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ABSTRACT

The preimage of the activities of all the nodes at a certain level of a deep net-
work is the set of inputs that result in the same node activity. For fully connected
multi layer rectifier networks we demonstrate how to compute the preimages of
activities at arbitrary levels from knowledge of the parameters in a deep rectifying
network by disregarding the effects of max-pooling. If the preimage set of a cer-
tain activity in the network contains elements from more than one class it means
that these classes are irreversibly mixed. This implies that preimage sets which
are piecewise linear manifolds are building blocks for describing the input man-
ifolds specific classes, i.e. all preimages should ideally be from the same class.
We believe that the knowledge of how to compute preimages will be valuable in
understanding the efficiency displayed by deep learning networks and could po-
tentially be used in designing more efficient training algorithms

1 INTRODUCTION

The activity of the nodes at each level of a deep network contains all the information that will be
used for classification. Ideally, if the activities are generated by two inputs from the same class,
they should be similar and if the classes are distinct the activities should be distinct. The map from
the input to any layer of a deep network can however easily be shown to be many to one. This
means that classes can potentially get mixed at any level of the network by mapping to the same
activity. This mixing cannot be undone at later stages and must therefore be avoided. Given a certain
activity it is therefore essential to know the set of inputs to the network that result in this activity.
This set should obviously not contain exemplars from more than one class. This means that they
are potential building blocks for designing efficient classifiers. In this paper we will demonstrate
that the set of inputs resulting in a specific activity at any level of a deep rectifier network can be
completely characterised and we will give a procedure for computing them. For a specific activity
at any level they are known as the preimage of the function mapping the input to the activity. In
this procedure we disregard the effects of pooling the outputs of node activities. This can be seen
as complementary to the work in Mahendran & Vedaldi (2015; 2016) where specific preimages are
computed numerically by a regularised optimisation procedure that tries to map the image to the
natural image manifold.

For multi layer rectifier networks where each layer consists of linear mappings followed by a rectify-
ing linear unit (ReLU), the set of possible functions that map inputs to node activities can be shown
to be piecewise linear Glorot et al. (2011); Montufar et al. (2014). We will demonstrate that for a
specific activity at any level, the equivalence class of inputs that can generate this activity consists
of piecewise linear manifolds in the input space. For efficient classification by the network, these
manifolds must only contain a single class. They therefore constitute building blocks for efficient
approximation of the distribution of classes in the input space.

Multi layer networks with rectifier linear units (ReLU) as non-linear elements starts with the n-
dimensional input vector x and produces successive outputs of the form:

y = [

n∑
i=1

aixi + b ]+ (1)
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Where [x]+ denotes the ReLU function max(0, x). By augmenting the input vector with a one
xT = (x1 . . . xn, 1) we can absorb the bias b into the vector as a weight an+1 and write

y = [

n+1∑
i=1

aixi]+ = [wTx]+ (2)

where we have collected the weights ai into the vector w We will consider networks that are fully
connected at each level l. I.e. we will consider the set of mappings between layers:

x→ x(1) → x(2) . . .→ x(k) (3)

where the j:th output node at the l + 1:th layer is computed as:

x
(l+1)
j = [wl+1T

j x(l)]+ (4)

This is a somewhat generalised model compared to the more standard convolutional networks with
multiple kernels at each level. It can however be easily specialised to the convolutional case which
we will will do later.

For each point xl+1 in the activity output space of level l+1 we can define the preimage set P (xl+1)
of activities xl at level l that maps to this activity. We can illustrate this as in Figure 1 with examples
of preimages of the mapping between successive layers for a simple 2-node network. If there was
no non linear rectifying element, the mapping would be just the linear plus bias transformation from
layer l to layer l + 1 and and it could be read out from the figure by just noting the respective
coordinates in the orthogonal l-system and the skewed l + 1-system.

x
(l+1)
1 = [w1,1x

(l)
1 + w1,2x

(l)
2 + w1,3]+ (5)

x
(l+1)
2 = [w2,1x

(l)
1 + w2,2x

(l)
2 + w2,3]+ (6)

