constraints. This advancement has the potential to revolutionize industries that rely on complex
optimization, such as logistics and manufacturing, by enabling more sophisticated AI solutions. Further-
more, our theoretical insights into loss decomposition and the introduction of an influence matrix shed light
on the inner workings of neural solvers, facilitating a deeper understanding and improvement of machine
learning models. However, the deployment of these advanced technologies also necessitates a careful exami-
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Table 12: For Imputation tasks, time series are randomly masked {12.5%, 25%, 37.5%, 50%} time points in
length-96. The results are averaged from 4 different mask ratios. Results with underline mean achieving the best
performance among all methods and those in bold mean achieving the best among all MTL methods.

ETT-h1 ETT-h2 ETT-m1 ETT-m2 Weather
Method MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Baseline 0.103 0.214 0.055 0.156 0.051 0.150 0.029 0.105 0.031 0.057
Bandit-MTL 0.324 0.201 0.437 0.414 0.579 0.576 0.603 0.792 0.255 0.154
UW 0.268 0.143 0.354 0.280 0.669 0.767 0.774 1.124 0.391 0.324
CAGrad 0.269 0.144 0.354 0.267 0.593 0.605 0.640 0.747 0.347 0.257
IMTL 0.270 0.145 0.353 0.266 0.594 0.605 0.681 0.854 0.388 0.337
Nash-MTL 0.268 0.143 0.347 0.255 0.637 0.694 0.693 0.866 0.489 0.494
Ours 0.300 0.174 0.411 0.366 0.473 0.384 0.609 0.734 0.283 0.174

nation of ethical and societal implications, including potential impacts on employment and the importance
of ensuring privacy, security, and fairness in AI applications.

31


	Introduction
	Related Work
	Method
	Loss Decomposition
	Reward Design and Influence Matrix Construction
	Theoretical Analysis and Implementation
	Computation Complexity of MTL Methods

	Experiments
	Comparison under Same Training Budgets
	Comparative Analysis and Generalization Performance
	Study of the Influence Matrix
	Results on Real Datasets

	Conclusions and Futhre Works
	Appendix
	Problem Description
	Loss Decomposition For Adam Optimizer
	Proof and Discussion on Theorem 1
	Discussion on The Bandit Algorithm and Update Frequency
	Details of Multi-task Learning Methods
	Configurations and Detailed Results of TAG
	Experimental Settings
	Loss and Gradient Norm of Each Task
	Clarification on Performance Improvements and Further Ablations
	Detailed Results on TSPLib and CVRPLib
	Demonstration of the Bandit Algorithms
	Stability of Each Method
	Additional Experiments on Other Domains