For the all-positive quadrant in the output (x
(l+1)
1 , x

(l+1)
2 ) the mapping is unique and the preimage

is just the corresponding input (x
(l)
1 , x

(l)
2 ). The dashes lines in the two other quadrants illustrate the

preimage for the case of points on the lines x(l+1)
1 = 0 and x(l+1)

2 = 0 respectively. The grey area
in the last quadrant indicate points that all get mapped to the origin (0, 0) of the (x
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2 )
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By concatenating this these transformations from the first layer we can express the activity at level
(l + 1) directly as am affine mapping from the input space (x1, x2)
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In fig 2 the coordinate systems depicts these mappings from the input space (x1, x2) to the node
activities and levels 1, 2 and 3 and how the preimages at the output level can be traced as elements
in input space forming piecewise linear manifolds Note that disjoint piecewise linear regions in
input space (x1, x2) gets mapped to distinct points on the two output axis (x

(3)
1 , x

(3)
2 ) while all the

points in the grey shaded area get mapped to the same point x(3)1 = 0, x
(3)
2 = 0 This illustrates the

network’s ability to map non-linear input regions into linear output regions which is essential for
successful classification.
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Figure 1: Mapping from activity x at level l to level l + 1 and the associated preimage sets P (x).
The figure illustrates the two coordinate axis’ x(l+1)

1 = 0 and x(l+1)
2 = 0. In the all positive

quadrant, the mapping is just linear while in the other quadrants, the input gets mapped to 0 output
of either x(l+1)

1 or x(l+1)
2 or both. This generates preimage sets depending on the quadrant.

2 GENERAL FULLY CONNECTED RECTIFIER NETWORKS

We collect the linear mappings at level l in the matrix W . The number of rows of this matrix is the
dimensionality of the output which we can be varying but we will assume that W always has full
rank in order to focus on problems induced by the non linear ReLU element. If we denote by [x]+
the output vector with component wise application of the ReLU function on the vector x, we then
can write:

x(l+1) = [Wx(l)]+

for the mapping of activities from layer l to layer l+ 1. For each element x(l+1) the preimage set of
this mapping will be the set:

P (x(l+1)) = {x : xl+1 = [Wx]+}
which can be specified in more detail as:

P (x(l+1)) = {x : wT
i x = xl+1

i ∀xl+1
i > 0, wT

i x ≤ 0 ∀xl+1
i = 0}

Let i1, i2, . . . ip be the indices of the components of xl+1 that are = 0 and j1, j2, . . . jq those that are
> 0. This means that

wT
i1x

(l) ≤ 0, wT
i2x

(l) ≤ 0 . . . wT
ipx

(l) ≤ 0 (7)

wT
j1x

(l) > 0, wT
j2x

(l) > 0 . . . wT
jpx

(l) > 0
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Figure 2: Preimages at various levels of a rectifier network with input (x1, x2) and output activity
(x

(3)
1 , x

(3)
2 ) All elements in the grey shaded area eventually get mapped to output activity (0, 0) and

are irreversibly mixed.

For the case p = 0 we have a trivial linear mapping from the previous layer to only positive values
of the output. This means that the preimage is just the point x(l). In the general case where p > 0
the preimage will contain elements x such that wT

i x < 0 for i1, i2, . . . ip. In order to identify these
we will define the null spaces of the linear mappings wi:

Πi = {x : wT
j x = 0 j = 1 . . . n}

These null spaces are sets of hyperplanes in input space. Obviously, any input element x that is
mapped to the negative side of the hyperplane generated by the mapping wi will get mapped to this
hyperplane by the ReLU function. In order to identify this mapping we will define a set of basis
vectors for elements of the input space from the one dimensional linear subspaces generated by the
intersections:

πi = Π1 ∩Π2 ∩ . . . ∩Πi−1 ∩Πi+1 ∩ . . . ∩Πn

Each one dimensional subspace πi is generated by intersecting the hyperplanes associated with
the nullspaces of the remaining linear mapping kernels. The fact that these intersections generate
one dimensional subspaces can be seen most easily using e.g. Grassmann-Cayley algebra Carlsson
(1993) or by just noting that each intersection of two n-dimensional hyperplanes gives rise to a linear
manifold with dimension one lower at each intersection For each subspace πi we can now define a
basis unit vector ei such that each element of πi can be expressed as x = αiei. We can also define
the direction and length of ei by requiring that wT

i ei = 1 The assumed full rank of the mapping W
guarantees that the system e1, e2 . . . en is complete in the input space. We can therefore express any
vector as:

x =

n∑
1

αiei
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Since ei is in the nullspace of every remaining kernel except i we have:

wT
j ei = 0 i 6= j

This means that:

wT
j x =

n∑
1

αiw
T
j ei = αj

The subspace coordinates αi are therefore a convenient tool for identifying the preimage of the
mapping between the successive layers in a rectifier network. Since for j = i1, i2, . . . ip we will
have αj > 0 and for j = j1, j2, . . . jq we will have αj ≤ 0

We can therefore finally formulate the procedure for identifying the preimage of a mapping between
successive layers in a rectifying network as:

Given the mapping where the activity of the j:th node is computed as:

x
(l+1)
j = [wT

j x
(l)]+ (8)

we identify indices j = i1, i2, . . . ip where wT
j x

(l) > 0 and j = j1, j2, . . . jq
where wT

j x
(l) ≤ 0 Using kernels w1 . . . wn to define their corresponding null-

space hyperplanes Π1 . . .Πn we generate one dimensional subspaces πi by inter-
secting the complementary set of null-space hyperplanes:

πi = Π1 ∩Π2 ∩ . . . ∩Πi−1 ∩Πi+1 ∩ . . . ∩Πn

and define basis vectors for these as ei Any element in the input space can now be
expressed as a linear combination:

x = αi1ei1 + αi2ei2 + . . . αipeip − αj1ej1 − αj2ej2 − . . . αjqejq

where all αi ≥ 0 The preimage set is then generated by assigning arbitrary values
> 0 to the coefficients αj1 , αj2 , . . . αjq

Figure 3 illustrates the associated hyperplanes Π1,Π2,Π3 in the case of three nodes and the respec-
tive unit vectors e1, e2, e3 with positive directions indicated by arrows. For the all positive octant,
i.e. all wT

i x > 0 the linear mapping is just full rank and the preimage is just the associated input
(x1, x2, x3). For three other octants the preimages for three selected points are illustrated:

1. For wT
1 x > 0, wT

2 x > 0, wT
3 x < 0, the preimage of a point on the plane Π3 consist of all

points on the indicated arrow.
2. For wT

1 x > 0, wT
2 x < 0, wT

3 x > 0, the preimage of a point on the plane Π2 consist of all
points on the indicated arrow.

3. For wT
1 x > 0, wT

2 x < 0, wT
3 x < 0, the preimage of a point on the intersection of planes

Π2 and Π3 consist of all points on the indicated grey shaded area

In general, for points that are not in the all positive wT
i x > 0∀i region they will be located on a

linear submanifold spanned by the unit vectors ei1 , ei2 , . . . , eip
x = αi1ei1 + αi2ei2 + . . . αipeip

The preimage then consists of all points on the linear manifold:

x − αj1ej1 − αj2ej2 − . . . αjqejq

where all αi ≥ 0

For a multi level network , preimages for elements that are mappings between successive levels
will therefore consist of pieces of linear manifolds in the input space at that level of dimensions
determined by the number of nodes with positive output for that element. By mapping back to
the original input space, preimages for specific elements at a certain level will be piecewise linear
manifolds, the elements of which all map to that specific element. This is exactly what is illustrated
in figure 2 for the case of 2-dimensional inputs and a network with three levels of two nodes at each
level.These piecewise linear manifolds can therefore me considered as fundamental building blocks
for mapping input distributions to node outputs at any level of the network.
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Figure 3: Hyperplanes Π1,Π2Π3 of nullspaces for transformation kernels and the associated unit
vectors e1, e2, e3 from pairwise intersections (Π2Π3) (Π1,Π3) and (Π1,Π2) respectively. The
preimages of various points in the output are indicated as arrows or the shaded area

3 CONVOLUTIONAL NETWORKS HAVE “WELL-BEHAVED” PREIMAGES

Convolutional networks where the mappings W consists of convolutional matrices:
wT 0 . . . 0
0 wT 0 . . . 0
0 0 wT 0 . . . 0
0 0 0 wT 0 . . . 0

0
...

 (9)

are the standard realisations of multilayer networks. Using a heuristic argument, it can be seen that
the preimages of these networks are in general “well-behaved” in the sense that under very general
assumptions that are typically valid when training these networks the preimages generated for a
specific activity associated with an image will be semantically equivalent to the given image. For
any layer, the accumulated kernel w(l) mapping from the input space will be the concatenation with
the specific kernel w′(1) of that layer and all specific kernels from the previous layers. I.e. they are
generated by repeated convolutions:

w(l) = w′(1) ∗ w′(2) ∗ . . . ∗ w′(l−1) ∗ w′(l) (10)
of the specific kernels w′(i) from the previous layers. In general the kernels associated with lower
levels of the network will be associated with features such as edges in various orientation. They
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are therefore in general not responsive to slowly varying signal intensity inputs. Typically they will
therefore have the constant vector (1, 1, . . . 1) as nullvector. Any nullvector of a kernel at a certain
level will also be a nullvector of the kernels associated with higher levels. If we study the nullvector
(x1 . . . xn) associated with the complementary set of kernels when deleting a specific kernel (i) so
that no overlap occurs between kernels (i− 1) and (i+ 1)


wT 0 . . . 0
0 wT 0 . . . 0
0 0 wT 0 . . . 0
0 0 0 wT 0 . . . 0

0
...



x1
x2
...
xn

 = 0 (11)

it can easily be seen that

(x1, x2 . . . xn) = (a, . . . a, b . . . , b) (12)

i.e. a “ step edge “ where the step occurs at the location (i) of the deleted kernels. Sharp step edges
in an image will lead to high likelihood of the convolution being negative. The preimages associated
with an image with step edges therefore consists of the original image with step edges overlaid on
already existing edges. This will in general not change the semantic content of the image. At higher
levels, negative convolutions and nullspaces will be associated with more complex image structures
and we can expect more complex variations in the preimage set such as the blurrings associated with
the results in Mahendran & Vedaldi (2015; 2016) This suggests that the preimages associated with
images in standard convolutional networks are not adversarial but rather fall in the same class as that
of the image in question. It will be a focus of further work to outline in more detail the structure
of the preimage class of a certain input image in order to find out if it represents e.g variations due
to external factors and/or if it contains truly adversarial input exemplars. An interesting possibility
would be that the set of preimages can be considered as a model set for any class of images and that
the ultimate goal of training a network will be to have the set of preimages of the output nodes of a
certain class coincide with the image manifold associated with that class.

4 IMPLICATIONS FOR MODELLING IMAGE MANIFOLDS

4.1 THE “GENERAL IMAGE MANIFOLD”

It is generally believed that a valid model for the distribution of images of various identifiable classes
is that they lie on relatively low dimensional manifolds in the high dimensional image input space.
One can also think about the “general image manifold” as consisting of all possible images that
contain identifiable visual structures. The manifolds associated with specific object classes would
then be contained in this general manifold. Due to external factors associated with the imaging
situation like viewpoint, illumination , shading etc. the elements of a specific class will be distributed
in input image space on the specific object manifold.

4.2 CONSTRAINTS ON KERNELS FOR AVOIDING THE MIXING OF PREIMAGES

Given a specific assumption of the distribution of classes on the image manifold we can postulate
various properties of the kernels of rectifier networks at various levels that are necessary in order
that the preimages associated with elements of different classes should not overlap. If we make
the hypothesis that external factors influence different classes in a similar way we can expect the
variation of the class manifolds due to external factors to be similar. Fig 4 depicts a simplified
hypothetical case of the input image manifold where the variation due to external factors has been
reduced to just one-dimension.

Figure 5 illustrates the placement of the hyperplanes associated with kernels at various levels in a
network that would be necessary in order for the preimages of the classes not to mix with each other.
Due to the assumed similarity of the variation of the individual class manifolds, the hyperplanes
have to be orthogonal to the external factor variation. This highly simplified sketch just illustrates
the basic idea that the covariation of class manifolds would induce severe constraints on the kernels
at various levels in a network
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Input image manifolds for 
various object classes

Variation due to
external factors

Figure 4: The “general image manifold” and manifolds of individual object classes due to external
factor and intra class variation assuming a high degree of covariance between classes due to external
factors

Figure 5: Hyperplanes associated with kernels at various levels in a rectifier network that will avoid
mixing of preimages from different classes.

The covariation of different object classes would have the important implication that the training of
the kernels at these levels of the network would benefit from exemplars of multiple classes. This
would give an explanation for the relative success of deep learning methods compared to previous
approaches that in general relied on training of individual classes.
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4.3 SEPARATING CLASSES

At the output level of a network, the representation of of various classes have to be disentangled
in order for the final fc layer to perform a linear separation of the classes. We have empirically
found that classes at the final layer of a network are highly concentrated on a small set sometimes
individual nodes. The whole network can be seen as a dimensionality reducing device that starts
out in high dimensional image input space and ends up in very low dimensional output layers. This
dimensionality reduction is achieved by the ReLU units at various layers as illustrated in fig. 3
where the preimage, being a linear manifold is mapped from a higher to a lower dimension. At
various levels of the network, different classes can located on the same manifold or the same class
can be distributed on different manifolds. This means that we need procedures for ReLU networks
that splits different classes on the same manifold or merges a class that is represented on several
manifolds to one and the same. This can be achieved by ReLU networks and fig. 6 illustrates for the
simple 2 node network how the preimages of classes can be split or merged by proper selection of
kernels at successive levels.

A

B

B

Figure 6: Illustration how different classes A and B on the same manifold can be split to different
manifolds and how the same class B on different manifolds can be merged to the same manifold

In summary we have discussed how the properties of a network regarding it’s ability to model input
manifolds and achieve efficient classification can be described with the concept of the preimage of
the activities of the rectifier network at a certain level. For a specific class the set of preimages
expressed in input image space resulting from the totality of activities at the output of the network
constitutes the network’s model of the manifold of that class. The efficient training of a network
can be seen as obtaining the correct model of every class to be discriminated. The preimage con-
cept allows us to describe how the network is constrained by properties of these manifolds and the
requirement of obtaining efficient classification at the end.

5 CONCLUSIONS AND FURTHER WORK

We have described a procedure to compute the preimage of the activity at a certain level in a deep
network. I.e the set of inputs to the level that result in the same output activity. By concatenating
this procedure we can compute the preimage at input level, i.e. the set of input exemplars that will
eventually result in the same activity. Since inputs in the same preimage of any level activity are
irreversibly mixed, they should ideally correspond to exemplars in classes to be discriminated. They
therefore constitute building blocks for capturing the manifolds of classes in input space. The fact
that deep networks can be seen as tools for efficient low dimensional piecewise linear approximation
has been pointed out in other works recently Basri & Jacobs (2016) and is an important component
in understanding how deep networks achieves their unprecedented efficiency Brahma et al. (2016);
An et al. (2015) .
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It will also be the objective of further work to investigate empirically if the assumed models of
image manifolds and their relation to preimages are valid. This will involve the actual computation
of preimage manifolds which essentially involves the computatio of nullspaces of weight matrices
at various levels in order to define basis vectors for the manifolds. A deeper analysis of the preimage
problem will also have to deal with the pooling that takes place in a deep learning network.

It will also be interesting to investigate how knowledge of preimages in deep networks can be used
to enhance the efficiency of the training of the network. In order to do this we will have to consider
the specialisation to convolutional layers and what it implies. It will also be relevant to investigate
the possible nature of adversarial exemplars Szegedy et al. (2013); Goodfellow et al. (2014); Nguyen
et al. (2015) in classification and if they are related to the concept of pre image of activities associated
with specific classes.
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